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Abstract: Because magnetic resonance imaging (MRI) contrast agents play a vital role in 

diagnosing diseases, demand for new MRI contrast agents, with an enhanced sensitivity 

and advanced functionalities, is very high. During the past decade, various inorganic 

nanoparticles have been used as MRI contrast agents due to their unique properties, such as 

large surface area, easy surface functionalization, excellent contrasting effect, and other 

size-dependent properties. This review provides an overview of recent progress in the 

development of nanoparticle-based T1-weighted MRI contrast agents. The chemical 

synthesis of the nanoparticle-based contrast agents and their potential applications were 

discussed and summarized. In addition, the recent development in nanoparticle-based 

multimodal contrast agents including T1-weighted MRI/computed X-ray tomography (CT) 

and T1-weighted MRI/optical were also described, since nanoparticles may curtail the 

shortcomings of single mode contrast agents in diagnostic and clinical settings by 

synergistically incorporating functionality.  
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1. Introduction 

Molecular-diagnostic imaging, a field at the intersection of molecular biology and in vivo  

imaging, has received considerable attention in the past decades due to its diagnostic and clinical 

promises [1–10]. Representative imaging platforms/techniques include computed X-ray tomography 

(CT), optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), 

single-photon-emission computed tomography (SPECT), and ultrasound. These techniques hold 

promise because they allow real-time visualization of the cellular functions of living organisms and 

related molecular interactions, and, importantly, they are noninvasive. Of these methods, MRI is 

currently one of the most powerful diagnostic tools in medical science since it is able to acquire 3-D 

tomographical information in whole tissue samples, including human soft tissues, and whole animals, at 

high spatial and temporal resolution [1,5,11–15]. In addition, because MRI images are acquired without 

the use of ionizing radiation (X-ray/CT) or radiotracers (PET and SPECT), it has been the preferable 

imaging technique for the heart, brain, and nervous system [16–21]. Although tissue MRI is capable of 

revealing anatomic details in organs, it is difficult to differentiate normal and diseased cells due to small 

native relaxation time differences. In this context, imaging sensitivity can be enhanced through the use 

of MRI contrast agents [12,14,17].  

MRI is based on the response of proton spin in the presence of an external magnetic field when 

triggered with a radio frequency (RF) pulse [11,22,23]. Under the influence of an external magnetic 

field, protons align in one direction. On application of the RF pulse, aligned protons are perturbed and 

subsequently relax to their original state. There are two independent relaxation processes: longitudinal 

(T1) and transverse (T2) relaxation, which are typically used to generate the MR images. Therefore, there 

are two classes of MRI contrast agents available, (1) T1-weighted contrast agents (e.g., gadolinium- 

(Gd3+) and manganese- (Mn2+) chelates) are paramagnetic in nature which increase the T1 relaxation 

time, resulting in bright contrast T1-weighted images; and (2) T2-weighted contrast agents are 

superparamagnetic materials (e.g., magnetite (Fe3O4) nanoparticles) which reduce T2 relaxation times, 

giving rise to dark contrast T2-weighted images [11,22,23]. The efficiency of a contrast agent to reduce 

the T1 or T2 of water protons is referred to as relaxivity and defined by followed equation:  

1/T1,2 = 1/T0
1,2 + r1,2C. Where 1/T1,2 is the observed relaxation rate in the presence of contrast agents, 

1/T0
1,2 is the relaxation rate of pure water, C is the concentration of the contrast agents and r1 and r2 are 

the longitudinal and transverse relaxivities, respectively [11,21–23]. 

Recent advances in cross-disciplinary nanoscience and nanotechnology have led to further and rapid 

developments of novel nanomaterials as MRI contrast agents. Because of their importance in MRI, 

several reviews on synthesis and applications of nanomaterial-based contrast agents have been 

published elsewhere [8,9,14,16,17,24–40]. Compared to conventional MRI contrast agents, 

nanomaterial-based MRI contrast agents offer a number of advantages, (1) biostability and tunable 

biodistribution can be achieved by surface modification; (2) different degrees of biocompatibility and 

imaging properties can be adjusted by their chemical composition, shapes and sizes; (3) they can 

identify the desired target by specific conjugation with biological molecules interactions, such as 

antibodies, nucleic acids, and peptides; and (4) multimodal imaging can also be achieved using a 

combination of optical and magnetic properties of nanomaterials. The nanoparticle-based contrast 

agents were classified and discussed as T1-weighted MRI contrast agents, T2-weighted MRI contrast 
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agents and multimodality imaging contrast agents. This review focuses on recent progresses in 

nanoparticle-based contrast agents for T1-weighted MRI and T1-weighted MR/optical (fluorescence and 

X-ray) multimodal imaging. The review highlights the design and fabrication procedures of 

nanoparticle-based contrast agents and their potential biomedical applications. In addition, we consider 

the following points: synthetic strategy for improving r1-relaxivity, design of the ligand shell to attain 

high colloidal stability and biocompatibility, and in vivo MR imaging of cancer. We refer interested 

readers to other review articles for T2-weighted MRI specific nanoparticulate systems (or in other word 

nanohybrids) [16,25,26–29,35,36]. 

2. General Description of T1-Weighted Contrast Agents 

T1 relaxation is the process of equilibration of the net magnetization (Mz) after the introduction of an 

RF pulse. This change of Mz is a consequence of the energy transfer between the proton spin system and 

the nearby matrix of molecules [11,21,22]. All biological systems are composed of various molecules 

and organisms which have different proton concentrations and different T1 relaxation times. The 

presence of paramagnetic ions (e.g., Gd3+ and Mn2+, as shown in Figure 1) near the tissue enhances its 

relaxation and shortens the T1 relaxation time [11,21–23,29]. Contrast agents with T1-weighted 

enhancing ability produce bright positive signal intensity in images and increase the conspicuousness of 

cells, facilitating easy tracking of cells in low-signal tissues [11,21–23]. Among those paramagnetic 

ions, Gd3+ is the most effective T1-weighted contrast agent for clinical use [17,29,41,42]. It is suggested 

that more than 10 million MRI studies are performed worldwide using Gd3+-based contrast agents  

each year [42]. Gd-chelates (e.g., Gd-diethylenetriaminepentaacetic acid (Gd-DTPA) and 

Gd-N,N',N'',N'''-tetracarboxymethyl-1,4,7,10-tetraazacyclododecane (Gd-DOTA)) are normally used as 

T1-weighted MRI contrast agents. Despite their utility, these contrast agents suffer from poor sensitivity 

and rapid renal clearance, which severely limits the time window for MRI. Considerable efforts have 

been devoted to incorporate Gd3+ onto or into nanoparticles (e.g., hydrophilic macromolecule 

nanoparticles including dendrimers, dextran, and other hydrophilic polymers, liposomes, and inorganic 

nanoparticles (NPs)) [24,29,41–87]. This method can concentrate Gd3+ ion on/in the nanoparticles, 

resulting in the reduction of the toxicity of Gd3+, and enhancing the T1-weighted MR signal. It can also 

increase the cellular uptake of Gd3+ ions through size and shape tuning of the vehicle nanoparticles. 

Furthermore, biological functional groups can be conjugated on the nanoparticles surfaces for studying 

dynamic biomolecular phenomena through suitable biochemical reaction and signaling. Compared to 

Gd/Mn chelates, the nanoparticle-based T1-weighted MRI contrast agents have several advantages, 

including passive targeting properties, the prolonged imaging time, the enhancement of the contrast, and 

low toxicity [8,14,17,24,26,29,34]. Based on the compositions of nanoparticle-based T1-weighted MRI 

contrast agents, they can be classified as: (1) Gd-chelate grafted organic/inorganic nanoparticles,  

(2) gadolinium nanoparticles, (3) manganese-based nanoparticulate systems, and (4) dual (T1- and T2-) 

weighted MRI contrast agents. 
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Figure 1. Electron configuration and magnetic moment of metal ions (adapted from Na et al. 

2009 [29], Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim and 

reproduced with permission).  

 

3. Gd-Chelate Grafted Hydrophilic Macromolecule Nanoparticles 

Polymeric Gd complexes, based on dextrans, polylysine derivatives, or dendrimers, as well as 

Gd-chelate grafted latex nanoparticles, liposomes, and micelles have been successfully employed for 

developing Gd-chelate grafted hydrophilic macromolecule nanoparticle contrast agents [42,50–61].  

For instance, branched polyamidoamine (PAMAM) dendrimers are synthetic biocompatible 

macromolecules, processing multiple free amino groups on the surface. The physical, chemical, and 

biological characteristics of PAMAM dendrimers make this kind of molecules an ideal template for 

synthesis of Gd-chelate grafted nanoparticles [51,56,60]. Cheng and coauthors have provided a facile 

method for the synthesis of nanometer-sized dendrimer nanoclusters (5.8 nm in diameter) [56]. The 

dendrimer nanoclusters were labeled with Gd by reaction of the amine functional groups with the 

chelating agent DTPA dianhydride. The Gd-conjugated dendrimer nanoclusters have an r1 relaxivity 

value of 12.3 mM−1·s−1 per Gd3+ (1.41 T), which is much higher than that of Gd-DTPA (3.9 mM−1·s−1 

per Gd3+) under same experimental condition. The ultrasensitive MR detection of various types of 

cancers may be possible by conjugating appropriate cancer-targeting ligands (e.g., folic acid) with  

the Gd-conjugated dendrimer nanoclusters. Huang and coauthors have recently reported 

gadolinium-conjugated PAMAM dendrimer nanoclusters as T1-weighted MRI contrast agents (as shown 

in Figure 2) [60]. In order to reduce the potential toxicity of PAMAM dendrimer clusters, individual 

Gd3+ labeled PAMAM dendrimers have been cross-linked to form larger nanoclusters through 

biodegradable polydisulfide linkages. These biodegradable polydisulfide dendrimer clusters inherit the 

high relaxivity (T1) of dendrimer clusters (the r1 value is more than 11.7 mM−1·s−1 per Gd3+(1.41 T)) and 

retain an extended circulation time (circulation half-life > 1.6 h in mice). They are reduced to smaller 

degradation products while in circulation and undergo efficient renal excretion, reducing the possibility 

of long-term macromolecular particle retention. Importantly, the size of dendrimer nanoclusters can be 

easily controlled by adding an excess of maleimide to stop disulfide bond formation at different reaction 

time points. This strategy has provided a facile method for the synthesis of size-controllable and 

biodegradable dendrimer nanoclusters for clinical applications. Liu and coauthors designed a novel 

multifunctional polymeric nanoparticle contrast agent (Anti-VEGF PLA-PEG-PLL-Gd NP) 
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simultaneously modified with Gd-DTPA and anti-vascular endothelial growth factor (VEGF) antibody 

to deliver Gd-DTPA to the tumor area and achieve the diagnosis of hepatocellular carcinoma (HCC) at 

an early stage [55]. The Anti-VEGF PLA-PEG-PLL-Gd NPs exhibited high T1 relaxivity [the r1 value is 

18.394 mM−1·s−1 per Gd3+ (3.0 T)], good biocompatibility, and excellent selectivity towards tumor cells 

(as shown in Figure 3). The Anti-VEGF PLA-PEG-PLL-Gd NPs show great potential in the diagnosis of 

liver tumors at early stages. 

Figure 2. Schematic representation of Gd-conjugated polydisulfide dendrimer clusters and 

corresponding MR images of nu/nu nude mice before and after the tail vein injection of 

Gd-conjugated polydisulfide dendrimer clusters (adapted from Huang et al. 2012 [60], 

Copyright 2012 American Chemical Society and reproduced with permission). 

 

Figure 3. The results of the enhanced signal in different tissue in vivo [Magnevist® (a), 

PLA-PEG-PLL NPs (b) and Anti-VEGF PLA-PEG-PLL-Gd NPs (c)] (adapted from  

Liu et al. 2011 [55], Copyright 2011 Elsevier Ltd. and reproduced with permission).  
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Figure 3. Cont. 

 

4. Gd-Chelate Grafted Inorganic Nanoparticles 

Gd-chelate grafted inorganic nanoparticles have recently attracted much attention because they could 

behave as contrast agents for in vivo multimodality imaging [62–69]. Multimodality imaging enables the 

providing of more complementary, effective, and accurate information about the physical, anatomical 

structure, and the physiological function for diagnosis and research. For instance, Gd-chelate  

(Gd- dithiolated derivatives of diethylenetriaminepentaacetic acid (DTDTPA)) functionalized gold 

nanoparticles (Au@DTDTPA-Gd nanoparticles) were prepared and applied as contrast agents for both 

in vivo CT and T1-weighted MRI by Alric and coauthors [62]. The nanoparticles were obtained by 

encapsulating gold nanoparticle cores within a multilayered organic shell which is composed of 

Gd-chelates bound to each other through disulfide bonds. Specific targeting of cancer at an early stage 

can be achieved by the covalent grafting of biotargeting groups on the organic multilayer of the 

Au@DTDTPA-Gd nanoparticles since each DTDTPA ligand possesses three COOH moieties as 

anchoring sites. The experimental results also demonstrated that the development of nanoparticles for 

targeted diagnosis and therapy can, therefore, be envisaged with the Au@DTDTPA-Gd nanoparticles. 

Xia and coauthors have designed and synthesized a kind of core@shell lanthanide-based nanoparticles, 

NaLuF4:Yb3+, Tm3+@SiO2-DTPA-Gd nanoparticles (UCNP@SiO2-GdDTPA) with NaLuF4:Yb3+, 

Tm3+ upconverting nanoparticles (UCNPs) as the core and SiO2 as the shell layer, and the Gd-DTPA as 

the surface ligand (as shown in Figure 4) [64]. The UCNP@SiO2-GdDTPA can be employed as a 

contrast agent for near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence (UCL), CT 

and T1-weighted MR trimodality in vivo imaging. Gd3+ binding on the surface of nanoparticles makes 

the core@shell nanoparticles show high r1 relaxivity [6.35 mM−1·s−1 (0.5 T)] and suitable for 

T1-weighted MRI. The UCNP@SiO2-GdDTPA have been applied in the trimodal NIR-to-NIR UCL, CT, 

and T1-weighted MR molecular imaging for small animals, both in vivo and in vitro. Wen and coauthors 

have designed and synthesized multifunctional Gd-loaded Au DENPs (Gd–Au DENPs) [65]. In this 

case, amine-terminated generation 5 PAMAM dendrimers (G5·NH2), modified with Gd-chelator and 

polyethylene glycol (PEG) monomethyl ether, were used as templates to synthesize gold nanoparticles 

(Au NPs) within the dendrimer interior (Au DENPs) (as shown in Figure 5). The formed G5·NH2 with 

Gd-chelators were complexed with Gd3+, followed by complete acetylation of the remaining dendrimer 

terminal amines. The as-prepared Gd–Au DENPs are water soluble, colloidally stable, and non-cytotoxic 

in the given concentration range. The Gd–Au DENPs have an r1 relaxivity of 1.05 mM
−1·s−1 per Gd3+ 
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(3.0 T). The experimental result demonstrates that the Gd–Au DENPs enable to be used as dual mode 

(CT/MRI) contrast agents for in vivo imaging of some major organs of rats and mice. Taking into 

consideration of the unique structural characteristics of the dendrimers that can be further 

functionalized with various targeting ligands, it is expected that the developed Gd–Au DENPs may be 

used as a multifunctional nanoplatform for targeted CT/MR dual mode imaging of various biological 

systems, especially for diagnosis of cancer at early stage with high accuracy and high sensitivity. 

Figure 4. Schematic representation of the synthetic route of NaLuF4@SiO2-GdDTPA 

nanoparticles (UCNP@SiO2-GdDTPA) (adapted from Xia et al. 2012 [64], Copyright 2012 

Elsevier Ltd. and reproduced with permission). 

 

Figure 5. Schematic illustration of the designed nanostructure (a) and the synthesis 

procedure (b) of the Gd–Au DENPs. TEA and Ac2O represent triethylamine and acetic 

anhydride, respectively (adapted from Wen et al. 2013 [65], Copyright 2012 Elsevier Ltd. 

and reproduced with permission). 

 

5. Gadolinium Nanoparticles 

Recently, inorganic nanoparticles containing Gd3+ [e.g., gadolinium oxide (Gd2O3), gadolinium 

fuoride (GdF3) and gadolinium phosphate (GdPO4)] have been investigated as T1-weighted MRI 

contrast agents [70–87]. Compare to Gd-chelate grafted nanoparticles, these nanoparticles have several 
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distinct advantages: (1) ease of synthesis and functionalization, (2) the ability to carry large payloads of 

active magnetic centers, (3) decreased tumbling rates, which lead to increased relaxivity values. For 

example, most of these nanoparticles showed larger r1 values than those of the Gd-chelates, depending 

on their diameters. Ultrasmall Gd2O3 nanoparticles, with an average diameter of 1 nm, have been 

prepared by Park and coauthors [70]. Surface Gd3+ ions in the Gd2O3 nanoparticles cooperatively induce 

the longitudinal relaxation of the water proton. Thus, the ultrasmall Gd2O3 nanoparticles provided the r1 

of 9.9 mM
−1·s−1 (1.5 T), which is much larger than those of Gd-chelates. After injection with 

D-glucuronic acid coated ultrasmall Gd2O3 nanoparticles, high contrast in vivo T1-weighted MR images 

of the brain tumor of a rat were observed. Very recently, Liang and coauthors have developed a simple, 

cost effective, and easy to scale up strategy for synthesized poly-(acrylic acid)-coated, ultrasmall 

paramagnetic gadolinium hydrated carbonate nanoparticle (GHC-1) with small size (~2 nm in  

diameter) [78]. The GHC-1 exhibits a large longitudinal relaxivity of 34.8 mM
−1·s−1 (0.55 T) while 

maintaining an r2/r1 ratio as low as 1.17, making it effective as a T1-weighted MRI contrast agent. More 

importantly, the presence of carboxylic acid groups on the external surface of the nanoparticles is 

thought to be useful for conjugation of targeting molecules, such as antibodies and peptides, to the 

nanoparticles for specific tumor imaging. 

Rare earth (RE) ions doped UCNPs have been of considerable interest in recent years due to their 

applications in biomedical imaging, solar cells, lasers, lighting, and display technologies [79–87]. 

Among upconverting nanomaterials, the Gd3+ contained UCNPs have shown excellent UCL, unique 

MR and strong X-ray attenuation. Therefore, the Gd3+ contained UCNPs can be employed as high 

performance contrast agents for UCL, MR and CT imaging. Anti-EGFR monoclonal antibody (mAb) 

conjugated NaGdF4 nanocrystals (NaGdF4-PEG-mAb) with narrow particle size distributions were 

synthesized by Hou and coauthors [86]. The experimental results revealed that the NaGdF4-PEG-mAb 

probes possessed satisfying tumor-specific targeting ability and strong MRI contrast enhancement 

effects. Liu and coauthors successfully synthesized a high-quality PEGylated Gd2O3:Yb3+, Er3+ 

nanorods (PEG-UCNPs) for in vivo UCL, T1-weighted MR, and CT multimodality imaging [87]. As an 

alternative to lanthanide-doped fluoride, the oxide-based nanoprobes feature superior properties, such as 

easy decomposition inside macrophage cells after reticuloendothelial system (RES) uptake and nearly 

total excretion from the mouse body. 

6. Manganese-Based Nanoparticulate Systems 

Mn2+ is another cation could be used as the MRI contrast agent since it has five unpaired electrons 

with long electronic relaxation time. However, it is very difficult to design and synthesize highly  

stable Mn2+ complexes with high sensitivities for clinical applications. This drawback can be  

overcome by building manganese-based nanoparticulate systems, such as MnO, Mn3O4, Mn3O4@SiO2, 

MnO@mesoporous SiO2, and even hollow MnO nanoparticles [88–94]. Many approaches have been 

developed to synthesize manganese oxide (MnO or Mn3O4) nanoparticles. One common route is to heat 

up Mn-oleate in a high boiling point solvent (e.g., 1-octadecene) to induce nucleation and particle 

growth [93]. This method allows the preparation of nanoparticles with accurate size control. The 

enhancement of the accessibility of the manganese paramagnetic centers to water molecules is the key 

issue to be addressed to design highly efficient manganese-based MRI contrast agents [88–94]. Kim and 
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coauthors report on a novel design of MnO nanoparticles that have a ‘hollow’ MnO core structure and a 

coating consisting of mesoporous silica (HMnO@mSiO2) (as shown in Figure 6) [89]. These 

HMnO@mSiO2 nanoparticles showed a significantly higher r1 relaxivity (0.99 mM−1·s−1 (11.7 T)) over 

other existing manganese oxide nanoparticle-based contrast agents. The porous coating, which enables 

water exchange across the shell, combined with the large surface area-to-volume ratio resulting from the 

novel structure increases water accessibility to the manganese core and consequently provides enhanced 

T1-weighted contrast. Both in vivo and in vitro experimental results demonstrated that the 

HMnO@mSiO2 nanoparticles have a great potential application of T1-weighted MRI cell tracking. Chen 

and coauthors have reported on a synthetic strategy of chemical oxidation/reduction reaction in-situ  

in mesopores, followed by hydrogen reduction, for the fabrication of non-toxic manganese 

oxide/mesoporous silica nanoparticle (MSN)-based T1-weighted MRI contrast agents with highly 

comparable imaging performance to commercial Gd-based agents (as shown in Figure 7) [90]. This 

strategy involves a “soft-templating” process to prepare MSNs, in-situ reduction of MnO4
− by the “soft 

templates” in mesopores and heat treatment under reducing atmosphere, to disperse MnO nanoparticles 

within mesopores. This material system has two prominent advantages: (1) highly dispersed MnO 

nanoparticles in the penetrating mesopore system ensures the high water-accessibility to manganese 

paramagnetic centers, and (2) large surface area and pore volume of mesopores make take up a large 

amount of therapeutic agents within the pore system possible. 

Figure 6. Schematic illustration of the synthesis of HMnO@mSiO2 nanoparticles and 

labeling of mesenchymal stem cells (MSCs) and in vivo magnetic resonance imaging (MRI) 

of MSCs transplanted mouse (adapted from Kim et al. 2011 [89], Copyright 2011 American 

Chemical Society and reproduced with permission). 

 

Figure 7. Schematic representation for the preparation of manganese oxide/mesoporous 

silica nanoparticles (MSNs)-based T1-weighted MRI contrast agents (adapted from Chen et al. 

2012 [90], Copyright 2012 Elsevier Ltd. and reproduced with permission). 
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7. Dual (T1- and T2-) Weighted MRI Contrast Agents  

Both T1-weighted and T2-weighted contrast agents have their own advantages and disadvantages. For 

example, Gd-based T1-weighted MRI contrast agents have excellent enhancement but they have risks of 

biological toxicity [95]. In terms of low toxicity, magnetic iron oxide nanoparticle-based T2-weighted 

MRI contrast agents have been proven to be one of the most promising contrast agents for clinical use 

because they are naturally found in human body. However, their negative contrast is often confused 

with a low-level MR signal arising from adjacent tissues such as bone or vasculature since the 

magnetite nanoparticles represent dark areas in MR images [96]. Therefore, it is highly desirable to 

prepare robust dual MRI contrast agents for overcoming the disadvantages of single modality contrast 

agents. The simultaneous use of positive and negative MR imaging that employs the same contrast 

agents will significantly improve detection accuracy [97–100]. Monodispersed water-soluble and 

biocompatible ultrasmall magnetic iron oxide nanoparticles (UMIONs, 3.3 ± 0.5 nm in diameter) 

generated from a high temperature coprecipitation route are successfully used as efficient positive and 

negative dual contrast agents of MRI by Li and coauthors [99]. The experimental results demonstrate the 

great potential of the UMIONs in dual contrast agents, especially as an alternative to Gd-based 

T1-weighted contrast agents, which have risks of inducing side effects in patients.  

8. Conclusions and Outlook 

Over last decade, extensive research has been conducted to develop nanoparticle-based T1-weighted 

contrast agents to overcome the drawbacks of clinic Gd chelate-based T1-weighted contrast agents and 

iron oxide nanoparticle-based negative T2-weighted contrast agents. These new MRI contrast agents 

including Gd chelate-grafted nanoparticle and Gd/Mn contained inorganic nanoparticles are expected to 

provide exquisite sensitivity and specificity in disease diagnosis and tracking biological processes such 

as cancer development and metastasis, cell evolution, and cell-to-cell interactions. In particular, MRI of 

nanoparticle-based T1-weighted contrast agents in the cardiovascular system has the potential to become 

a powerful technology in both basic science as well as clinical settings. In addition, multimodal imaging 

or simultaneous imaging and therapy can be achieved through the combinations of various nanomaterials.  

Although many of these promises have been realized in the in vitro testing or preliminary animal 

studies, significant obstacles still exist in translating these results into clinical diagnosis. For instance, it 

is difficult to precisely trace the in vivo behavior of these nanoparticle-based T1-weighted contrast 

agents, such as accumulation, degradation, and clearance. To overcome these obstacles, several 

fundamental issues will have to be clearly addressed, including synthesis scale, human compatibility, 

long-term stability, targeting efficiency, and pharmacokinetics. Interdisciplinary collaborative research 

is needed to both optimize methods for synthesis of highly reproducible nanoparticle-based 

T1-weighted contrast agents and to gain a better understanding of correlation between the basic 

physicochemical properties of these nanoparticles and their in vivo biological behaviors. They should be 

surmountable in the near future because these challenges are not unique to MRI contrast agents. 
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