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Abstract: Binding affinity prediction of potential drugs to target and off-target proteins is
an essential asset in drug development. These predictions require the calculation of binding
free energies. In such calculations, it is a major challenge to properly account for both the
dynamic nature of the protein and the possible variety of ligand-binding orientations, while
keeping computational costs tractable. Recently, an iterative Linear Interaction Energy (LIE)
approach was introduced, in which results from multiple simulations of a protein-ligand
complex are combined into a single binding free energy using a Boltzmann weighting-based
scheme. This method was shown to reach experimental accuracy for flexible proteins
while retaining the computational efficiency of the general LIE approach. Here, we show
that the iterative LIE approach can be used to predict binding affinities in an automated
way. A workflow was designed using preselected protein conformations, automated ligand
docking and clustering, and a (semi-)automated molecular dynamics simulation setup.
We show that using this workflow, binding affinities of aryloxypropanolamines to the
malleable Cytochrome P450 2D6 enzyme can be predicted without a priori knowledge of
dominant protein-ligand conformations. In addition, we provide an outlook for an approach
to assess the quality of the LIE predictions, based on simulation outcomes only.
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1. Introduction

In silico prediction of protein-binding affinities plays an important role in the process of drug design
and development [1,2]. In the case of Cytochrome P450 enzymes (CYPs), computational modelling
allows to rationalize or predict sites-of-metabolism of given substrates, but also to calculate CYP binding
affinities [3–5]. Substrate binding affinity and selectivity prediction is of direct relevance to CYP
metabolite prediction, because different CYPs can convert substrates differently [6]. In order to make
computational methods for CYP binding affinity prediction suitable for use in an industrial setting, they
should be cost efficient. Simultaneously, they should be of sufficient accuracy and yield insight into the
details of molecular interaction.

Binding affinity predictions rely on the calculation of free energies of binding, accounting for
enthalpic and entropic contributions to the binding of a drug to its (off-)target protein [7,8]. For proteins
of large flexibility, free energy calculations should properly incorporate the dynamic nature of the protein
and its active site. Molecular docking and scoring methods often fail in binding affinity predictions due
to their static nature [9]. Free energy methods based on molecular dynamics (MD) simulations allow
the structure of a protein-ligand complex to dynamically evolve in time [10,11]. However, in case of
large conformational changes, induced-fit effects and rare events, sufficient sampling may come at great
computational expenses. Especially for proteins of high malleability or plasticity, standard MD-based
free energy methods are often inappropriate for (semi-)high-throughput affinity prediction. Moreover,
CYPs and other proteins with a large or flexible active site are typically able to accommodate ligands
in various binding orientations [12,13], which can render full sampling of possible binding orientations
computationally prohibitive. The possibility of different binding modes poses an additional challenge
to use of MD-based methods in a high-throughput setup, because it requires a priori knowledge of the
probable binding orientations to start simulations from.

To include sufficient conformational sampling of protein-ligand complexes of high malleability at
relatively low computational cost, an iterative Linear Interaction Energy (LIE) approach was recently
introduced by Stjernschantz and Oostenbrink [13]. In LIE [14], the calculated free energy of binding
of a ligand to a protein (∆Gcalc) is related to the differences in nonbonded interaction energies obtained
from MD simulations of the protein-ligand complex and of the unbound ligand in solution:
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In Equation (1),
〈
V vdW
lig−surr

〉
is the van der Waals interaction energy between the ligand and its

surrounding, either in solvent (free) or in the protein (bound).
〈
V el
lig−surr

〉
refers to the corresponding

electrostatic interaction energy terms, and angular brackets denote ensemble averages. Parameters
α and β are optimized in a training procedure using experimental values for the binding free
energy. The iterative LIE approach relies on combining results from multiple MD simulations of
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the protein-bound state, starting from distinct local minima on the potential energy surface of the
protein-ligand complex [13,15]. Average interaction energies obtained from the different simulations
are combined by assigning Boltzmann weights Wi to the part of conformational space covered during
protein-ligand simulation i. Each Wi is calculated from the average interaction energies
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i
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i

obtained for simulation i, using [13,16]
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In Equation (2), kB is the Boltzmann constant, T is the temperature of the system, and N is the number
of independent simulations. The ∆Gcalc,i’s for the N independent simulations i are obtained by inserting〈
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into Equation (1). The combined free energy of binding of the ligand is then
calculated as
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In practice, various MD runs are started from distinct protein-ligand conformations, and Boltzmann
weighting of the results of the separate simulations (Equation (2)) ranks them according to the
contribution of the part of conformational space covered during simulation. Running multiple MD
simulations and using Equations (2) and (3) was recently shown to yield binding affinities within
experimental accuracy for highly malleable proteins such as CYPs 2C9 and 2D6 [13,15], whereas lower
accuracy was reached using Equation (1) and running a single MD simulation per ligand (in which
possible conformational rearrangements could not sufficiently be sampled). Thus, distinct parts of
conformational space were found to contribute to the binding affinity of these flexible proteins, and
free energy methods based on MD simulations starting from a single protein-ligand conformation will
have difficulties in predicting binding free energies in such cases, even when using advanced methods
(see e.g., reference [17]) that aim on carefully selecting and refining the starting configuration.

The above described LIE scheme shows great potential for high-throughput use, because simulations
starting from different conformations can be run independently, which makes the method suitable for
(massive) parallellization. Moreover, when relevant protein conformations and ligand orientations
are available to start simulations from, sampling is partly accounted for a priori, thereby reducing
computational efforts (compared to running a single MD simulation per protein-ligand complex where
visiting all relevant regions of phase space is highly improbable). In the current study, we present
a method to broaden the applicability of the iterative LIE approach towards automated binding
affinity prediction.

A major challenge in using the iterative approach in a (semi-)high-throughput manner is proper
selection of a limited number of starting structures that represent distinct and relevant parts of
conformational space. Thereby, preselection of dominant protein conformations must properly include
induced-fit effects, whereas selection of possible binding orientations for the ligand should ensure that
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relevant poses are included as well. In previous work [15], we showed that for the very flexible CYP
2D6 enzyme, relevant protein structures could be chosen based on a plasticity model of Hritz et al. for
site-of-metabolism prediction [18]. Starting conformations of the ligand in the active site for use in LIE
simulations were until now chosen based on experimental information on the site-of-metabolism [19]
or based on visual inspection of obtained docking poses [13,15,20]. In the current work, we present
a generic method to train and use the LIE models for binding affinity prediction. In this automated
procedure, possible ligand-binding orientations are selected based on clustering of binding poses
obtained from molecular docking. As a result, no user input or external knowledge is required
for pose generation, and MD starting orientations for the ligand are obtained that cover different
parts of conformational space (in terms of binding positions and orientations). Using the generated
starting configurations, MD simulations are subsequently run in an automated way. Automation of the
ligand-pose selection and MD setup is required to make the method available for generic use. Moreover,
it greatly facilitates extensive training and testing of our LIE models (in the case of large availability of
experimental data).

Here, we show the potential of our automated implementation by developing an iterative LIE model
for CYP 2D6 binding of a series of aryloxypropanolamine analogs, for which no structural information
on the protein-ligand complexes is available. In addition, we provide an outlook on how to assess
the quality of the results obtained by our models. In practice, a LIE model is based on training
data, comprising experimental and simulation data. Binding affinity prediction is then based on the
assumption that the model is valid for a substantially larger set of ligands. A quantification of the
accuracy of a binding affinity prediction would be of great value to assess if this assumption can be made.
We address this issue by inspecting model behavior (in terms of predictive accuracy) under permutations
of ligands between the subsets of training and test compounds used, and its relation to data obtained
from simulation.

2. Computational Methods

In the following we describe the automated procedure for training iterative LIE models (Section 2.1)
and for performing LIE predictions (Section 2.2), as well as the technical details of the protocol, which
involves generation of starting structures for MD, performing MD, and combining computed interaction
energies into binding free energies (Section 2.3).

2.1. Automated Training

The upper part of Figure 1 (steps 1–4) depicts our automated procedure for generating starting
conformations and for running the MD simulations. Training (parameterization) of an iterative LIE
model covers five steps (steps 1–5 in Figure 1). After defining the protein of interest and selecting series
of training compounds for which binding free energies are experimentally known (ideally covering a
broad range of affinities), one or more protein conformations are selected (Figure 1, step 1). These
protein structures will be used as templates for docking and to start independent MD simulations
from, and they should be selected such that relevant parts of conformational space are covered,
based on available experimental (crystal) structures or computational studies to identify representative
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conformations [18]. For every selected protein structure, a set of possible ligand-binding poses is
generated by means of molecular docking (Figure 1, step 2). From this set, representative binding
orientations are selected based on conformational clustering (Figure 1, step 3) using a nearest-neighbor
clustering method [21,22]. Subsequently, every combination of protein structure and obtained pose
therein is used as starting conformation to start an independent MD simulation from, in order to compute
ensemble-averaged electrostatic and van der Waals interaction energies (Figure 1, step 4). To run the
MD simulations, an automated procedure was implemented to successively energy minimize and solvate
the protein-ligand complex, add counterions to neutralize the net protein charge, thermally equilibrate
the system, start production MD simulations, and retrieve average interaction energies. The same MD
protocol was used to perform simulations of the unbound ligand in water. Note that ligand topologies for
use in MD were generated manually in the current work (consistent with the chosen protein force field),
but ongoing efforts by others [23–26] to develop automated topology builders for (drug-like) compounds
already allow for full automatization of our LIE workflow. In a final step (Figure 1, step 5), average
nonbonded interaction energies obtained from the different simulations, and experimental estimates for
the binding free energies are used to calibrate the LIE model parameters α and β in Equation (3), and to
iteratively obtain the contributions Wi (Equation (2)) of the different MD simulations [13].

Figure 1. Workflow for training of iterative LIE models. In the current work, 2 protein
conformations and 9 training and 8 test ligands were used to generate maximally 600 docked
poses per ligand, from which 3 poses per ligand and per protein conformation were selected
to start MD.
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2.2. Automated Free Energy Prediction

The calculation of ∆Gcalc using a predefined LIE model uses a similar setup as described
in Section 2.1. Ligands are docked in the preselected protein conformations and docking poses are
clustered, after which interaction energies are gathered from independent MD simulations that start from
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the obtained structures of the ligand-protein complex (steps 1–4 in Figure 1). Step 5 in Figure 1 is
replaced by direct calculation of ∆Gcalc from weighted average interaction energies for the different
simulations, using Equations (2) and (3), and the (precalibrated) LIE parameters α and β.

2.3. Computational Details

Using our automated procedure, an iterative LIE model was developed for the prediction of binding
affinities to CYP 2D6 for a series of aryloxypropanolamine analogs. The sets of training and test
compounds are presented in Tables 1 and 2, respectively. The quality of any LIE model relies heavily
on the consistency of the experimental data used for training. Here, experimental binding free energies
were extracted from a single inhibition study [27], and derived from reported IC50 values using the
Cheng-Prusoff equation [28]:

∆Gexp
∼= RT ln(Ki) = RT ln

(
IC50

1 + [S]/Km

)
(4)

with Ki the inhibition constant for inhibition of conversion of a 3-[2-(N ,N -diethyl-N -
methylamino)ethyl]-7-methoxy-4-methylcoumarin (AMMC) substrate with concentration
[S] = 1.5 µM [27], and Km = 0.5 µM [29]. Training and test compounds were chosen such that
a wide range of IC50 values was covered, ranging from 0.03 to 100 µM (corresponding to ∆Gexp values
between −48.2 and −27.3 kJ mol−1).

2.3.1. Selection of Protein Conformations

As in our previous CYP 2D6 LIE study [15], selection of protein conformations (to start docking
and simulation from) was based on a combined MD/virtual screening study by Hritz et al. [18].
Hritz identified two distinct conformations that can be used as templates for accurate docking-based
site-of-metabolism prediction. Using a simple binary-decision tree based on the molecular weight
of a substrate, it is decided which of the protein structures to dock the ligand into [18]. A major
difference between the two CYP 2D6 structures in the decision tree is the orientation of phenylalanine
483 within the active site, which is part of a flexible loop. This active-site loop adopts substantially
different orientations in the two isoform conformations, as depicted in Figure S1 of the Supplementary
Material. In one of the conformations (referred to as PPD 70 by Hritz et al. [18], and as PPD70 in the
current work), the Phe483 side chain is occupying part of the active site (by adopting a Cα–Cβ dihedral
angle χ483 of approximately 70◦). In contrast, in the other conformation (referred to as CHZ 170 by
Hritz, and as CHZ170 in the current work), Phe483 is opening up the active site (with χ483 ∼ 170◦).
In order to improve the accuracy of site-of-metabolism prediction of CYP 2D6 substrates, Hritz found
that the PPD70 structure is suitable for use as a template to dock substrates of low molecular weight
in [18], whereas the CHZ170 conformation should be used for docking of substrates of high molecular
weight. These findings indicate that reorientation of the Phe483 loop and Phe483 side-chain rotation
allow CYP 2D6 to accommodate ligands of different size. Here, we use both PPD70 and CHZ170 as
starting conformations of independent MD simulations, because sampling of this conformational change
in a single MD simulation is computationally expensive.
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Table 1. Compounds used in training of the CYP 2D6 LIE model for
aryloxypropanolamines. Experimental values for IC50’s (reported by Vaz et al. [27]) and
derived binding free energies (∆Gexp) are given, as well as Molar masses (M) and net charges
of the compounds (q).

Ligand number # (# in Vaz et al.) Structure Properties

1
(6)

O N
H

OH

IC50 = 18 µM
∆Gexp = −31.73 kJ mol−1

M = 210.30 g mol−1

q = +1e

2
(10)

O N
H

OH

IC50 = 28 µM
∆Gexp = −30.59 kJ mol−1

M = 224.32 g mol−1

q = +1e

3
(7)

O N
H

OH

IC50 = 1.9 µM
∆Gexp = −37.53 kJ mol−1

M = 260.36 g mol−1

q = +1e

4
(3)

O N
H

OHO

IC50 = 21 µM
∆Gexp = −31.34 kJ mol−1

M = 266.36 g mol−1

q = +1e

5
(8)

O N
H

OH

NHO

IC50 = 100 µM
∆Gexp = −27.31 kJ mol−1

M = 317.41 g mol−1

q = +1e

6
(5)

O N
H

OH

HN

IC50 = 0.03 µM
∆Gexp = −48.22 kJ mol−1

M = 389.52 g mol−1

q = +1e

7
(26)

O N
H

OH

HN

F

N

IC50 = 0.05 µM
∆Gexp = −46.90 kJ mol−1

M = 382.46 g mol−1

q = +1e

8
(22)

O N
H

OH

F

N
S

IC50 = 0.28 µM
∆Gexp = −42.56 kJ mol−1

M = 404.60 g mol−1

q = +1e

9
(28)

O N
H

OH

HN

S OO

IC50 = 0.35 µM
∆Gexp = −41.89 kJ mol−1

M = 417.55 g mol−1

q = +1e
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Table 2. Compounds used in testing of the presented CYP 2D6 LIE model for
aryloxypropanolamines. Experimental values for IC50’s (reported by Vaz et al. [27]) and
derived binding free energies (∆Gexp) are given, as well as molar masses (M) and net charges
of the compounds (q).

Ligand number # (# in Vaz et al.) Structure Properties

10
(19)

O N
H

OH

HN

N

O

OH

IC50 = 12 µM
∆Gexp = −32.78 kJ mol−1

M = 435.52 g mol−1

q = 0e

11
(12)

O N
H

OH

HN

N

O

IC50 = 0.42 µM
∆Gexp = −41.42 kJ mol−1

M = 394.50 g mol−1

q = +1e

12
(16)

O N
H

OH

O

IC50 = 8.4 µM
∆Gexp = −33.70 kJ mol−1

M = 290.38 g mol−1

q = +1e

13
(18)

O N
H

OH

HN

OH

N

IC50 = 0.31 µM
∆Gexp = −42.20 kJ mol−1

M = 380.47 g mol−1

q = +1e

14
(14)

O N
H

OH

HN

IC50 = 0.03 µM
∆Gexp = −48.22 kJ mol−1

M = 339.46 g mol−1

q = +1e

15
(4)

O N
H

OH

IC50 = 3.80 µM
∆Gexp = −35.74 kJ mol−1

M = 273.38 g mol−1

q = +1e

16
(9)

O N
H

OH

O

IC50 = 24 µM
∆Gexp = −30.99 kJ mol−1

M = 268.38 g mol−1

q = +1e

17
(20)

O N
H

OH

HN

N

O

O

IC50 = 2.10 µM
∆Gexp = −37.27 kJ mol−1

M = 464.59 g mol−1

q = +1e

2.3.2. Docking Procedure

To improve sampling of available ligand-conformational space within the binding site during docking,
six different sets of atomic coordinates were used for every ligand to start docking runs from. The
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coordinate sets were generated by rotating an arbitrary ligand conformation by ±90◦ around the three
Cartesian axes. The six sets of ligand coordinates were docked into the PPD70 and CHZ170 templates
using the GOLD (Genetic Optimization for Ligand Docking) software (version 4.0) [30], together
with the ChemScore scoring function [31]. The maximum allowed operations for the genetic docking
algorithm was 50,000, with a population of 100 genes. Only the 50 best scoring poses were retained
for every docking run, yielding in total maximally 300 docking poses for every combination of protein
conformation and ligand. During docking, the active site of the protein was defined as a sphere with a
2.5 nm radius. The center of this sphere was positioned within the active site, at a distance of 0.2 nm
from Fe along the vector connecting the heme iron and the sulphur atom of the Fe-coordinated cysteine
(Cys443). For docking of the test compounds, the distance between Fe and the center of the docking
sphere was increased to 0.6 nm, and the radius of the sphere was reduced to 1.0 nm.

2.3.3. Clustering

For every protein conformation and ligand, binding poses to start MD from were selected from the
docked poses by means of nearest-neighbor clustering [21], using clustering analysis tools included in
the GROMOS11 software package [32]. The allowed number of clusters was set to five, allowing the
inclusion of various starting configurations for MD in the LIE model without heavily increasing the
computational cost by the number of MD simulations to be carried out. The central structures of the
three most populated clusters were combined with the protein coordinates, to serve as starting structure
for use in the automated MD procedure. Central structures were defined as having the smallest average
root-mean-square structural deviation from other members in the cluster.

2.3.4. MD Simulations

Energy minimization, preparation of the simulations, MD runs and post-MD analysis were carried out
using the GROMOS11 software package [32]. During energy minimization and MD, the protein, ligands
and counterions were described using the GROMOS 45A4 force-field parameter set [33]. First, the
selected protein-ligand complex structures were energy minimized in vacuum using the steepest-descent
method, after which they were solvated in rectangular boxes of circa 18,400 water molecules, with
box lengths of approximately 8.6 nm, using a minimum solute-wall distance of 0.8 nm. The minimum
distance between solute and solvent atoms was set to 0.24 nm, and the minimum distance between
solvent atoms and active site or ligand atoms was set to 0.35 nm. Six sodium counterions were added to
neutralize the net charge of the protein. The system was energy minimized while keeping positions of
protein and ligand atoms restrained using a harmonic force constant of 2.5 × 104 kJ mol−1 nm−2.

Subsequently, atomic velocities were randomly assigned from a Maxwell-Boltzmann distribution,
and thermal equilibration was carried out in six MD simulations of 20 ps each, at temperatures of 50,
100, 150, 200, 250, and 300 K, respectively. During equilibration, positions of the protein atoms were
kept restrained, using a harmonic force constant of 25,000, 2500, 250, 25, 2.5, and 0 kJ mol−1 nm−2,
respectively. The equilibration was followed by a (unrestrained) 2 ns production run at 300 K, during
which average nonbonded interaction energies between the ligand and its surrounding were gathered.
To prevent conformational overlap between simulations starting from different protein conformations,
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the dihedral angle χ483 of Phe483 was kept restrained to its starting value using a harmonic potential
with a force constant of 30 kJ mol−1 deg−2 [15].

Water was descibed by the SPC model [34]. The temperature in all simulations was kept constant
using a Berendsen thermostat [35] with a coupling time of 0.1 ps. In the production simulations the
pressure was kept constant at 1 atm using a Berendsen barostat [35] with a coupling time of 0.5 ps.
The isothermal compressibility was set to 4.575 × 10−4 (kJ mol−1 nm−3)−1. In all simulations a time step
of 2 fs was used, and bonds were constrained using the SHAKE algorithm with a geometric tolerance of
10−4 [36]. Nonbonded interactions were computed every time step for pairs of atoms that are stored in a
charge-group based pair list and that are within a radius of 0.8 nm. Along with the pair-list update,
intermediate-range interactions (between 0.8 and 1.4 nm) were computed every fifth time step and
kept constant in between. Long-range electrostatic interactions (beyond 1.4 nm) were represented by
a reaction field [37], using a dielectric constant of 61 [38]. Atomic coordinates were stored for analysis
every 2500 time steps, and interaction energies were stored every 50 time steps.

Following our findings in a recent CYP LIE study [15], all simulations of the protein-ligand
complexes were run twice (starting from identical atomic coordinates but different randomly
assigned velocities) in order to improve convergence of the interaction energies

〈
V vdW
lig−surr

〉
bound,i

and〈
V el
lig−surr

〉
bound,i

in Equation (3). The corresponding pairs of simulations were combined afterwards,
preceeding the calculation of the average ligand-surrounding interaction energies. In summary, twelve
protein-bound simulations were performed per ligand (starting from two different protein template
structures and three different ligand binding orientations, with two different sets of random atomic
velocities assigned).

To evaluate the average ligand interaction energies of the unbound ligands in water(〈
V vdW
lig−surr

〉
free

and
〈
V el
lig−surr

〉
free

)
, every ligand was simulated in water as well. For this purpose,

the solute was solvated in a cubic box filled with approximately 4500 SPC water molecules, with a
box length of approximately 5 nm [34]. No counterions were added. After energy minimization, 5 ns
production simulations of the ligand in water were started at 300 K. MD settings were identical to the
ones described for the production MD simulations of the protein-ligand complex.

3. Results and Discussion

3.1. Automated Binding Free Energy Prediction

The compounds of the training set were docked and clustered as described in Sections 2.3.2 and
2.3.3. The automatically selected poses typically show diversity in terms of molecular conformation and
in the orientation of the principal axes of the molecules within the active site, as illustrated in Figure 2
and by the root-mean-square atom-positional deviations between pairs of obtained binding poses, which
are presented in Table S1 of the Supplementary Material. For some ligands, clusters of poses outside
the active site were obtained. This concerned the third most populated cluster of ligand 7 in PPD70
and the second and third most populated clusters of ligands 8–10 in PPD70. These clusters were
discarded in further development of the LIE models. As we will discuss later, the reduced number
of independent simulations for these ligands does not significantly affect the accuracy of the binding free
energy calculations.
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Figure 2. Diversity in ligand binding orientations with respect to the CYP 2D6 heme
moiety (in green), as typically obtained from the automated docking and clustering procedure
(steps 1–3, Figure 1). Here, central structures are shown for the three most populated clusters
of docking poses obtained for ligand 8 in protein template CHZ170.

I
II

III

By combining results from MD simulations starting from both protein conformations (CHZ170
and PPD70) and all docking poses, a LIE model was obtained using our automated setup with
α = 0.22 and β = 0.10. The correlation between calculated and experimental binding free energies
using this model is displayed in Figure 3, middle-right panel. The root-mean-square errors with
respect to experiment (RMSEs) of the predicted binding free energies for the training compounds (1–9
in Table 1 and Figure 3) is 3.9 kJ mol−1, which is within experimental accuracy. The standard deviation
of prediction errors (SDEPs) of the test set of compounds (10–17 in Table 2 and Figure 3) for the
combined LIE model is 7.0 kJ mol−1, which corresponds to an inaccuracy of one order of magnitude
in terms of predicted inhibition constants (Equation (4)). Individual errors in the predicted binding free
energies of the test and training compounds are reported in Table S1 of the Supplementary Material. For
comparison, Figure 3 also presents LIE models obtained using results of MD simulations starting from
a single protein conformation (top and bottom panels, for CHZ170 and PPD70, respectively) or from a
single ligand starting pose (i.e., the central structure of the most populated cluster of docking poses, left
panels). In accordance with the findings of Stjernschantz and Oostenbrink [13] and of us [15] in recent LIE
studies on thiourea binding to CYP 2C9 and 2D6, the accuracy of our LIE model improves when including
results from MD simulations starting from different ligand binding poses (cf. left panels and right panels
in Figure 3): the RMSEs and SDEPs decrease when compared with LIE models that do not include
all simulations, see horizontal arrows in Figure 4. As mentioned above, less than three starting poses
were used for ligands 7–10 in all models, but this does not influence the predictive quality for these
compounds. For example, for the LIE models based on the PPD70 template (bottom panels in Figure 3)
and for those using the CHZ170 and PPD70 templates (middle panels in Figure 3), experimental
accuracies were obtained for ligands 7–9 upon including two additional PPD70 binding poses for the
other ligands into the models. In addition, when starting from the CHZ170-based LIE model (Figure 3,
upper right panel) and including three simulations starting from the PPD70 template for all ligands
except for ligands 7–10 (for which fewer PPD starting structures are available), calculated binding free
energies for ligands 7–10 are still within experimental accuracy, see middle-right panel of Figure 3.
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Figure 3. Correlations obtained using different CYP 2D6 LIE models for prediction of
aryloxypropanolamine binding affinities, between the experimental (∆Gexp) and predicted
free energy of binding (∆Gcalc). Ideal correlation is indicated by the solid line, the dashed
lines represent deviations from experiment of 1 kcal mol−1 (4.184 kJ mol−1). Training
compounds are indicated in black, compounds of the test set in red. The three left models are
based on simulations starting from a single ligand starting pose, while the three right models
include results from simulations starting from three different starting poses. The top-row
models are based on results of simulations starting from the protein conformation CHZ170
(C). Models in the bottom row include simulations with the PPD70 protein template (P).
Models in the middle row include results of both P and C simulations. The LIE parameters
(α and β), as well as root-mean-square errors (RMSE) and standard deviation of prediction
errors (SDEP) of each model (in kJ mol−1) are given in de bottom-right corner of each plot.
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Figure 4. Differences (∆, in kJ mol−1) in root-mean-square errors (RMSEs) and standard
deviation of prediction errors (SDEPs) between the LIE models presented in Figure 3. The
models on the left include results of MD simulations starting from a single active site binding
orientation of the aryloxypropanolamine compounds (from the most populated clusters I),
models on the right include results of MD simulations started from three different starting
poses (originating from clusters I, II and III). The top-row models are based on results of
simulations starting from protein conformation CHZ170 (C). Models in the bottom row
include simulations starting from the PPD70 protein template (P). Models in the middle
row include results of P and C simulations.
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Because of the significantly lower SDEP (and RMSE) values of the LIE models including simulations
starting from several ligand poses (when compared to models based on single ligand poses, Figures 3
and 4), only these models are considered in the remaining. Figures 3 and 4 demonstrate that the predictive
quality of the LIE models also depends on the choice of the protein template to start docking and
MD from. For the considered class of compounds, the SDEP is significantly lower for the CHZ170
based model (upper right panel of Figure 3) than for the PPD70 based model (Figure 3, bottom-right
panel). The combined LIE model (using both protein templates) is also more predictive than the model
based on PPD70 simulations only (as shown by a lower SDEP, Figure 4). In terms of observed SDEPs
and RMSEs, the combined LIE model and the CHZ170-based model show comparable accuracy. As
demonstrated in Figure 5, both the PPD70 and the CHZ170 simulations contribute to the binding free
energies predicted by the combined model. For many ligands, the sum of the Boltzmann weights Wi of
the PPD70 simulations adds up to significant values, Figure 5. This shows the relevance of including
results from simulations started from both the CHZ170 and the PPD70 templates into the fully combined
LIE model. These findings are in accordance with our recent LIE study on thiourea binding to CYP
2D6 [15], in which closest agreement with experiment was obtained when combining results from MD
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simulations starting from two protein structures (and from two distinct ligand-binding poses that were
selected based on visual inspection).

Figure 5. Summed Boltzmann weights of the simulations starting from either PPD70 (P)
or CHZ170 (C) template structures for the aryloxypropanolamines (numbered 1–9 for the
training set, 10–17 for the test set) within the final CYP 2D6 LIE model, which includes
results of simulations starting from both the PPD70 and CHZ170 template structures.
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From the above, when comparing our CYP 2D6 LIE models based on MD simulations starting from
either single or both protein template structures, we found that the predictive ability of the LIE model for
the aryloxypropanolamines is mostly dependent on inclusion of simulations starting from the CHZ170
template. On the other hand, in our recent LIE study on CYP 2D6 binding to the smaller thioureas [15],
the model accuracy for the thioureas was found to be mostly depending on inclusion of simulations
starting from the PPD70 template. This difference is in line with the results of Hritz et al., who found
that the accuracy of docking-based site-of-metabolism prediction for CYP 2D6 substrates improves when
using the PPD70 template for substrates of small molecular weight (<280 g mol−1), and the CHZ170
template for docking of large substrates [18].

3.2. Assessing the Predictive Quality of the LIE Models

In developing the LIE models discussed in Section 3.1, the choice of ligands that constitute
the training set was based on chemical knowledge, aiming on obtaining maximal spread in terms
of experimental binding free energies and structural diversity within the sets of compounds used
to train (and test) the model. We tested the suitability of our choice for dividing the set of
17 aryloxypropanolamines into a training and a test set, by calibrating and evaluating LIE models for all
combinations of test and training sets (i.e., for all 24,310 permutations between the sets of 9 training and
8 test compounds). From Section 3.1, the permuted LIE models include results from all simulations (i.e.,
from any of the starting protein-ligand conformations). As a measure of the predictive quality of the
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permuted LIE models, we use the total root-mean-square errors RMSEtot for all 17 (∆Gexp,∆Gcalc)

data points in the generated models. In Figure 6, RMSEtot of all permuted models (as a function of
the corresponding α and β parameters) is shown. For the optimal combination of test and training set,
RMSEtot is minimal. For this combination, we found a smaller spread in experimental binding free
energies and molecular weights within the training set (comprising ligands 3, 4, 6, 7, 8, 10, 15, 16, 17)
when compared to the originally chosen training set (Table 1). This indicates that for training of the CYP
2D6 binding affinity model for the aryloxypropanolamines considered, use of chemical knowledge did
not lead to the optimal choice in terms of training and test compounds. However, Figure 6 also shows
that the combined model described in Section 3.1 has α and β close to their optimal values, indicating
that using chemical knowledge did indeed yield a model that allows for sufficiently accurate predictions
of the binding free energies of the ligands (RMSEtot = 5.5 kJ mol−1) when compared to the optimal
LIE model in terms of the division between training and test set (RMSEtot = 5.3 kJ mol−1).

Figure 6. RMSEtot (root-mean-square error with respect to experiment) in kJ mol−1 for
all 17 predicted binding free energies, as a function of model α and β parameters. The
data in this figure have been generated by permuting over all possible combinations of
training sets of size 9 out of the total number of ligands (17), and by optimizing the LIE
α and β parameters for each permutation. The center of the circle refers to the model in the
middle-right panel of Figure 3, for which RMSEtot = 5.5 kJ mol−1.
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Our comparison of permuted LIE models gives direction in assessing the applicability of LIE models
to (accurately) predict binding free energies for compounds for which no experimental estimates of
the binding affinity are available. Ultimately, the quality of LIE predictions can only be validated by
comparison to experiment. Here, we examine if prediction accuracy (model applicability) can also
be assessed by comparing simulation results for compounds with unknown affinity, to the spread in
simulation data obtained for the training set. When comparing RMSEtot values for all permutations of
LIE models that include outcomes of simulations starting from the PPD bound structures only, inclusion
of compounds 10 and 17 into the training set was found to result in large differences in RMSEtot

(by more than 2.5 kJ mol−1) when compared to the permuted model with lowestRMSEtot (5.1 kJ mol−1,
data not shown). This is probably due to the low predictivity of the set of PPD70 simulations for the
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binding free energy of compounds 10 and 17 (Figure 3, bottom-right panel). A comparison of the
(weighted) outcomes of the PPD70 simulations for the 17 aryloxypropanolamines showed that values
for the right-hand terms in Equation (3) as calculated for test or training compounds with strongly
deviating binding free energy predictions (such as compound 10) are situated away from the model’s
centroid in the corresponding [α(V vdW

bound − V vdW
free ), β(V el

bound − V el
free)] coordinate system, by more than

twice the variance along at least one of the model principal axes (PAs) as determined in a Mahalanobis or
principal component like analysis (Figure S2). Although trivial, it is important to note that this analysis
is not meaningful in the [∆Gexp,∆Gcalc] coordinate system, because no ∆Gexp values are available in
practice for the predictions of interest. These observations suggest that molecular simulation data can be
used to assess prediction accuracies for new compounds, where a model’s applicability region is defined
by the variances along the PAs (i.e., by the spreads in calculated interaction energies as scaled by α and
β that was obtained for the training compounds).

After inspection of the variances along the PAs for all permuted models based on the simulations
starting from the PPD70 and CHZ170 template structures, we were unable to detect strongly deviating
free energy predictions with high precision. This is due to (i) the limited number of compounds used
here to train and test the models; and (ii) the fact that the LIE models including simulations starting
from both the PPD70 and CHZ70 template structures allow for more accurate predictions (which again
underscores the importance of including protein plasticity in constructing LIE models). To further
explore the possibility of defining model applicability by the above approach based on simulation data
only, larger data sets will be examined in near future.

4. Conclusions

In the current work, we have shown that the iterative LIE approach as recently introduced for
improved binding affinity prediction to flexible proteins such as Cytochrome P450s [13,15] can be
used to predict binding free energies in a generic way. For this purpose, an automated workflow was
designed using preselected protein conformations, ligand-docking and clustering, and a generic set-up
to run MD simulations. For a set of aryloxypropanolamines we demonstrated that using this workflow,
CYP 2D6 binding affinities can be predicted without a priori knowledge of dominant conformations of
the protein-ligand complex. Our automated LIE calculations reconfirmed the importance of including
different MD simulations starting from distinct relevant protein-ligand conformations in binding affinity
prediction for flexible proteins. In addition, we discussed a method to assess the predictive quality of our
LIE models based on simulation outcomes only.
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