Supplementary Information

Figure S1. Risk of positive initial biopsies depending on urinary PCA3 score ($n=594$ patients) Numbers of patients are indicated below the histograms for each category of PCA3 score. PCA3 $=$ prostate cancer gene $3 ; \mathrm{PCa}=$ prostate cancer.

Figure S2. Diagnostic performances of serum PSA and urinary PCA3 score in predicting initial biopsy outcome ($n=594$ patients). PSA $=$ prostate-specific antigen; PCA3 $=$ prostate cancer gene 3.

Figure S3. Decision curve analysis of predicting prostate cancer on initial prostate biopsy using regression models ($n=594$ patients). Base model included age, DRE findings (suspicious vs. non-suspicious), prostate volume and serum total PSA. Urinary PCA3 score was added to the base model as either a continuous or a binary variable (around a cutoff 35) variable.

Figure S4. Comparison between the risk of prostate cancer as predicted by the Hansen's nomogram and the actual proportion of positive initial biopsies in the entire population ($n=594$ patients). $\mathrm{PCa}=$ prostate cancer.

Figure S5. Comparison of performances of the three published urinary PCA3incorporating nomograms in predicting results of initial prostate biopsies ($n=536$ patients) $\mathrm{AUC}=$ area under the curve; $\mathrm{CI}=$ confidence interval; PCPT $=$ PCA3-incorporating prostate cancer prevention trial risk calculator. * Proportion of well-classified patients according to the best automatically calculated cutoff.

		AUC (95\% CI)	Predictive accuracy* (95\% CI)
	Updated PCA3-incorporating PCPT Risk calculator [20]	0.730 (0.688-0.772)	66.6\% (62.6-70.6)
$p=0.053$	Hansen's nomogram [14]	0.753 (0.713-0.794)	69.0\% (65.1-73.0)
	Chun's nomogram [21]	0.773 (0.733-0.812)	70.3\% (66.4-74.2)

Table S1. Pathological findings.

Pathological findings			
Number of sampled cores ${ }^{\text {a }}$			
	12 cores	$n=520$	88\%
	13-14 cores	$n=64$	11\%
	15-18 cores	$n=10$	2\%
Gleason score ${ }^{\text {b }}$			
	$3+3=6$	$n=148$	54\%
	$3+4=7$	$n=81$	29\%
	$4+3=7$	$n=30$	11\%
	$4+4=8$	$n=15$	5\%
	$4+5=9$	$n=1$	0.5\%
	$5+4=9$	$n=1$	0.5\%

Proportion of invaded cores ${ }^{\text {b }}$

$$
\begin{array}{ccc}
\leq 33 \% & n=191 & 69 \% \\
>33 \% & n=85 & 31 \%
\end{array}
$$

Proportion of invaded tissue ${ }^{\mathrm{b}, \mathrm{c}}$
Median (IQR) $5 \% \quad(2 \%-12 \%)$
${ }^{a}$ Assessed in the 594 patients; ${ }^{b}$ Assessed in the 276 patients with positive biopsies; ${ }^{c}$ Ratio length of invaded prostatic tissue/total length of biopsied prostatic tissue; IQR: interquartile range.

Table S2. Variation of diagnostic performances of urinary PCA3 test depending on various cutoffs.

Cutoff	Sensitivity	Specificity	Positive predictive value	Negative predictive value	Accuracy
17	89%	45%	58%	83%	65%
21	82%	57%	62%	78%	68%
24	78%	59%	62%	76%	68%
30	70%	67%	65%	72%	68%
35	63%	72%	66%	69%	68%
40	60%	74%	67%	68%	67%
45	55%	77%	67%	66%	67%
50	50%	79%	67%	65%	66%

PCA3 $=$ prostate cancer gene 3 ; accuracy $=$ proportion of correctly classified patients.

Table S3. Univariable logistic regression models predicting any prostate cancer and high-grade prostate cancer at initial biopsy.

	Any PCa				HGPCa*			
	OR (95\% CI)	p-Value	AUC (95\% CI)	PA	OR (95\% CI)	p-Value	AUC (95\% CI)	$\mathbf{P A}$
Age, year	1.05 (1.03-1.08)	<0.001	0.602 (0.556-0.647)	58.1\%	1.07 (1.04-1.11)	<0.001	0.624 (0.570-0.679)	78.5\%
DRE (suspicious vs. unsuspicious)	1.10 (1.05-1.16)	<0.001	0.690 (0.649-0.705)	57.7\%	1.18 (1.12-1.24)	<0.001	0.742 (0.736-0.748)	78.6\%
Prostate volume, cm^{3}	0.97 (0.96-0.98)	<0.001	0.641 (0.597-0.685)	60.8\%	0.97 (0.96-0.98)	<0.001	0.651 (0.595-0.708)	78.5\%
Serum PSA, ng/mL	1.03 (0.98-1.09)	0.257	0.517 (0.470-0.563)	54.0\%	1.09 (1.03-1.16)	0.004	0.562 (0.504-0.620)	78.5\%
PCA3 score, continuously coded	1.01 (1.01-1.02)	<0.001	0.743 (0.704-0.782)	63.6\%	1.01 (1.00-1.01)	<0.001	0.689 (0.641-0.736)	77.4\%
$\text { PCA3 score >21 vs. } \leq 21$	5.90 (4.04-8.61)	<0.001	0.794 (0.793-0.795)	68.4\%	4.75 (2.82-7.99)	<0.001	0.785 (0.781-0.788)	78.5\%
PCA3 score ≥ 35 vs. <35	4.39 (3.11-6.20)	<0.001	0.743 (0.741-0.745)	67.9\%	2.76 (1.84-4.14)	<0.001	0.661 (0.613-0.701)	78.5\%

[^0]Table S4. Multivariate analysis evaluating performances of logistic regression models to predict high-grade prostate cancer.

	Multivariate analysis							
	Base model		Base model+ continuous PCA3 score		Base model+ PCA3 cutoff 21		Base model+ PCA3 cutoff 35	
	OR (95\% CI)	p-Value						
Age, year	1.09 (1.05-1.12)	<0.001	1.08 (1.04-1.11)	<0.001	1.07 (1.03-1.11)	<0.001	1.07 (1.03-1.11)	<0.001
DRE	1.17 (1.10-1.24)	<0.001	1.17 (1.10-1.24)	<0.001	1.17 (1.10-1.24)	<0.001	1.17 (1.11-1.24)	<0.001
Prostate volume, cm^{3}	0.95 (0.94-0.97)	<0.001	0.96 (0.94-0.97)	<0.001	0.96 (0.94-0.97)	<0.001	0.96 (0.94-0.97)	<0.001
Serum PSA, ng/mL	1.16 (1.08-1.25)	<0.001	1.16 (1.07-1.25)	<0.001	1.15 (1.06-1.24)	<0.001	1.15 (1.07-1.24)	<0.001
Urinary PCA3 score	-	-	1.00 (1.00-1.01)	0.003	3.62 (2.07-6.36)	<0.001	2.3 (1.46-3.64)	<0.001
AUC	0.770		0.788		0.797		0.791	
IC95\%	(0.723-0.817)		$(0.744-0.833)$		$(0.754-0.839)$		$(0.747-0.834)$	
p-Value*	-		$p=0.036$		$p=0.037$		$p=0.049$	
PA	81.3%		81.1\%		81.5%		81.8\%	
IC 95\%	(78.2\%-84.4\%)		(78.0\%-84.3\%)		(78.3\%-84.6\%)		(78.7\%-84.9\%)	
Increment in PA*	-		-0.2%		$+0.2 \%$		$+0.5 \%$	
p-Value *	-		$p=0.941$		$p=0.941$		$p=0.822$	

Analyses were performed in the 594 patients. AUC $=$ area under the receiver operating curve; $\mathrm{CI}=$ confidence interval; DRE $=$ digital rectal examination (suspicious vs. unsuspicious); OR $=$ odds ratio; PA $=$ predictive accuracy (proportion of well-classified patients according to the best automatically calculated cutoff); PSA = prostate-specific antigen; PCA3 $=$ prostate cancer gene 3 . * when comparing to the base model.
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

[^0]: Analyses were performed in the 594 patients. $\mathrm{PCa}=$ prostate cancer; $\mathrm{HGPCa}=$ high-grade prostate cancer (Gleason score ≥ 7); $\mathrm{OR}=$ odds ratio; $\mathrm{CI}=$ confidence interval; $\mathrm{AUC}=$ area under the curve; $\mathrm{PA}=$ predictive accuracy using the best calculated cutoff; PSA = prostate-specific antigen; DRE = digital rectal examination; PCA3 = prostate cancer gene 3 ; * For this analysis, men with low-grade prostate cancer (Gleason score <7) were classified the same as men with negative biopsies.

