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Abstract: Apoptosis is a major cause of reduced podocyte numbers, which leads to proteinuria 

and/or glomerulosclerosis. Emerging evidence has indicated that deSUMOylation, a dynamic 

post-translational modification that reverses SUMOylation, is involved in the apoptosis of 

Burkitt’s lymphoma cells and cardiomyocytes; however, the impact of deSUMOylation on 

podocyte apoptosis remains unexplored. The p53 protein plays a major role in the pathogenesis 

of podocyte apoptosis, and p53 can be SUMOylated. Therefore, in the present study, we 

evaluated the effect of p53 deSUMOylation, which is regulated by sentrin/SUMO-specific 

protease 1 (SENP1), on podocyte apoptosis. Our results showed that SENP1 deficiency 

significantly increases puromycin aminonucleoside (PAN)-induced podocyte apoptosis. 

Moreover, SENP1 knockdown results in the accumulation of SUMOylated p53 protein and 

the increased expression of the p53 target pro-apoptotic genes, BAX, Noxa and PUMA, in 

podocytes during PAN stimulation. Thus, SENP1 may be essential for preventing podocyte 

apoptosis, at least partly through regulating the functions of p53 protein via deSUMOylation. 
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The regulation of deSUMOylation may provide a novel strategy for the treatment of 

glomerular disorders that involve podocyte apoptosis. 

Keywords: apoptosis; deSUMOylation; p53; podocyte; sentrin/SUMO-specific protease 1 

 

1. Introduction 

Clinical and experimental studies have revealed that a decrease in podocyte number is closely 

associated with the initiation of glomerulosclerosis and contributes to the progression of chronic  

kidney disease (CKD) [1–4]. Apoptosis is a major cause of reduced podocyte numbers in glomerular  

diseases [5–7]. At present, there is no satisfactory method or target for inhibiting podocyte apoptosis. 

Thus, the investigation of the pathogenesis of podocyte apoptosis is important to develop novel 

therapeutic strategies for CKD.  

SUMOylation is a crucial post-translational modification of targeted proteins, which is characterized 

by the covalent conjugation of a small peptide (SUMO) [8,9]. DeSUMOylation is the reverse process in 

which substrate proteins deconjugate the SUMO peptide via sentrin/SUMO-specific proteases (SENPs) [10]. 

SUMOylation/deSUMOylation is a highly dynamic process that regulates various physiological 

processes, including cell growth, differentiation, senescence, oxidative stress and apoptosis [11].  

Over recent years, the effect of deSUMOylation has been demonstrated in carcinogenesis and tumor 

progression [12–14]. However, studies on the role of deSUMOylation in kidney disease are nonexistent.  

p53 has been identified as a pivotal factor that regulates the apoptosis of podocytes [15]. The p53 

protein is inactive in normal cells unless cells are exposed to various stress signals, which promotes the 

activation of p53 protein by post-translational modifications [16–18]. Interestingly, several studies  

have shown that p53 could be modified by SUMO-1, and the consequent SUMOylation induces the  

pro-apoptotic activity of p53 and downstream pro-apoptotic gene transcription [19–22]. However, the 

mechanism of p53 deSUMOylation remains unclear. Accordingly, we chose the typical p53 pathway to 

explore the effect of deSUMOylation on podocyte apoptosis by inhibiting SENP1, the most effective 

deSUMOylate protease [23]. 

In this study, we established an in vitro model of apoptotic podocytes using puromycin 

aminonucleoside (PAN), which is widely used to induce podocyte apoptosis both in vivo and in vitro. 

We observed that SENP1 deficiency resulted in a significant increase in the rate of podocyte apoptosis 

induced by PAN. The inhibition of SENP1 also promoted the accumulation of SUMOylated p53 protein 

and the transcription of p53-dependent pro-apoptotic genes, including BAX, Noxa and PUMA, that are 

otherwise induced by PAN stress. Our results indicate that SENP1 may contribute to preventing 

podocytes from undergoing PAN-induced apoptosis. This provides new insights into the mechanism of 

glomerular dysfunction, and suggests that the deSUMOylation of the p53 protein might represent a novel 

therapeutic strategy for the treatment of glomerular disorders. 
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2. Results 

2.1. SENP1 and p53 Expression Increased and Accompanied Podocyte Apoptosis Induced by PAN 

To test the presence of PAN-induced apoptosis in podocytes, we initially detected the amount of 

apoptosis in MPC5 cells using FACS analysis and found that apoptotic MPC5 cells progressively 

increased after PAN treatment (Figure 1A,B). We also found that the Glutathione/Oxidized Glutathione 

(GSH/GSSG) ratio, which reflects the cellular oxidative stress, was progressively down-regulated by PAN 

treatment (Figure 1C). As it is unclear whether PAN stimulation leads to changes in SENP1 expression 

in podocytes, we simultaneously examined the expression of SENP1 in PAN-treated MPC5 cells. We 

observed low levels of SENP1 in normal podocytes; however, after cells were incubated with PAN for 

12 and 24 h, the levels of SENP1 mRNA (Figure 1D) and protein (Figure 1E) in MPC5 cells were 

upregulated along with increased levels of podocyte apoptosis. Furthermore, we examined changes in the 

levels of SUMOylated p53 in PAN-treated MPC5 cells and found that SUMOylated and de-SUMOylated 

p53 were all increased progressively after PAN treatment (Figure 1F). These results suggested that 

SUMOylation/deSUMOylation of p53 protein associated with podocyte apoptosis induced by PAN. 

SENP1 might be involved in this process by regulating SUMOylation/deSUMOylation of p53. 

2.2. Establishment of SENP1-Knockdown in MPC5 Cells 

To address the role of SENP1 in the PAN-induced apoptosis of podocytes, we sought to downregulate 

SENP1 using RNA interference in MPC5 cells. Scrambled short hairpin RNA (shRNA) plasmid as  

the negative control (NC) and four SENP1 shRNA plasmids that targeted the SENP1 gene were 

independently transfected into MPC5 cells. The expression of exogenous GFP-labeled shRNA in MPC5 

cells was detectable at 12 h and reached its peak value at 48 h after transfection (Figure 2A). The results 

of real-time PCR and western blotting confirmed that SENP1 shRNA-4 was the most efficient shRNA 

to decrease SENP1 mRNA (Figure 2B) and protein levels (Figure 2C,D) in MPC5 cells. 

2.3. SENP1 Knockdown Increased PAN-Induced Apoptosis in Podocytes 

To determine the role of SENP1 in influencing the apoptosis of podocytes, we initially quantified 

PAN-induced apoptosis in MPC5 cells with or without the transfection of the selected SENP1 shRNA 

by FACS analysis. As shown in Figure 3A,B, the rate of apoptosis of normal MPC5 cells increased to 

11.83% ± 0.89% 24 h after PAN treatment (5 μg/mL). This effect was enhanced in SENP1 knockdown 

MPC5 cells, in which the rate of apoptosis was significantly increased by up to 1.86-fold (from  

22.02% ± 1.73%). Then we used p53 siRNA to blockade the p53 pathway to directly examine whether 

SENP1 knockdown induced apoptosis was regulated by p53. After the p53 knockdown, SENP1 shRNA 

failed to induce apoptosis in podocytes during PAN treatment (Figure 3A,B). We also detected apoptosis 

by TUNEL/DAPI double staining, which showed an increased number of apoptotic cells in addition  

to enhanced nuclear staining and apoptotic bodies in SENP1 knockdown MPC5 cells compared to  

wild-type PAN-treated MPC5 cells (Figure 3C,D). Furthermore, this effect was markedly reversed by 

p53 inhibition in SENP1 knockdown MPC5 cells, in which the TUNEL positive podocytes decreased 

(Figure 3C,D). These results indicated that SENP1 may be essential for podocyte survival during  
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PAN-induced stress and the effect of SENP1 on regulating podocytic apoptosis may be mediated by the 

p53 pathway. 

Figure 1. SENP1 expression increased in podocytes after PAN treatment. (A) Representative 

flow cytometric analysis of apoptotic cells stained with Annexin V-FITC and propidium 

iodide (PI) after treatment with PAN (5 μg/mL) for 0, 12 and 24 h. Annexin V-positive cells 

were defined as apoptotic cells; (B) The apoptosis rates of MPC5 cells in each group. All 

data are presented as the mean ± SEM of three independent experiments. * p < 0.05 and  

** p < 0.01 vs. 0 h group; (C) The GSH/GSSG ratio was analyzed in cultured MPC5 cells. 

The GSH/GSSG ratio was down-regulated by PAN treatment. * p < 0.05 and ** p < 0.01 vs. 

0 h group; (D) Real-time PCR of SENP1 mRNA in MPC5 cells at indicated times after  

PAN treatment (5 μg/mL). All data are presented as the mean ± SEM of three independent 

experiments. * p < 0.05, ** p < 0.01 vs. 0 h group; (E) Western blotting of SENP1 protein 

expression in MPC5 cells at the indicated times after PAN treatment (5 μg/mL). All data are 

presented as the mean ± SEM of three independent experiments. * p < 0.05, ** p < 0.01  

vs. PAN(–) group; (F) The SUMOylated form of p53 protein was determined by 

immunoprecipitation with an anti-SUMO1 antibody followed by Western blotting with an 

anti-p53 antibody. GAPDH was used as the control. This experiment was performed in triplicate. 

 
  



Int. J. Mol. Sci. 2014, 15 21318 

 

 

Figure 2. Knockdown effect of SENP1 shRNA plasmids transfection in MPC5 cells. MPC5 

cells were transfected with scrambled shRNA and SENP1 shRNA plasmids. (A) Representative 

photomicrographs show GFP-labeled scrambled shRNA plasmid expression and localization 

in MPC5 cells before (0 h) and at 12, 24, and 48 h after transfection. Bar = 25 μm;  

(B) Representative photomicrographs show that the transfection efficiency was more than 

80% at 48 h. Bar = 100 μm; (C) Real-time RT-PCR and (D) Western blotting indicate that 

SENP1 shRNAs inhibited the expression of both mRNA and protein of endogenous SENP1. 

All data are presented as the mean ± SEM of three independent experiments. * p < 0.05,  

** p < 0.01 vs. control group. 
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Figure 3. Knockdown of SENP1 promotes PAN-induced apoptosis in MPC5 cells.  

(A) Representative flow cytometric analysis of apoptotic cells stained with Annexin V-FITC 

and PI after treatment with 5 μg/mL PAN for 24 h. Annexin V-positive cells were defined as 

apoptotic cells; (B) The apoptosis rates of MPC5 cells in each group. All data are presented as 

the mean ± SEM of three independent experiments. * p < 0.05 and ** p < 0.01 vs. control 

group; # p < 0.05 vs. PAN or PAN + sh-NC groups; && p < 0.01 vs. PAN + sh-SENP1 group;  

(C) Representative images of TUNEL/DAPI staining are shown to illustrate apoptotic 

podocytes. Bar = 100 μm. All results are presented as the mean ± SEM of three independent 

experiments; (D) The rates of TUNEL positive MPC5 cells in each group. All data are presented 

as the mean ± SEM of three independent experiments. * p < 0.05 and ** p < 0.01 vs. control 

group; # p < 0.05 vs. PAN or PAN + sh-NC groups; & p < 0.05 vs. PAN + sh-SENP1 group. 

 

2.4. SENP1 Deficiency Induces Apoptosis in Podocytes through p53 SUMOylation 

To determine whether the effect of SENP1 on podocyte apoptosis is related to the p53 pathway,  

we examined changes in the levels of SUMOylated and de-SUMOylated p53 protein in SENP1 knockdown 

MPC5 cells. As shown in Figure 4A, we observed that the SUMOylation of p53 protein increased 

significantly in SENP1 knockdown MPC5 cells compared with normal MPC5 cells after PAN stimulation, 
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which suggested that p53 could be deSUMOylate-modified in a process that was directly regulated by 

SENP1 in podocytes. Next, we treated SENP1 knockdown MPC5 cells with ginkgolic acid, a known 

SUMOylation inhibitor [24]. After ginkgolic acid treatment, SUMOylated p53 level was decreased in 

SENP1 knockdown MPC5 cells (Figure 4B). Moreover, the apoptosis rate of SENP1 knockdown MPC5 

cells was also reduced after ginkgolic acid treatment (Figure 4C–F), which suggested that SENP1 deficiency 

induced apoptosis in podocytes may be directly mediated through p53 SUMOylation. 

Figure 4. SENP1 knockdown induces apoptosis in podocytes through p53 SUMOylation. 

(A,B) Immunoprecipitation analysis was performed to detect SUMOylation and 

deSUMOylation levels of p53 protein in MPC5 cells. SUMOylated p53 was increased in the 

SENP1 shRNA group after treatment with 5 μg/mL PAN for 24 h. MPC5 cells transfected 

with SENP1 shRNA plasmid were treated with DMSO only for control or with 2 μM ginkgolic 

acid. This experiment was performed in triplicate; (C) Representative flow cytometric analysis 

of apoptotic cells stained with Annexin V-FITC and PI after treatment with 2 μM ginkgolic 

acid in SENP1 knockdown MPC5 cells. Annexin V-positive cells were defined as apoptotic 

cells; (D) The apoptosis rates of MPC5 cells in each group. All data are presented as the  

mean ± SEM of three independent experiments. * p < 0.05 vs. PAN or PAN + sh-NC groups;  
# p < 0.05 vs. PAN + sh-SENP1 group; (E) Representative images of TUNEL/DAPI staining 

are shown to illustrate apoptotic podocytes. Bar = 100 μm. All results are presented as the 

mean ± SEM of three independent experiments; (F) Rates of TUNEL positive MPC5 cells 

in each group. All data are presented as the mean ± SEM of three independent experiments. 

* p < 0.05 vs. control group; # p < 0.05 vs. PAN or PAN + sh-NC groups. 
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2.5. SENP1 Deficiency Induces the Upregulation of p53-Dependent Pro-Apoptotic Genes in Podocytes 

We measured the mRNA and protein levels of pro-apoptotic p53 target genes, including BAX, Noxa 

and PUMA, which were all identified as effectors of p53-mediated apoptosis [25–29]. After PAN 

stimulation, the mRNA and protein expression of BAX, Noxa and PUMA were significantly increased  

in SENP1-deficient MPC5 cells compared to wild-type MPC5 cells (Figure 5A–E). To directly 

demonstrate whether SENP1 knockdown induced pro-apoptotic gene expression was p53 dependent,  

we used p53 siRNA to blockade the p53 pathway. After the p53 knockdown, SENP1 shRNA failed to 

induce up-regulation of BAX, Noxa and PUMA expression during PAN treatment (Figure 5A–E), which 

indicated the effect of SENP1 on regulating pro-apoptotic gene expression through the p53 pathway in 

podocytes. All of the above data indicated that SENP1 plays a critical role in preventing the pro-apoptotic 

activity of p53 in podocytes. 

Figure 5. Blockade of SENP1 results in upregulation of p53-dependent pro-apoptotic genes 

in podocytes. (A–C) Real-time RT-PCR indicates that the knockdown of SENP1 induced 

the expression of BAX, Noxa and PUMA mRNA in PAN-treated MPC5 cells. All data are 

presented as the mean ± SEM of three independent experiments. * p < 0.05, ** p < 0.01 vs. 

control group; # p < 0.05 vs. PAN or PAN + sh-NC groups; & p < 0.05, && p < 0.01 vs.  

PAN + sh-SENP1 group; (D,E) Western blotting analysis of BAX, Noxa and PUMA protein 

levels in PAN-treated MPC5 cells. All data are presented as the mean ± SEM of three 

independent experiments. * p < 0.05, ** p < 0.01 vs. control group; # p < 0.05, ## p < 0.01 vs. 

PAN or PAN + sh-NC groups; & p < 0.05, && p < 0.01 vs. PAN + sh-SENP1 group. 

 
  



Int. J. Mol. Sci. 2014, 15 21322 

 

 

3. Discussion 

This study has provided novel insights into the pathogenesis of podocyte apoptosis by probing the 

role of the post-translational modifications, SUMOylation and deSUMOylation, in kidney disease for 

the first time. We found that SENP1 was expressed at low levels in normal podocytes, and was markedly 

increased in podocytes subjected to PAN-induced apoptosis and oxidative stress (Figure 1). Moreover, 

we also found that SUMO-1 conjugated p53 (SUMOylated p53), the pivotal factor that regulates 

podocyte apoptosis, was accumulated after PAN treatment. Accordingly, we hypothesized that SENP1 

might be involved in PAN-induced podocyte apoptosis, which is probably associated with the p53 

pathway. Previous studies have indicated that SENP2 plays a role in p53 deSUMOylation and  

p53-mediated cellular apoptosis [30,31]. As SENP1 is shown to have a greater efficiency to deconjugate 

SUMO-1 than other family members [23,32], it is conceivable that SENP1 also has a crucial role in  

p53-induced apoptosis, which remains to be explored. 

To further elucidate the role of SENP1 in podocyte apoptosis, we designed and synthesized a SENP1 

shRNA plasmid and transfected it into MPC5 cells. Then, we detected the degree of apoptosis in normal 

podocytes and SENP1 knockdown podocytes after PAN stimulation to determine whether SENP1 

deficiency actually results in the increased apoptosis of podocytes. After PAN treatment for 24 h, the 

rate of apoptosis in normal podocytes only increased from 3.47% ± 0.71% to 11.83% ± 0.89%,  

while the rate of apoptosis in SENP1 knockdown podocytes increased by up to 22.02% ± 1.73%, almost 

2-fold more than normal podocytes (Figure 3A,B). TUNEL staining also showed a significant increase 

in the number of apoptotic cells in SENP1 knockdown podocytes compared to normal podocytes under 

PAN-induced stress (Figure 3C,D). Importantly, we also found that the effect of SENP1 on regulating 

apoptosis in podocytes was p53-dependent (Figure 3), indicating the essential role of p53 in SENP1 

deficiency induced podocytic apoptosis during PAN stress. Our data demonstrated that the knockdown 

of SENP1 rendered podocytes more susceptible to PAN-induced injury and enhanced the degree of 

PAN-induced podocyte apoptosis. Therefore, the upregulation of SENP1 during PAN stimulation might 

be a compensatory reaction in podocytes for deSUMOylating p53 protein. The growth in the number of 

apoptotic podocytes may be explained if the upregulation of SENP1 is still insufficient for 

deSUMOylation of all SUMOylated p53 protein. These findings suggested that SENP1 is essential for 

podocyte survival during PAN-induced cellular stress. 

Jiang et al. [33] previously reported that SENP1 had a critical contribution in protecting MEF cells 

from endoplasmic reticulum (ER) stress-induced apoptosis via X box-binding protein 1 (XPB1).  

Huang et al. [34] showed that SENP1 inhibition promoted cell apoptosis in Burkitt’s lymphoma cells. 

Although these studies suggest the role of SENP1 in preventing cellular apoptosis, our study is the first 

to focus on the role of SENP1 in podocyte apoptosis. Furthermore, Yates et al. have reported that 

inhibition of SENP1 induced p53-dependent premature senescence in human fibroblasts [35]. However, 

few studies have investigated the relationship between SENP1 and typical p53-dependent apoptosis. 

Accordingly, we next determined whether SENP1 is responsible for regulating p53 deSUMOylation 

in podocytes. As shown in Figure 4A, the SUMOylation of p53 was significantly increased in SENP1 

knockdown podocytes compared with normal podocytes after PAN treatment. Furthermore, after 

treatment with ginkgolic acid, a known SUMOylation inhibitor, the SUMOylated form of p53 protein 

was decreased accompany with diminished apoptotic rate in SENP1 knockdown podocytes. Above 



Int. J. Mol. Sci. 2014, 15 21323 

 

 

results suggested that a deficiency of SENP1 could results in aggravating apoptosis in PAN-treated 

podocytes, which was directly mediated by accumulation of SUMOylated p53. 

It has been reported that p53 promotes cellular apoptosis via the direct activation of its downstream 

pro-apoptotic genes [36,37]. To prove that the possible protective effect of SENP1 against apoptosis is 

specifically mediated through p53 signaling, we measured the level of p53-dependent pro-apoptotic gene 

expression in SENP1 knockdown podocytes. BAX, Noxa and PUMA, which have all been identified as 

p53 target genes that are upregulated during cellular apoptosis, have been shown to be essential 

mediators of p53-dependent apoptotic pathways [25–29]. Therefore, we used real-time PCR and western 

blotting to determine the transcription and protein levels of these three genes. The data showed that their 

expression in both mRNA (Figure 5A–C) and protein levels (Figure 5D,E) in SENP1 knockdown 

podocytes were significantly higher than in normal podocytes after PAN treatment. Furthermore, after 

p53 knockdown, SENP1 deficiency failed to upregulate the expression of the three pro-apoptotic factors, 

indicating the essential role of p53 in mediating the SENP1 deficiency induced podocyte apoptosis. 

Several studies have reported that SUMOylation by SUMO-1 could promote the transcriptional activity 

of p53 during cellular stress [38,39]. All of the above results indicate that SENP1 protects podocytes from 

PAN-induced apoptosis via the deSUMOylation of p53. Therefore, we hypothesize that repressing p53 

signaling could be useful for the treatment of glomerular disorders by targeting its effects on SENP1. 

In recent years, the post-translational SUMOylation and deSUMOylation of proteins have become 

important and attractive biomarkers and treatment targets in various cancers [12–14]. The increased 

expression of SUMO proteases is found in various tumor cell types and has been correlated with various 

aspects of carcinogenesis and tumor progression [40–42]. In addition, several studies have indicated  

that SENP1-mediated deSUMOylation is protective against oxidative stress in cardiomyocytes and 

neuroblastoma cells [43,44]. However, the potential effects of SUMOylation and deSUMOylation on 

kidney diseases have not been explored. The glomerular visceral epithelial cell (podocyte) is regarded 

as a terminally differentiated and highly specialized cell with limited capacity for cell replication.  

The decrease in podocyte number is closely associated with the initiation of glomerulosclerosis and 

contributes to the progression of chronic kidney disease. Apoptosis is a major cause of reduced podocyte 

numbers in glomerular diseases. But so far, there is no satisfactory method or target for inhibiting 

podocyte apoptosis. Our present study provides a new insight into the pathogenesis of podocyte 

apoptosis, which could be a potential therapeutic target for kidney diseases. 

According to recent studies, SENP1 deficiency also results in promotion of cellular apoptosis via 

increased SUMOylation of other molecular targets, including X box-binding protein 1 (XBP1) [33] and 

hypoxia inducible factor 1 (HIF-1) [34]. Therefore, we cannot exclude the possibility that other targets 

of SENP1 may be involved in this pro-apoptotic effect in our experiments. Further studies should be 

performed to better define the regulation mechanisms of SENP1 in apoptotic signaling crosstalk. 

Although our present study revealed the beneficial effects of SENP1 mediated deSUMOylation on 

anti-apoptosis in podocytes, there are still some different standpoints in other studies which could not be 

ignored. Meinecke et al. reported that increased levels of SUMOylation of nuclear promyelocytic 

leukemia (PML) protein in rheumatoid arthritis synovial fibroblasts contributed to the resistance of these 

cells against Fas-induced apoptosis [45]. Li et al. showed that SENP1 mediated HIPK1 deSUMOylation in 

TNF-treated human umbilical vein endothelial cells (HUVECs), which leads to enhanced ASK1-dependent 

apoptosis [46]. These conflicting results are very interesting and may indicate the different cell types 
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studied, in addition to varying types of stimulation and studied signaling pathways. Further studies  

should therefore be performed to explore the relationship between SUMOylation/deSUMOylation and 

cellular apoptosis. 

In addition, other post-transcriptional modifications of p53 also influence p53 activity and associated 

with cellular apoptosis, such as phosphorylation, methylation, acetylation and ubiquitination [17,18].  

It has been shown that phosphorylation of mouse p53 at Ser18, Ser23 and Ser46 are critical to activate 

p53-dependent apoptosis after DNA damage [47,48]. Moreover, monoubiquitination is also shown to 

have great potential to regulate p53 conformation and mitochondrial translocation, which promotes the 

mitochondrial apoptotic program of p53 [49,50]. Accordingly, the underlying mechanism in regulation 

of p53 activity and pro-apoptotic effects seems to be a complex network, requiring further investigation 

and elucidation. 

In summary, our study is the first to reveal the beneficial effects of SENP1 on the treatment of kidney 

diseases. We show the specific role of SENP1 in regulating p53 deSUMOylation and p53-dependent 

apoptotic genes transcription during PAN-induced podocyte injury. This study suggests that the  

post-translational modification of key molecules by SUMOylation and deSUMOylation could provide a 

novel strategy for the treatment of podocyte disorders in glomerular diseases. 

4. Experimental Section 

4.1. Cell Culture 

Immortalized mouse podocytes (MPC5) were kindly provided by Professor Peter Mundel of the 

Medical College of Harvard University (Boston, MA, USA). Undifferentiated MPC5 cells were cultured 

in RPMI-1640 medium supplemented with 10% fetal bovine serum (Hyclone), 100 U/mL penicillin,  

100 μg/mL streptomycin and 20 U/mL recombinant mouse interferon-γ (PeproTech, Rocky Hill, NJ, 

USA) at 33 °C for proliferation. Cells were differentiated at 37 °C under interferon-γ depletion for  

10–14 days [51]. The cells were cultured synchronously in medium containing 0.2% FCS and 5.5 mM 

D-glucose RPMI-1640 medium for 24 h before the experiment. To induce MPC5 cell apoptosis, PAN 

was added to the medium at a concentration of 5 μg/mL. Ginkgolic acid (Calbiochem, Darmstadt, 

Germany) was dissolved in DMSO and added to the medium at a concentration of 2 μM. 

4.2. Small Hairpin RNA (shRNA) Plasmids, Small Interfering RNA(siRNA) and Transient Transfections 

Four shRNAs targeting the SENP1 gene, which were identified using BLAST and the mouse genome 

database to assess possible cross-reactivity, were synthesized by Genepharma (Shanghai, China). The 

cDNAs encoding the four mouse SENP1 shRNAs (SENP1-1, 5'-GCAGGATCCTCTTGCAATACC-3'; 

SENP1-2, 5'-GCACCTCATCAGCCAAATAGC-3'; SENP1-3, 5'-GCATTCCGCTTGACCATTACA-3'; 

SENP1-4, 5'-GCAGTGAAACG CTGGACAAAG-3') were inserted independently into the recombinant 

plasmid pGPU6. The p53 siRNA was designed using the BLOCK-iT RNAi Designer software  

and has been proved to be effective in p53 gene silencing. The sequences of the p53 siRNA are  

5'-CACCUCACUGCAUGGACGAUCUGUU-3' for sense and 5'-AACAGAUCGUCCAUGCAGUGA 

GGUG-3' for antisense. For SENP1 and p53 gene silencing, cells were transfected with SENP1 shRNA 
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plasmid or p53 siRNA using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). A scrambled shRNA 

plasmid was used as the mock shRNA. 

4.3. Protein Isolation and Immunoblotting 

Cells from different groups were collected, dissolved in RIPA buffer and centrifuged at 15,000× g 

for 10 min at 4 °C. The supernatants were collected, and the cellular protein concentrations were 

determined with a BCA protein assay kit (Pierce Biotechnology, Rockford, IL, USA). Protein samples 

were denatured at 95 °C for 5 min, separated by SDS-PAGE and electrophoretically transferred to 

polyvinylidene difluoride membranes (Millipore, Billerica, MA, USA). The blots were incubated with 

primary antibodies against SENP1 (1:1000; Abcam, Cambridge, UK) and p53 (1:200; Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) overnight at 4 °C. Subsequently, the blots were incubated with a 

horseradish peroxidase labeled secondary antibody (1:5000; Zhongshan Biotechnology, Beijing, China) 

for 2 h at 37 °C. The bands were visualized using an ECL kit (Amersham-Pharmacia Biotech, Little 

Chalfont, UK) and quantified with Labworks™ Image Analysis software (UVP, Upland, CA, USA). 

4.4. Immunoprecipitation 

Cell pellets were washed three times with cold 0.01 M PBS and lysed in Radioimmune Precipitation 

Assay (RIPA) buffer (Laiwen, Jiangsu, China) for 30 min on ice. After centrifugation at 12,000 rpm for 

15 min at 4 °C, the lysates were collected and precleared by Protein G PLUS-Agarose (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA) and then incubated with an anti-SUMO1 antibody (1:50; Cell 

Signaling Technology, Boston, MA, USA) with continual shaking for 2 h. The protein-antibody 

complexes were collected with 20 μL of Protein G PLUS Agarose at 4 °C with continual shaking 

overnight. Subsequently, the immunoprecipitates were washed three times with lysis buffer and analyzed 

by 12% SDS-PAGE and immunoblotting. 

4.5. RNA Isolation and Real-Time RT-PCR 

Total RNA was extracted from each sample, and the first-strand cDNA synthesis was performed using 

a SYBR® PrimerScript™ RT-PCR Kit (Takara, Otsu, Shiga, Japan). Real-time PCR was performed to 

determine relative mRNA levels using primers described in Table 1 on the ABI 7500 fast system 

(Applied Biosystems, Foster City, CA, USA). PCR cycling conditions included an initial step at 95 °C 

for 30 s, followed by 40 cycles of 5 s at 95 °C, 20 s at 60 °C and 30 s at 72 °C. The PCR products were 

assessed by melting curve analysis, and gene expression levels were calculated using the ΔΔCt method 

after normalization to the GAPDH housekeeping gene. All PCR samples were tested in triplicate. 
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Table 1. Real-time RT–PCR primer sequences. 

Gene/Primer Direction Sequence (5' to 3') 

SENP1 
Forward CTACAAGAAGCCCAGCCTATCGTC 
Reverse GTCACCTGAGCCAAGGAAACTG 

BAX 
Forward ACCAAGAAGCTGAGCGAGTGT 
Reverse ACAAACATGGTCACGGTCTGC 

Noxa 
Forward GCAGAGCTGGAAGTCGAGTGT 
Reverse AAGTTTCTGCCGGAAGTTCAG 

PUMA 
Forward ACGACCTCAACGCACAGTACG 
Reverse TCCCATGATGAGATTGTACAGGAC 

GAPDH 
Forward GCACCGTCAAGGCTGAGAAC 
Reverse TGGTGAAGACGCCAGTGGA 

4.6. FACS Analysis 

Cells from different groups were harvested, washed with PBS and resuspended in 500 μL binding 

buffer. The Annexin V-FITC/PI Apoptosis Detection Kit (KeyGEN BioTECH, Nanjing, China) was 

used according to the manufacturerʼs protocol. The analysis of cell apoptosis was performed using the 

FACSVantage SE Flow Cytometry System (Becton Dickinson, San Jose, CA, USA). 

4.7. TUNEL Assay 

The terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay was performed 

using a commercial fluorometric TUNEL system kit (KeyGEN BioTECH, Nanjing, China) according  

to the manufacturer’s instructions. MPC5 cells were seeded at a density of 2 × 104 cells per well  

on coverslips in 24 wells. After transfection with SENP1 shRNA and negative control shRNA, cells 

were treated with 5 μg/mL PAN for 24 h. Nuclear DAPI staining and TUNEL staining were examined 

under fluorescence microscopy (Olympus, Center Valley, PA, USA) and assessed in ten random fields 

(200×) using Image Pro Plus software. 

4.8. Measurement of Oxidative Stress 

GSH/GSSG ratio is used to assess the exposure of cells to oxidative stress. We assessed the levels of GSH 

and GSSG of MPC5 cells and calculated the GSH/GSSG ratio using the total glutathione/oxidized 

glutathione assay kit (Jiancheng Bioengineering Institute, Nanjing, China), according to the protocols of  

the manufacturer. 

4.9. Statistical Analysis 

Values were expressed as the mean ± SEM. Statistical analysis was performed by ANOVA using a 

post-hoc analysis with Tukey’s test. The significance level was set at p < 0.05. 
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5. Conclusions 

Our research revealed for the first time that SENP1-mediated deSUMOylation may be a potential 

target for the prevention of PAN-induced apoptosis in podocytes, at least in part by regulating the activity 

of the p53 pathway. This study provides a novel strategy for the treatment of podocyte apoptosis. 

However, the roles of SUMOylation and deSUMOylation in the pathogenesis of kidney diseases require 

further investigation. 
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