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Abstract: The AHR (aryl hydrocarbon receptor) and Wnt (wingless-related MMTV 

integration site) signaling pathways have been conserved throughout evolution. Appropriately 

regulated signaling through each pathway is necessary for normal development and health, 

while dysregulation can lead to developmental defects and disease. Though both pathways 

have been vigorously studied, there is relatively little research exploring the possibility of 

crosstalk between these pathways. In this review, we provide a brief background on (1) the 

roles of both AHR and Wnt signaling in development and disease, and (2) the molecular 

mechanisms that characterize activation of each pathway. We also discuss the need for 

careful and complete experimental evaluation of each pathway and describe existing 

research that explores the intersection of AHR and Wnt signaling. Lastly, to illustrate in 

detail the intersection of AHR and Wnt signaling, we summarize our recent findings which 

show that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced disruption of Wnt 

signaling impairs fetal prostate development. 
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1. Introduction 

Homologues of the aryl hydrocarbon receptor (Ahr) and wingless-related MMTV integration site 

(Wnt) genes are found in animals as diverse as worms, flies, fish, and humans, which not only hints at 

their importance throughout evolution, but also provides multiple model organisms in which they can 

be studied [1–3]. Extensive research has revealed important roles in development and health for both 

AHR and Wnt, and has detailed the biochemical mechanisms by which they affect biological 

outcomes. However, comparatively little research has explored the possibility that part of the normal 

function of AHR and Wnt might be to regulate each other. Evidence exists of such crosstalk between 

the AHR and Wnt homologues in invertebrates [4–6], but our review focuses strictly on the 

intersection of AHR and Wnt signaling in vertebrates, where each pathway is activated by  

ligand-receptor binding events and can trigger substantial change to the transcriptome. Signaling 

through each pathway must be precisely regulated because both insufficient and excessive activation 

can lead to developmental defects and/or disease. 

2. AHR and Wnt Signaling in Development, Health, and Disease 

Wnt signaling is necessary during embryonic development. Knockout of Wnt signaling ligands can 

cause a multitude of birth defects and even embryonic lethality, while excessive Wnt signaling can 

also cause developmental defects [7–9]. Knockout of AHR is considerably less detrimental during 

embryonic development. Embryos are viable, but some developmental irregularities and long-term 

health effects arise in AHR knockout mice, rats, and fish [10–14]. By comparison, over-activation of 

AHR leads to embryonic lethality or severe developmental defects in multiple tissues, including 

kidney, palate, teeth, prostate, lungs, heart, and vasculature [15–22]. 

Wnt signaling is frequently found to be over-active in many types of cancer [23]. AHR signaling 

has been shown to have a functional role in tumor development, as well, and multiple AHR agonists 

are classified as carcinogens [24–26]. Paradoxically, in some model systems, AHR is a tumor 

suppressor and activation of AHR protects against tumor development [26–32]. These apparently 

contrasting observations can be reconciled if they are considered to be part of a continuum. It seems 

that a certain level of AHR signaling is necessary for health, but excessive or insufficient AHR 

signaling can lead to tumor development. Future studies designed to understand if and how AHR and 

Wnt signaling pathways intersect could shed light on mechanisms of tumor initiation, promotion, and 

progression while simultaneously providing potential targets for treatment. 

Due to the importance of Wnt signaling and the teratogenic potential of AHR signaling during 

embryonic development, it is reasonable to hypothesize that over-activation of AHR signaling alters  

Wnt signaling. There is a growing collection of evidence that supports this hypothesis, which is 

discussed below. 

3. AHR Signaling 

AHR is expressed in many tissues during embryonic development and in adulthood [33–37], and is 

activated by ligand binding. AHR is a promiscuous receptor capable of binding hundreds of different 

chemical compounds (for detailed discussion see: [13,14,38]). Many AHR ligands are anthropogenic 
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xenobiotics, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). TCDD is a common environmental 

contaminant and considered the prototypical AHR agonist due to its high binding affinity for  

AHR [14,39,40]. TCDD can hyper activate AHR signaling and therefore, exposure to TCDD during 

embryogenesis can be teratogenic [15–22]. 

In the absence of ligand, AHR is complexed with multiple chaperone proteins (HSP90, AIP, and 

p23) in the cytoplasm [13,38,39]. Ligand binding causes AHR to translocate to the nucleus, shed the 

chaperone proteins, and bind with aryl hydrocarbon receptor nuclear translocator (ARNT).  

The AHR-ARNT heterodimer binds to dioxin response elements (DREs) in the promoter region of 

downstream target genes and directly upregulates their expression [38]. Activated AHR is also capable 

of downregulating expression, and multiple studies have reported a larger number of genes being 

downregulated rather than upregulated following AHR activation [41–47]. However, it is less clear 

whether transcriptional downregulation is the result of AHR binding directly to the promoter, or if it is 

an indirect effect due to (1) AHR-induced upregulation of transcriptional inhibitors or (2) AHR-induced 

degradation of other transcriptional activators (discussed below). Though there are some standard 

target genes—cytochrome P450 (Cyp)1a1, Cyp1a2, and Cyp1b1—that indicate activation of AHR 

signaling, the precise transcriptional response can vary depending on the species [48–51], tissue or cell  

type [52,53], activating ligand [41,42,48,52,54], and AHR allele [48,55–57]. 

In addition to direct transcriptional regulation, activated AHR also has E3 ubiquitin ligase activity. 

Once activated, AHR has been shown to associate with androgen receptor (AR), estrogen receptor 

alpha (ESR1), or β-catenin (CTNNB1) in a protein complex that results in ubiquitination and, 

ultimately, degradation of these proteins [28,58]. Thus, activated AHR can downregulate expression of 

AR, ESR1, and CTNNB1 without affecting the transcriptional activity of these genes. Furthermore, 

since all three of these genes regulate transcription, activated AHR can, theoretically, indirectly alter 

transcription of genes that do not necessarily contain a DRE in their promoter region. 

4. Wnt Signaling 

Like AHR signaling, Wnt signaling is activated by ligand-receptor binding, but rather than chemical 

ligands, Wnt signaling is activated by proteins from the Wnt and R-spondin families. Receptors for 

these ligands include proteins from the frizzled (FZD), low-density lipoprotein receptor protein (LRP), 

leucine-rich repeat containing G coupled-protein receptor (LGR), and receptor tyrosine kinase-like 

orphan receptor (ROR) families [59–63]. Wnt signaling is transduced through multiple intracellular 

signaling cascades that affect diverse cellular responses including gene transcription, proliferation, 

differentiation, and migration [64–66]. Wnt signaling cascades are defined as canonical (signaling 

through β-catenin) or non-canonical (signal transduction independent of β-catenin). Of the studies we 

found that examined the intersection of AHR and Wnt signaling, a large majority were focused on the 

canonical Wnt pathway, and therefore, this review does the same. However, several studies presented 

evidence that AHR and non-canonical Wnt signaling might also intersect, suggesting future studies 

should not exclude this possibility. 

Canonical Wnt signaling is transmitted via β-catenin (CTNNB1), a multifunctional protein that,  

in the context of canonical Wnt signaling, serves as a transcriptional co-activator [67,68]. CTNNB1 

expression is tightly regulated in the cytoplasm by the destruction complex which actively downregulates 
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CTNNB1 expression when the canonical Wnt signaling cascade is silent. The destruction complex 

consists of the scaffold proteins adenomatous polyposis coli (APC) and axin (AXIN1 or AXIN2), plus 

the serine/threonine kinases, glycogen synthase kinase 3 beta (GSK3B) and casein kinase 1 alpha 

(CSNK1A1). Both GSK3B and CSNK1A1 phosphorylate CTNNB1, priming it for subsequent 

ubiquitination and proteasomal degradation. For a detailed description of CTNNB1 degradation  

see: [69–72]. Activation of the canonical Wnt signaling cascade inactivates the destruction complex, 

thereby preventing CTNNB1 phosphorylation. The result is intracellular accumulation of stabilized, 

non-phosphorylated CTNNB1, which translocates to the nucleus and activates transcription of 

downstream target genes. The list of CTNNB1 target genes is extensive and varies depending on cell 

type, but often includes Axin2, lymphoid enhancer binding factor 1 (Lef1), and myelocytomatosis 

oncogene (Myc) [73–76]. 

5. Assessing AHR and Wnt Signaling Pathways 

As discussed above, there are hundreds of potential agonists and antagonists of AHR. This review 

only includes studies that used well-known AHR agonists and/or demonstrated by AHR knockdown or 

knockout that the effects being studied were due to AHR activation. However, there are numerous 

other studies (including [39,77–81]) that have reported altered Wnt signaling after exposure to either 

(1) a known AHR agonist that also can act independently of AHR, or (2) a potential AHR agonist, but 

the effects on Wnt signaling induced by these compounds were not confirmed to be mediated through 

AHR. For example, addition of indole-3-carbinol (I3C) to the culture media of a human prostate cancer 

cell line downregulated CTNNB1 expression [82]. While I3C can bind to AHR [40,83], several studies 

have shown that it is a poor agonist that does not necessarily activate AHR signaling [84–87]. The acid 

condensation products of I3C, i.e. 3,3'-diindolylmethane (DIM), have higher affinity for AHR [40,83], 

but it is not obvious that I3C could form these condensation products in cell culture. Furthermore, 

neither AHR expression nor AHR target gene expression was assessed in this study, so it is not clear if 

I3C-induced downregulation of CTNNB1 was AHR dependent. Another example is  

indirubin-3'-monoxime, an analog of indirubin and a known AHR agonist [88], can also activate the 

canonical Wnt signaling pathway, likely by inhibiting GSK3B function [89–91]. However, it is not 

known if this function of indirubin-3'-monoxime is AHR-dependent. Ideally future experiments will 

clearly define the role of AHR in model systems being exposed to potential AHR agonists. 

When analyzing the canonical Wnt signaling pathway, there are at least three aspects that should be 

considered: (1) activation of the cascade upstream of CTNNB1; (2) CTNNB1 stabilization and nuclear 

localization; and (3) downstream transcriptional changes induced by CTNNB1. Evaluating only one of 

these aspects when reporting on activation or alteration of canonical Wnt signaling can be misleading. 

For example, reporting that there is a change in ligand expression does not confirm that this change  

is functionally relevant to downstream target gene expression. Similarly, a change in CTNNB1 

expression does not guarantee a functional change in target gene transcription. Furthermore, it is not 

just the amount but also the intracellular location (nucleus) of CTNNB1 expression that is important 

for canonical Wnt signaling to occur. And lastly, only reporting on transcriptional activity of CTNNB1 

target genes can be misleading because there are multiple signaling pathways that can transduce their 

signal by triggering stabilization of CTNNB1 [68,92,93]. Critically, activation of AHR can alter signal 
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transduction and CTNNB1 stability through these alternate pathways [94–96]. Therefore, analyzing 

activity upstream of CTNNB1, CTNNB1 expression and localization, and activity downstream of 

CTNNB1 are all important to properly conclude that activation or alteration of the canonical Wnt 

signaling cascade has occurred. It is important to note that many studies reviewed here do not fully 

analyze all three aspects and therefore, to some degree, infer the activation or alteration of canonical 

Wnt signaling without actually confirming it. Despite this caveat, these studies have been included 

because they begin to provide a description of the intersection of Wnt and AHR signaling. 

6. Wnt Signaling Effects on AHR Signaling 

Activation of the canonical Wnt signaling pathway can upregulate transcription and expression of 

Ahr in multiple cell types. WNT3A, lithium chloride (LiCl, a known GSK3B inhibitor), and CTNNB1 

with stabilizing mutations can all activate, or mimic activation of the canonical Wnt signaling cascade 

by promoting intracellular accumulation and nuclear localization of CTNNB1. When six different cell 

lines from four different tissue sources [97–101] and primary mouse hepatocytes [99,102] were 

cultured with any one of these activators, Ahr transcription and/or expression was upregulated. 

Furthermore, AHR expression in vivo was linked to canonical Wnt signaling in rodent livers. Within 

the liver, blood flows from portal veins to central veins creating a porto-central axis [103]. Hepatocytes 

surrounding the portal veins (periportal zone) express a proteome different from that of hepatocytes 

surrounding central veins (perivenous zone). This is in part due to canonical Wnt signaling which is 

active in the perivenous zone, but not the periportal zone [102–105]. AHR is expressed primarily in the 

perivenous zone [106–108] and transcription of Ahr is reduced in mice with hepatocyte-specific 

CTNNB1 knockout [99,105,108], which suggests that AHR expression is at least partially regulated by 

canonical Wnt signaling in vivo. Additionally, liver tumors overexpressing CTNNB1 also express 

elevated levels of AHR while liver tumors that do not overexpress CTNNB1 do not show excessive 

AHR expression [108,109]. 

Identifying Ahr as a CTNNB1 target gene is relevant to the discussion of how Wnt and AHR 

signaling intersect, but it does not actually demonstrate whether or not Wnt signaling affects AHR 

signaling. Several studies explored this possibility by looking at reporter gene or target gene (Cyp1a1 

and/or Cyp1b1) activity. In a mouse hepatoma cell line, TCDD activated expression of an AHR 

reporter gene (luciferase driven by a promoter containing three DREs) to a significantly greater extent 

in cells expressing a stabilized CTNNB1 (CTNNB1S33Y mutation) than in control cells expressing wild 

type CTNNB1 (Table 1) [110]. Thus, CTNNB1 can boost AHR-induced transcription, and can do so 

by enhancing AHR activity at DREs. Similar results were reported in primary mouse hepatocytes and 

in a multipotent stem cell-like cell line derived from rat liver (WB-F344 cells). Culture with TCDD 

plus WNT3A activated Cyp1a1 transcription in both cell types to a greater degree than culture with 

TCDD alone (Tables 1,2) [99,100]. WNT3A also enhanced TCDD-induced Cyp1a1 expression and 

Cyp1b1 transcription and expression in WB-F344 cells [100]. Furthermore, knockdown of CTNNB1 in 

two mouse hepatoma cell lines, as well as in vivo knockout of CTNNB1 in mouse hepatocytes, both 

resulted in a significantly weaker upregulation of Cyp1a1 transcription after activation of AHR [99]. 

While the above studies demonstrate that CTNNB1 can enhance AHR signaling, and in fact, plays a 

role in the endogenous response to xenobiotic exposure, canonical Wnt signaling had no effect on 
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AHR signaling in human prostate cancer cell lines (Table 1) [97]. CYP1A1 expression in TCDD-exposed 

cells treated with WNT3A was identical to that of TCDD-exposed cells not treated with WNT3A. 

However, counter-intuitively, TCDD completely repressed CYP1A1 expression in these cells, 

therefore they might not serve as the best model in which to study Wnt signaling effects on  

AHR signaling. 

Table 1. Intersection of AHR and Wnt Signaling. 

Species Tissue/Cell Type 
Activated AHR Wnt Signaling 

Reference Alters Alters 
Wnt Signaling AHR Signaling 

Human Prostate cancer cell lines  - No [97] 

Mouse Hepatoma cell line  - Yes (Up) [110] 

Mouse 
Hepatoma cell lines; Primary 

hepatocytes; Hepatocyte-specific 
CTNNB1 knockout mice 

No Yes (Up) [99] g 

Rat 
Multipotent stem cell-like cell line 

isolated from liver 
Yes (Down) Yes (Up) [100] g 

Mouse & 
Human 

Intestinal tissue & tumors from  
Ahr −/− & Apc min/+ mice; Human  

colon cancer cell lines  
Yes (Down) - [28] g 

Rat 
Multipotent stem cell-like cell line 

isolated from liver 
Yes (Down) - [47] g 

Rat 
Brain (cortex); Primary cortical  

neurons; Pheochromocytoma cell  
line (adrenal gland) a 

Yes (Down) - [129] g 

Human 
Placental choriocarcinoma & endometrial 

adenocarcinoma cell lines 
Yes (Down) - [130] g 

Human Breast cancer cell line (mammospheres)   Yes (Down) b - [131] g 

Mouse Urogenital sinus Yes (Down) - [143] g 

Mouse Urogenital sinus Yes (Down) - [152] g 

Zebrafish Fin (regeneration) Yes (Up) - [44] g 

Mouse Embryonal carcinoma cell line   Yes (Up) c - [116] g 

Human Prostate cancer cell line   Yes (Up) d - [41] 

Mouse Palate   Yes (Down) d - [124] 

Mouse Primary lung fibroblast Yes e - [132] g 

Mouse Urogenital sinus No d,f - [153] 

Zebrafish Swim bladder Inconclusive - [190] 
a Differentiated into neuronal cells. b AHR was mutated to be constitutively active, independent of ligand.  
c Knockdown of AHR decreased Ctnnb1 mRNA abundance. d Wnt5a was the primary gene of interest in 

these studies. e There is evidence of both upregulation and downregulation of Wnt signaling in this system.  
f TCDD did not alter WNT5A expression, but it was hypothesized that TCDD did alter the balance of Wnt 

signaling. g Additional information in Table 2. 
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Table 2. Effects of Activated AHR on Canonical Wnt Signaling. 

Direction of 

Altered Wnt 

Signaling 

Upstream Regulators 

of Wnt Signaling 

CTNNB1 Expression and 

Nuclear Localization 

Downstream  

CTNNB1 Target Genes 
Reference 

Down 

p-DVL2 (↓) a  

p-DVL3 (↓) a  

p-GSK3B (nc) a,b  

p-LRP6 (nc) a,b 

Expression (↓)  

Nuclear Localization (↓) 

Lef1 (↓)  

Axin2 (↓)  

Ccnd1 (↓)  

Other target genes 

[100] 

Down - c,d   Expression (↓) d CTNNB1 reporter gene (↓) [28] 

Down 

Wnt4 (↓)  

Wnt5a (↓)  

Fzd1 (↓)  

Fzd4 (↓) 

- 

Lef1 (↓)  

Axin2 (↓)  

Other potential target genes 

[47] 

Down p-GSK3B (↓) a Expression (↓)  - [129] 

Down - Expression (↓)  - [130] 

Down -   Expression (↓) e  - [131] 

Down 

Rspo2 (↓)  

Rspo3 (↓)  

Lgr5 (↓)  

Lgr4 (nc) 

- 

Lef1 & LEF1 (↓)  

Hnf1a & HNF1A (↓)  

Wif1 (↓) 

[143] 

Down 

Wnt10a (↑) 

Wnt16 (↑) 

Rspo2 (↓)  

all other Wnts (nc) 

Expression (↓)  

Nuclear Localization (↓) 

LEF1 (↓)  

Wif1 (↓)  

Ror2 (↓) 

[152] 

Up 
rspo1 (↑)  

lrp6 (nc) f 
- - [44] 

Up -   Expression (↓) g - [116] 

  Up h 

Wnt5a (↓)  

Wnt5b (↓)  

Wnt9a (↓) 

- 

Lef1 (↑)  

Axin2 (↑)  

Myc (↑)  

Wisp2 (↑) 

[132] 

No Effect - - 

Axin2 (nc)  

Lgr5 (nc)  

CTNNB1 reporter gene (nc) 

[99] 

a “p” represents the phosphorylated form of the protein. Generally, an increase in phosphorylation for each  

of these proteins indicates an increase in canonical Wnt signaling. DVL = disheveled. b nc = no change.  
c “-” = not tested. d AHR downregulates CTNNB1 expression by inducing CTNNB1 ubiquitination and 

degradation, not by altering the upstream signal. e AHR was mutated to be constitutively active, independent 

of ligand. f RNA abundance was not formally tested after exposure to TCDD, but was not identified as 

different in a microarray experiment. g Ahr knockdown caused a decrease in Ctnnb1 mRNA abundance.  
h We hypothesize canonical Wnt signaling was upregulated based on increased downstream target gene  

RNA levels. 
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7. Effects of Activated AHR on Wnt Signaling 

7.1. Upregulation of Wnt Signaling 

One of the first studies to provide strong evidence that AHR signaling could differentially regulate 

Wnt signaling was performed in zebrafish (Tables 1,2) [44]. The caudal fin of zebrafish regenerates after 

amputation. However, exposure to TCDD after fin amputation severely impairs the regeneration 

process. Microarray analysis of mRNA from the regenerating fins of control and TCDD-exposed larval 

fish revealed that TCDD altered transcription of multiple Wnt signaling regulators, including rspo1, 

which was upregulated. Morpholino-induced knockdown of Rspo1 in TCDD-exposed, fin-amputated 

larvae permitted normal fin regeneration, thereby demonstrating that overexpression of this single gene 

was sufficient to inhibit the regenerative process [44]. Rspo1 had previously been identified as an 

activator of canonical Wnt signaling [111–114] so it was hypothesized that TCDD inhibited fin 

regeneration in zebrafish by activating Ahr2, which upregulated Rspo1 expression, which, in turn, 

induced canonical Wnt signaling [44]. Multiple canonical Wnt signaling target genes were 

differentially regulated in the same microarray that found rspo1 to be upregulated, thus providing 

support for the hypothesis that TCDD indirectly induced canonical Wnt signaling. However, no 

alternative methods were used to test the transcription or expression of these target genes so as to 

confirm their upregulation. Instead, larval fin amputees were treated with the GSK3 inhibitor, 

(2'Z,3'E)-6-bromoindirubin-3'-oxime (BIO), to upregulate canonical Wnt signaling. BIO severely 

impaired fin regeneration, thereby phenocopying TCDD exposure, and further supporting the hypothesis 

that active canonical Wnt signaling inhibits fin regeneration [44]. Importantly, downregulation of 

canonical Wnt signaling also inhibited zebrafish fin regeneration [115]. Thus, it seems that the caudal 

fin regeneration model is a good example of a tissue where both insufficient and excessive canonical 

Wnt signaling impairs development. Activation of Ahr2 appears to disrupt the balance of canonical 

Wnt signaling by promoting over-activation. 

We found only one other instance where AHR signaling might upregulate canonical Wnt signaling. 

A multipotent mouse embryonal carcinoma cell line expressed both AHR and CTNNB1, and was 

made to differentiate into cardiomyocytes. Ctnnb1 mRNA levels increase after 10 days of differentiation, 

but in cells with AHR knocked down, Ctnnb1 mRNA levels decrease after 10 days of differentiation  

(Tables 1,2) [116]. Thus, in this cell line, it appears that AHR at least partially controls transcription of 

Ctnnb1 during differentiation into cardiomyocytes, and therefore might promote canonical Wnt signaling. 

Exposing a human prostate cancer cell line to the AHR agonists TCDD and/or benzo[a]pyrene 

(BaP) rapidly induced WNT5A expression and increased mRNA levels of FZD1, FZD3, and LEF1  

(Table 1) [41]. WNT5A is typically found to activate a non-canonical Wnt signaling cascade, but has 

also been shown to activate canonical Wnt signaling [117–119]. LEF1 has been identified as a 

canonical Wnt signaling target gene in the prostate [120,121] so it is possible that WNT5A or some 

other ligand is activating canonical Wnt signaling in these cells. Several other studies have also 

reported elevated expression of both WNT5A and LEF1 [122–124]. Though no follow-up experiments 

were performed to elucidate the precise effects on canonical and/or non-canonical Wnt signaling, it 

seems likely that activated AHR upregulated WNT5A-induced Wnt signaling in these cells. WNT5A 

expression was also upregulated in the prostates of seven-year-old Rhesus macaques after in utero and 
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lactational exposure to TCDD (Table 1) [45]. This increased WNT5A expression was associated with 

increased fibrosis, and decreased glandularity in the prostate. 

7.2. Downregulation of Wnt Signaling 

Of the studies shown in Table 1, only two addressed both sides of the AHR-Wnt intersection [99,100]. 

While canonical Wnt signaling was found to enhance AHR signaling in vivo in mouse liver and in a 

mouse hepatoma cell line, activated AHR did not alter canonical Wnt signaling. Specifically, exposure 

to TCDD did not affect mRNA levels of CTNNB1 target genes Axin2 and Lgr5 in the hepatoma cell 

line, nor did 3-methylcholanthrene (3MC, an AHR agonist) affect mRNA levels of the same two target 

genes in the liver [99]. These findings were reported as unpublished data. In the multipotent WB-F344 

cell line, canonical Wnt signaling similarly enhanced AHR signaling. However, TCDD-induced 

activation of AHR signaling decreased canonical Wnt signaling by downregulating expression of 

CTNNB1 and transcription of multiple downstream CTNNB1 target genes. This downregulation was 

AHR-dependent but likely was not due to the E3 ubiquitin ligase activity of AHR [100]. 

Activated AHR has also been shown to downregulate canonical Wnt signaling in mouse intestines, 

where it appears to have a perpetual and necessary role as an inhibitor of canonical Wnt signaling  

(Tables 1,2) [28]. C57BL/6 mice injected with the AHR agonists 3MC, indole-3-acetic acid (IAA),  

or indole-3-carbinol (I3C) all had decreased CTNNB1 expression in the cecum compared to control 

mice. CTNNB1 expression in Ahr knockout mice (Ahr−/−) was unaffected after 3MC injection, 

demonstrating that CTNNB1 downregulation is AHR dependent. Additionally, untreated Ahr−/− mice 

overexpress CTNNB1 and the CTNNB1 target gene, Myc, in the ileum, cecum, and colon compared to 

Ahr wild type (Ahr+/+) mice. Overactive canonical Wnt signaling can lead to tumor development in the 

intestines [23,125], which could explain why Ahr−/− mice spontaneously develop tumors in the cecum. 

Thus, AHR has a natural function as a tumor suppressor that is capable of downregulating CTNNB1 

expression. Apc-min (multiple intestinal neoplasia) mice have a mutated Apc gene which leads to a 

dysfunctional CTNNB1 destruction complex, overexpression of CTNNB1, and development of 

intestinal tumors [28,126–128]. Compound mutant mice with one or both Ahr alleles knocked out 

(Apcmin/+; Ahr+/− and Apcmin/+; Ahr−/−, respectively) overexpress CTNNB1 and develop cecal tumors  

at a younger age than Apcmin/+; Ahr+/+ mice, providing additional evidence that AHR acts as a tumor 

suppressor and downregulates CTNNB1 expression in the intestines. Furthermore, I3C or  

3,3'-diindolylmethane (DIM, an AHR agonist) delayed time to tumor development and reduced tumor 

multiplicity when added to the diet of Apcmin/+; Ahr+/+ or Apcmin/+; Ahr+/− mice, but these AHR 

agonists had no effect on tumor development in Apcmin/+; Ahr−/− mice. Activated AHR also 

downregulated CTNNB1 expression in multiple human colon cancer cell lines. These cell lines were 

used to demonstrate that activated AHR downregulated CTNNB1 by binding to and promoting 

ubiquitination of CTNNB1. The ubiquitinated CTNNB1 subsequently underwent proteasomal 

degradation. Interestingly, immunohistological analysis of human cecal tumors revealed decreased 

AHR expression and increased CTNNB1 expression in 12/12 samples tested [28]. 

Several studies have identified detrimental biological outcomes caused by exposure to TCDD and 

have linked those outcomes to downregulation of canonical Wnt signaling. For example, exposure to 

TCDD induced neuronal apoptosis in vivo in the rat cortex, in primary cortical neurons isolated from 
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rat, and in the rat PC12 cell line [129]. TCDD exposure also decreased GSK3B phosphorylation (thus 

increasing the pool of active GSK3B) and decreased CTNNB1 expression (Table 1) [129]. Treatment 

with LiCl countered the effects of TCDD by increasing GSK3B phosphorylation and CTNNB1 

expression, and reducing apoptosis. Thus, neuronal apoptosis was linked to downregulation of canonical 

Wnt signaling. However, it was not determined whether or not Wnt ligand expression upstream of 

CTNNB1 was altered or if downstream CTNNB1 target gene expression was altered (Table 2). 

TCDD also was found to disrupt attachment of spheroids generated from human placental 

choriocarcinoma cell lines to adherent human endometrial adenocarcinoma cell lines in a culture 

model designed to mimic embryo implantation [130]. TCDD downregulated CTNNB1 expression in 

the spheroids, but WNT3A or LiCl reversed the inhibitory effects of TCDD by increasing both 

CTNNB1 expression and the percentage of spheroids that attached to endometrial cells (Tables 1). 

Thus, successful spheroid attachment was associated with active canonical Wnt signaling. However, 

downstream target gene expression was not analyzed (Table 2). CTNNB1, in addition to regulating 

transcription, has a second Wnt-independent function in maintaining cell-cell adhesion as a component 

of adherens junctions [67]. Testing downstream target gene expression would help elucidate if 

CTNNB1 was promoting spheroid attachment through transcriptional regulation or was directly 

participating in cell-cell adhesion. 

Expression of a mutated AHR designed to be constitutively active, even in the absence of ligand, 

downregulated CTNNB1 expression in mammospheres generated from a human breast cancer cell line 

(Table 1) [131]. This was associated with a decreased capacity for the mammospheres to self-renew. 

Neither upstream activation, nor downstream target gene expression was tested to confirm altered 

canonical Wnt signaling (Table 2). 

There is also some evidence that activated AHR can downregulate Wnt5a. Both WNT5A and LEF1 

expression were reported to be downregulated in developing mouse palate after exposure to TCDD 

(Table 1) [124]. While the paper provides a nice description of the physical changes that occur in the 

developing palate after TCDD exposure, the conclusions that WNT5A and LEF1 are downregulated 

are somewhat dubious because they were based on a subjective reading of a Western blot that was not 

quantitated. However, microarray analysis of primary mouse lung fibroblasts cultured with TCDD  

or 2-(1'H-indolo-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE; an AHR agonist) revealed 

decreased Wnt5a mRNA levels (Table 2) [132]. Interestingly, a cursory check of the gene list showed 

that Wnt5b and Wnt9a were also downregulated, while multiple genes commonly identified as 

canonical Wnt signaling target genes, including Lef1, Axin2, Myc, and Wnt1 inducible signaling 

pathway 2 (Wisp2) [133] were all upregulated, suggesting that activated AHR did alter Wnt signaling 

(Table 2). The biological significance of these findings is not known. Microarray analysis of the 

multipotent stem cell-like cell line, WB-F344, after exposure to 3,3',4,4',5-pentachlorobiphenyl 

(PCB126, an AHR agonist) also found Wnt5a to be downregulated, along with Wnt4, Fzd1, and Fzd4 

(Tables 1,2) [47]. Numerous other genes linked to Wnt signaling were also downregulated including 

Lef1 and Axin2. While this provides strong evidence that activated AHR downregulates Wnt signaling, 

it is not clear which Wnt cascade or cascades are being dysregulated, or what the biological 

significance of this finding is. 
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8. AHR and Wnt Signaling in Mouse Prostate Development 

The adult mouse prostate consists of four pairs of bilateral lobes—the anterior, dorsal, lateral,  

and ventral lobes. Each develops via a highly orchestrated budding process from the embryonic 

urogenital sinus (UGS), which is situated between the bladder and pelvic urethra (Figure 1A). The 

UGS is comprised of a thick layer of epithelium surrounded by mesenchyme that can be divided into 

multiple subcompartments [134]. As a male secondary sex organ, prostate development is initiated and 

regulated by androgen signaling [135,136]. Activation of androgen signaling in the UGS mesenchyme 

(UGM) generates a wave of paracrine signaling that instructs the UGS epithelium (UGE) to start 

budding (Figure 1A,B) [136,137]. The timing of prostatic budding initiation is not uniform throughout 

the UGS. It occurs first in the anterior and dorsal regions starting around embryonic day (E) 16.5, and 

last in the lateral and ventral regions beginning around E17.5 [138]. By E18.5, all prostatic buds have 

formed (Figure 1B,C). Mouse prostate development is reviewed in more detail elsewhere [137,139–141]. 

Figure 1. In vivo prostatic bud development in male C57BL/6J mouse embryos. (A) The 

urogenital sinus (UGS) is visible between the bladder and urethra. Epithelium is stained 

blue; mesenchyme is white. At E16.0, prostatic budding has not yet initiated. (B) By E18.5, 

all prostatic buds have formed. (C,D) Dams were dosed on E15.5 with corn oil vehicle (5 

mL/kg, po; (C)) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (5 μg/kg, po; (D)). UGSs 

were harvested at E18.5, the mesenchyme was removed, and the epithelium was imaged by 

scanning electron microscopy. Buds are pseudo-colored based on which lobe of the 

prostate they will form. Images in (C) and (D) were adapted from [160] with permission 

from Oxford University Press, copyright 2008. 
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Canonical Wnt signaling is also essential for prostatic bud formation. UGSs cultured in vitro with  

5α-dihydrotestosterone (DHT; required to induce budding) plus XAV-939, a chemical inhibitor of 

canonical Wnt signaling [142], had greater than a 70% decrease in total bud number compared to 

control UGSs cultured with DHT alone (Figure 2) [143]. Transcript levels of two downstream target 

genes, Lef1 and Lgr5, were decreased in the XAV-939-exposed UGSs, confirming that XAV-939 

downregulated canonical Wnt signaling [143]. UGSs cultured with an excess of the endogenous 

canonical Wnt signaling inhibitors, dickkopf1 (DKK1) and DKK2 [101], also developed fewer 

prostatic buds than controls (Figure 2) [143]. Furthermore, three different strategies used to knockout 

CTNNB1 in the UGS of genetically engineered mice all resulted in impaired prostatic bud  

formation [60,66,144]. Collectively, these data demonstrate that canonical Wnt signaling is required 

for prostatic budding. 

Figure 2. Prostatic bud development in vitro. UGSs were harvested from male C57BL/6J 

mouse embryos at E14.5 and grown in culture containing 5α-dihydrotestosterone (DHT) 

plus vehicle, TCDD (1 nM), or canonical Wnt inhibitors dickkopf1 (DKK1) and DKK2 

(500 ng/mL each) or XAV-939 (10 μM) for four days. All prostatic buds were counted, and 

an asterisk indicates a significant difference compared to controls (p ≤ 0.05). Adapted  

from [143] with permission from Oxford University Press, copyright 2013. 

 

Interestingly, there are abundant data demonstrating crosstalk between androgen signaling and 

canonical Wnt signaling, including a physical interaction between androgen receptor and CTNNB1, 

and transcriptional regulation of one pathway by the other [145–148]. Thus, altering one pathway 

could affect the function of the other. However, much of these data were gathered in vitro in prostate 

cancer cell lines. The extent to which these pathways crosstalk in vivo in the UGM and/or UGE is not 

well defined, and, therefore, it is not known if these pathways function independently or in tandem to 

orchestrate prostatic budding initiation and elongation. 

AHR signaling, on the other hand, is not required for prostatic bud formation. Male C57BL/6J mice 

carrying knockout mutations in both copies of the Ahr gene retain normal bud formation and develop 

functional prostates [138,149]. However, over-activation of AHR signaling during in utero 

development can inhibit prostatic budding. A single dose of TCDD given to pregnant C57BL/6J mice 

(5 µg/kg dam, po) within the E13.5 to E15.5 developmental window, which is prior to the initiation of 

prostatic budding, reduces the number of dorsal and lateral buds and completely prevents ventral bud 

formation (Figure 1D) [138]. AHR knockout mouse fetuses similarly exposed to TCDD undergo 

normal prostatic budding, confirming that the teratogenic effects of TCDD are AHR dependent. 
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Furthermore, tissue recombination experiments revealed that TCDD-induced activation of AHR 

signaling in the UGS mesenchyme, but not the UGS epithelium, impaired prostatic budding [150]. 

While the primary site of action for both androgen signaling and AHR signaling with regards to 

prostate development is the UGM, activation of AHR signaling in the UGM does not directly impair 

androgen signaling [151]. Therefore, we searched for other paracrine signaling pathways that were 

dysregulated by TCDD exposure. Below we discuss our recent findings that TCDD-induced activation 

of AHR signaling in the UGM downregulates canonical Wnt signaling in the UGE, leading to 

inhibition of ventral prostatic budding, which manifests as ventral prostate agenesis [143,152]. 

9. Activated AHR Inhibits Canonical Wnt Signaling During Prostatic Budding 

9.1. In Vitro 

In vitro TCDD exposure during UGS organ culture mimics in utero TCDD exposure by inhibiting 

prostatic budding. At E14.5 (prior to initiation of prostatic budding), male UGSs were placed in culture 

containing DHT and either vehicle or TCDD. After four days, prostatic budding was visible in all 

UGSs, but those exposed to TCDD developed about 50% fewer buds than controls (Figure 2) [143,153]. 

To determine if TCDD was altering Wnt signaling, mRNA and protein abundance of confirmed canonical 

Wnt signaling target genes were measured: Lef1, Lgr5, hepatocyte nuclear factor 1a (Hnf1a; aka Tcf1), 

and Wnt inhibitory factor 1 (Wif1) [74,75,120,121,144,154–159]. TCDD decreased mRNA levels of 

all four target genes, and, in basal epithelial cells specifically, TCDD reduced expression of LEF1 and 

HNF1A (Tables 1,2) [143]. We focused on basal epithelial cells because those cells receive and 

respond to mesenchymally derived paracrine signals and ultimately initiate prostatic budding. 

Altogether, activation of AHR signaling by TCDD downregulates canonical Wnt signaling and inhibits 

prostatic bud formation in UGSs cultured in vitro. 

9.2. In Vivo 

To demonstrate activation of AHR signaling in vivo, transcription of AHR target genes was 

assessed in male UGSs exposed to TCDD in utero. TCDD increased transcription of Cyp1a1, Cyp1b1, 

and an AHR reporter gene in the UGE and/or UGM [160]. Because TCDD completely blocked 

prostatic budding in the ventral UGS, this was the primary region of interest. AHR signaling was not 

detectably stronger in the ventral region compared to the rest of the UGS [160]. 

Canonical Wnt signaling was also evaluated in UGSs of male mouse fetuses exposed to vehicle or 

TCDD in utero. As discussed above, activation of canonical Wnt signaling—which is characterized by 

stabilization, cytoplasmic accumulation, and nuclear localization of CTNNB1—is a process that must 

occur in the UGS to initiate prostatic budding [66]. Therefore, we stained sagittal sections of UGSs 

using immunohistochemistry (IHC) to visualize CTNNB1 expression at developmental time points 

before ventral prostatic buds were present [152]. At E16.0, in both control and TCDD-exposed UGSs, 

the ventral UGE had no detectable cytoplasmic or nuclear CTNNB1 (Figure 3A). However, by E16.5 

in control UGSs, ventral basal epithelial cells showed increased CTNNB1 expression in the cytoplasm 

and nucleus (Figure 3B). This indicates that the canonical Wnt signaling pathway is first activated in 

the ventral basal epithelium around E16.5 during normal development. By comparison, CTNNB1 
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expression in ventral basal epithelial cells of E16.5 TCDD-exposed UGSs resembled that of E16.0 

UGSs with little to no detectable CTNNB1 in the cytoplasm or nucleus (Figure 3C). These data show 

that during normal development, the canonical Wnt signaling cascade is initially activated in basal 

epithelial cells of the ventral UGS around E16.5, just prior to the initiation of ventral budding, and that 

in utero exposure to TCDD blocks this activation (Tables 1,2). 

Figure 3. TCDD-induced activation of AHR signaling prevented activation of canonical 

Wnt signaling in the ventral UGE of male C57BL/6J mouse embryos. Dams were dosed  

on E15.5 with corn oil vehicle (5 mL/kg, po) or TCDD (5 μg/kg, po). Images are 

representative sagittal sections from vehicle-exposed (A,B,D,F) or TCDD-exposed 

(C,E,G) UGSs stained by IHC (A–E, brown stain) or ISH (F–G, purple stain). (A) At 

E16.0 in both control and TCDD-exposed UGSs, CTNNB1 expression was restricted to 

cell membranes in the UGE. (B) By E16.5 in control UGSs, CTNNB1 had accumulated in 

the cytoplasm and translocated into the nucleus of ventral basal epithelial cells. (D,F) 

CTNNB1 target genes Lef1 (D) and Wif1 (F) were also expressed in the ventral basal 

epithelial cells of E16.5 control UGSs, demonstrating functionally active CTNNB1 

signaling. (C) At E16.5 in TCDD-exposed UGSs, CTNNB1 did not accumulate in the 

cytoplasm, and was not detected in the nucleus of ventral basal epithelial cells. (E,G) 

Neither Lef1 nor Wif1 was expressed in ventral basal epithelial cells, confirming there is no 

active CTNNB1 signaling in the ventral epithelium of TCDD-exposed UGSs. Arrowheads 

point to basal epithelial cells; yellow asterisks mark prostatic buds. Adapted from [152] 

with permission from Oxford University Press, copyright 2014. 
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Though nuclear CTNNB1 expression indicates that the canonical Wnt signaling pathway has been 

activated, concomitant expression changes of downstream CTNNB1 target genes must also be 

demonstrated to verify that the pathway is functionally active. Therefore, we assessed expression of 

the CTNNB1 target gene, LEF1 [74,75,120,121]. In control UGSs, LEF1 was absent in the ventral 

UGE at E16.0, but by E16.5 most basal epithelial cells in the ventral UGS expressed LEF1, thus 

illustrating that LEF1 expression temporally coincides with nuclear localization of CTNNB1 and the 

start of ventral bud formation (Figure 3D) [152]. In TCDD-exposed UGSs, LEF1 expression was not 

detected in the ventral basal epithelium at either E16.0 or E16.5, which is consistent with the 

previously described lack of CTNNB1 nuclear localization (Figure 3E and Table 2). 

In the UGS, Wif1 is expressed in both the mesenchyme and epithelium but the transcriptional 

regulation of this gene is different in each tissue compartment [144,161]. In the epithelium  

(but not mesenchyme), Wif1 is upregulated by, and therefore a downstream target gene of, CTNNB1 

signaling [144]. As such, Wif1 transcript was detected by in situ hybridization (ISH) in the UGE of 

E16.5 control UGSs, but was greatly reduced in the ventral epithelium of E16.5 TCDD-exposed UGSs  

(Figure 3F,G) [152]. The TCDD-induced downregulation of Wif1, like LEF1, demonstrates that 

activated AHR inhibited CTNNB1 signaling in the ventral UGS (Table2). It also provides additional 

evidence that activated AHR can alter Wnt signaling because WIF1 is an extracellular antagonist of 

Wnt signaling that binds to Wnt ligands and prevents them from interacting with their cognate  

receptors [162–164]. Presumably, CTNNB1 upregulates WIF1 in the UGE to provide feedback 

regulation, however this is lost in TCDD-exposed UGSs. 

Altogether, the in vivo findings demonstrate that around E16.5 in the ventral UGS, during normal 

development: (1) an as yet unidentified activating signal triggers the stabilization and nuclear localization 

of CTNNB1, (2) this nuclear CTNNB1 is functionally relevant since it upregulates expression of 

downstream target genes Lef1 and Wif1, and (3) activation of AHR signaling in the UGS by TCDD can 

block the CTNNB1-stabilizing paracrine signal. 

10. Wnt Signaling Components Upstream of CTNNB1 Altered by Activated AHR 

Though we have demonstrated that in utero TCDD exposure inhibits canonical Wnt signaling in basal 

epithelial cells of the ventral UGS by preventing accumulation and nuclear localization of CTNNB1, 

the question remains, how? We performed a thorough examination of the Wnt signaling pathway by 

assessing the RNA abundance of over 40 genes that act upstream of CTNNB1. Pregnant C57BL/6J 

dams were treated with either vehicle or TCDD on E15.5, and UGSs were analyzed by ISH on E16.5 

for differences in transcript abundance. The study revealed that RNA abundance of Rspo2, Wnt10a, 

Wnt16, Ror2, and as already discussed, Wif1 was altered in TCDD-exposed UGSs (Table 2) [152]. 

10.1. Rspo2 and Rspo3 

R-spondins (RSPOs) have been shown to activate the Wnt signaling pathway by multiple 

mechanisms, including synergism with Wnt ligands, activation of noncanonical Wnt signaling through 

heparin sulfate proteoglycan binding, competition with DKKs (extracellular antagonists of canonical 

Wnt signaling) for receptor binding, and activation of LGR receptors to enhance canonical Wnt  

signaling [165]. Rspo2 and Rspo3 RNA abundance was assessed in control and TCDD-exposed UGSs 
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at E16.5, E17.5, and E18.5. RNA from both genes was present in the ventral mesenchymal pad (VMP) 

at all times tested [143,152]. The VMP is a subcompartment of the UGM that is thought to mediate 

mesenchymal/epithelial crosstalk during prostatic bud development [166]. In TCDD-exposed UGSs, 

Rspo2 transcript abundance was reduced in the VMP at E16.5, but not E17.5 or E18.5, while Rspo3 

transcript abundance was unchanged in the VMP at E16.5, but decreased at E17.5 and E18.5  

(Figure 4A–H) [143,152]. 

Figure 4. TCDD-induced activation of AHR signaling in the UGS of male, C57BL/6J 

mouse embryos downregulated Rspo2 and Rspo3 RNA abundance in vivo; UGS organ 

culture with exogenous RSPO2 and RSPO3 reversed inhibitory effects of TCDD-induced 

activation of AHR signaling in vitro. (A–H) Dams were dosed on E15.5 with corn oil vehicle 

(5 mL/kg, po) or TCDD (5 μg/kg, po). Images are representative sagittal sections from in 

utero vehicle-exposed (A, C, E, G) or TCDD-exposed (B, D, F, H) UGSs stained by ISH 

(purple stain). (A–D) Rspo2 transcript abundance was reduced in TCDD-exposed UGSs 

(B) compared to control UGSs (A) at E16.5, but no difference was observed at  

E17.5 (C, D). (E–H) Rspo3 transcript abundance was not different between control and 

TCDD-exposed UGSs at E16.5 (E, F), but was reduced in TCDD-exposed UGSs (H) 

compared to control UGSs (G) at E17.5. Arrows point to the ventral mesenchymal pad; 

small arrows represent decreased staining compared to big arrows. (I–J)) In vitro UGS 

organ culture with TCDD (1 nM) plus exogenous RSPO2 (100 ng/mL),  

RSPO3 (100 ng/mL), or a combination of RSPO2 + RSPO3 (100 ng/mL each) increased 

the number of prostatic buds (I), and the percentage of LEF1-positive basal epithelial cells 

(J) compared to culture with TCDD alone. Asterisks indicate a significant difference 

compared to vehicle-exposed UGSs; daggers indicate a significant difference compared to 

TCDD-exposed UGSs (p ≤ 0.05). (A, B) adapted from [152], and (I, J) adapted from [143] 

with permissions from Oxford University Press. 
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These findings were confirmed in vitro. Male UGSs were harvested at E14.5 and cultured with or 

without TCDD for 2, 3, or 4 days. Rspo2 transcript abundance was reduced in TCDD-exposed UGSs 

after two days in culture (similar to E16.5), but was not different from control UGSs after three and 

four days in culture [143]. Conversely, Rspo3 transcript abundance in TCDD-exposed UGSs was not 

different from control UGSs after two days in culture, but was reduced compared to control UGSs after 

three and four days in culture (similar to E17.5 and E18.5, respectively) [143]. Exogenous RSPO2 

and/or RSPO3 were subsequently added to the culture media to determine if the canonical Wnt 

activators could increase prostatic budding in UGSs co-cultured with TCDD. RSPO2, RSPO3, and a 

combination of RSPO2 plus RSPO3 all increased the number of prostatic buds that developed 

compared to UGSs cultured with TCDD alone (Figure 4I) [143]. Furthermore, IHC revealed that 

RSPO2, RSPO3, and RSPO2 plus RSPO3 treatments all increased the percentage of basal epithelial 

cells expressing LEF1 and HNF1A (canonical Wnt target genes) compared to TCDD treatment alone 

(Figure 4J) [143]. 

These findings are significant for several reasons: (1) TCDD-induced activation of AHR downregulated 

expression of RSPO2 and RSPO3, two potentially key paracrine regulators of ventral prostate bud 

development; (2) this downregulation occurred in the UGM which is known to be the site of action for 

TCDD-induced, AHR-dependent inhibition of prostatic budding; and (3) addition of exogenous 

RSPO2 and RSPO3 to UGS organ cultures countered the effects of TCDD-induced activation of AHR 

signaling by upregulating canonical Wnt signaling and increasing prostatic budding. We have already 

established that TCDD-induced activation of AHR signaling can inhibit canonical Wnt signaling; these 

findings elucidating RSPO regulation and function upstream of CTNNB1 provide one possible 

mechanism by which this inhibition occurs. 

10.2. Wnt10a and Wnt16 

The ISH survey of Wnt signaling components acting upstream of CTNNB1 included all 19 of the 

known mouse Wnt ligands. TCDD exposure affected two Wnt genes, increasing RNA abundance of 

Wnt10a in the UGE, and Wnt16 in the UGM [152]. More specifically, at E16.5 in control UGSs, 

Wnt10a transcript was observed in basal epithelial cells of the urethra, with little to no transcript 

present in basal epithelial cells of the ventral UGS (Figure 5A). In TCDD-exposed UGSs, Wnt10a 

staining was present not only in basal epithelial cells of the urethra, but also extended through the basal 

epithelium of the ventral UGS toward the base of the bladder (Figure 5B). Mirroring Wnt10a 

expression in the UGE, Wnt16 RNA was observed only in the urethral mesenchyme in E16.5 control 

UGSs (Figure 5C), but detected in the urethral mesenchyme and ventral UGM in TCDD-exposed 

UGSs (Figure 5D). This is clear evidence of AHR signaling dysregulating the Wnt signaling pathway. 

However, it is not yet clear if activated AHR directly induced transcription of these genes, or if the 

increased RNA abundance is the result of AHR signaling affecting an intermediary that regulates 

Wnt10a and Wnt16. 

Wnt10a is unlikely to play a significant role in inhibiting prostatic budding due to its expression in 

the UGE, however, Wnt10a is also expressed during palatal fusion [167], tooth development [168,169], 

skin, hair, and sebaceous gland development [170–172], and tail fin regeneration in zebrafish [115],  
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all of which are disrupted by TCDD exposure [15,16,44,173–175]. Therefore, Wnt10a should be 

explored as a potential target in TCDD-induced toxicity in these tissues as well. 

Figure 5. TCDD increases Wnt10a and Wnt16 RNA abundance in the ventral UGS. 

Sagittal sections from in vivo vehicle-exposed (A,C) and TCDD-exposed (B,D) UGSs 

were stained by ISH (purple stain). (A) At E16.5 in control tissues, little to no Wnt10a 

RNA was detected in the ventral UGS. (B) Wnt10a RNA was detected in the ventral basal 

epithelial cells of TCDD-exposed UGSs. (C) At E16.5, little to no Wnt16 RNA was 

detected in the ventral region of control UGSs. (D) Wnt16 RNA was detected in the ventral 

mesenchyme of TCDD-exposed UGSs. Arrowheads point to de novo staining detected in 

the ventral UGS of TCDD-exposed UGSs. Reprinted from [152] with permission from 

Oxford University Press. 

 

WNT16, on the other hand, is an attractive candidate as an inhibitor of prostatic budding.  

TCDD exposure induces WNT16 expression in ventral UGM, which directly interfaces with basal 

epithelial cells that give rise to ventral prostatic buds. In some systems, WNT16 has been shown to 

activate canonical Wnt signaling [176–178] but in others, WNT16 has no effect on CTNNB1 

stabilization and instead, in some cases, activates non-canonical Wnt signaling [179–183]. The final 

outcome likely depends on what other agonists, antagonists, and receptors are present in the 

microenvironment [59,65,117,184]. We hypothesize that WNT16 antagonizes canonical Wnt signaling 

upstream of CTNNB1 in TCDD-exposed UGSs, perhaps in a manner similar to WNT5A in other  

systems [65,117,118,185–187]. Interestingly, WNT16, like WNT10A, is expressed during palatal  

fusion [167] and skin development [170,171,188] so Wnt16 could be a target gene of AHR signaling in 

other tissues too. 

10.3. Wnt5a 

WNT5A is required for normal UGS and prostate development, and is expressed in the UGM 

during prostatic budding initiation and elongation, and during prostatic ductal branching [153,189]. 
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Although exposure to TCDD did not alter WNT5A expression in the UGS [152,153], we found that 

adding a neutralizing anti-WNT5A antibody to UGSs cultured with TCDD restored total bud number 

to a level similar to that of control UGSs cultured without TCDD (Figure 6) [153]. Furthermore, 

culture with exogenous WNT5A decreased total bud number and impaired ductal outgrowth and 

branching [153,189]. Therefore, while some WNT5A activity is required, in general, it appears that 

WNT5A is antagonizing prostate development. 

Figure 6. Anti-WNT5A antibody reversed the inhibitory effects of TCDD-induced activation 

of AHR signaling in vitro. UGSs from male C57BL/6J mouse embryos were harvested at 

E14.5 and cultured in vitro for three days. While culture with TCDD (1 nM) reduced total 

prostatic bud number, culture with TCDD (1 nM) plus a neutralizing anti-WNT5A 

antibody restored prostatic bud number to a level similar to that of control UGSs. An 

asterisk indicates a significant difference from control UGSs (p ≤ 0.05). Adapted from [153]. 

 

11. Intersection of AHR and Wnt Signaling in the UGS 

Our current hypothesis of the paracrine mechanism by which in utero TCDD exposure inhibits 

ventral prostatic budding in male mouse embryos—activation of AHR signaling in UGM alters Wnt 

signaling in UGE—is illustrated in Figure 7. The genes shown in Figure 7 are almost certainly not the 

only Wnt signaling regulators that play a role in prostatic bud formation; instead, they are the genes we 

have found to be dysregulated by TCDD-induced activation of AHR signaling. 

Multiple studies have shown that CTNNB1 signaling is required in the UGS for prostatic  

budding [66,121,144].  We have extended these findings by showing that, just prior to budding 

initiation, under normal developmental conditions (Figure 7, left panel), CTNNB1 accumulates in 

basal epithelial cells, translocates to the nucleus, and activates transcription of downstream target genes 

(Lef1, Wif1) [152].  The upstream signal(s) that induce CTNNB1 accumulation are not yet known, but 

could involve RSPO2 and RSPO3 [143]. WNT5A is also present in the UGM during this 

developmental window and could be dampening CTNNB1 signaling to prevent over-activation, which 

can also hinder budding. In TCDD-exposed UGSs (Figure 7, right panel), the paracrine signals 

originating in the ventral mesenchyme are antithetical to prostatic bud development. Activation of 

AHR signaling in the UGM promotes WNT16 expression in the UGM, though the mechanism by 

which this occurs has not yet been elucidated [152]. We hypothesize that WNT16 synergizes with 



Int. J. Mol. Sci. 2014, 15 17871 

 

 

WNT5A to enhance an inhibitory signal that ultimately prevents activation of CTNNB1 signaling by 

inhibiting CTNNB1 accumulation and nuclear localization. In culture, a neutralizing anti-WNT5A 

antibody reduced this inhibitory signal, causing increased CTNNB1 signaling in the UGE that resulted 

in increased budding [153]. 

Figure 7. Hypothetical mechanism by which TCDD-induced activation of AHR signaling 

in the ventral UGM inhibits prostatic budding in the ventral UGE. Andromedins are 

paracrine factors induced by androgen signaling and expressed in the UGM that promote 

prostatic budding initiation. The identity of andromedins is not fully known. WNT5A, 

RSPO2, and RSPO3 are not the only ligands present in the extracellular matrix that are 

capable of activating Wnt signaling, but the others are not shown. The Wnt receptors on 

the epithelial cell surface have not been defined because it is not yet known which receptor 

or combination of receptors is present. The transcription factors in the epithelial cells 

include members the TCF/LEF family. CYP1B1 is expressed in the UGM during normal 

development, but it is not known what induces its expression. CYP1B1 expression was 

increased in the UGM after TCDD exposure. Arrows represent upregulation; blunt-end 

lines represent downregulation. Solid lines indicate a known outcome; dashed lines indicate 

some degree of uncertainty and further research is required. For example, it is known that 

activation of AHR in the UGM upregulates Wnt16 in the UGM and downregulates Rspo2 

and Rspo3 in the ventral mesenchymal pad, but it is not known if these are direct or 

indirect effects of activated AHR. References are in brackets. We hypothesize that to 

initiate prostatic budding there are multiple Wnt signaling events that, on balance, generate 

a precisely regulated activation of the canonical Wnt signaling cascade. In TCDD-exposed 

UGSs, this balance is disrupted resulting in either failed or blocked activation of canonical 

Wnt signaling. 
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Interestingly, during normal development, both WNT5A and WNT16 are expressed in the 

mesenchyme around the urethra where no buds develop, while only WNT5A is expressed in the 

ventral UGM. After exposure to TCDD both WNT5A and WNT16 are expressed in the ventral UGM 

and no prostatic buds develop [152]. 

12. Conclusions 

Both AHR and Wnt signaling have been rigorously studied for many years, but not until relatively 

recently was there evidence of crosstalk between these two pathways. Our review of literature 

exploring the intersection of AHR and Wnt signaling in vertebrates found a majority of these studies 

reported that activated AHR downregulated canonical Wnt signaling (Tables 1,2). Carefully regulated 

Wnt signaling is essential for normal development and adult tissue maintenance. Both insufficient and 

excessive signaling can be deleterious. It seems reasonable to hypothesize that an innate function of 

activated AHR is to fine-tune Wnt signaling, keeping it within a biologically “acceptable” level. 

Importantly, this crosstalk might be a useful tool in the treatment of disease. For example, many 

cancers have excessive canonical Wnt signaling. Pharmaceutical manipulation of AHR activity could 

prove to be one prong of a multi-pronged, personalized treatment plan for such cancers. 
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