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Abstract: MicroRNAs (miRNAs) have emerged as key regulators of numerous biological 

processes, and increasing evidence suggests that circulating miRNAs may be useful 

biomarkers of clinical disease. In this study, we sought to identify plasma miRNAs that 

differentiate patients with metastatic castration resistant prostate cancer (mCRPC) from 

those with localized prostate cancer (PCa). Pooled plasma samples from patients with 

localized PCa or mCRPC (25 per group) were assayed using the Exiqon miRNA qPCR 

panel, and the differential expression of selected candidates was validated using qRT-PCR.  

We identified 63 miRNAs upregulated in mCRPC versus localized PCa, while only four 

were downregulated. Pearson’s correlation analysis revealed two highly correlated groups: 

one consisting of miR-141, miR375 and miR-200c and the other including miR151-3p, 
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miR423-3p, miR-126, miR152 and miR-21. A third group, containing miR-16 and miR-205, 

showed less correlation. One miRNA from each group (miR-141, miR151-3p and miR-16) 

was used for logistic regression analysis and proved to increase the sensitivity of the 

prostate-specific antigen (PSA) test alone. While no miRNA alone differentiated localized 

PCa and mCRPC, combinations had greater sensitivity and specificity. The expression of 

these 10 candidates was assayed for association with clinical parameters of disease 

progression through the cBio portal. Our results demonstrate that plasma levels of selected 

miRNAs are potential biomarkers to differentiate localized PCa and mCRPC. 
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1. Introduction 

Prostate cancer (PCa) is the most frequent malignancy amongst males in the Western world3, and it 

is the second leading cause of cancer-related deaths [1]. Prostate-specific antigen (PSA) testing has 

increased the proportion of patients diagnosed with localized disease [2]. Treatment options for 

localized PCa include surgery, radiation and hormonal therapy. For those men who undergo a 

definitive treatment for localized PCa, a proportion of them will develop recurrent disease, which, after 

an initial period of hormone responsiveness, will inevitably progress to a castration-resistant state. 

Metastatic castration-resistant PCa (mCRPC) is still an incurable disease. Given the significant 

heterogeneity in the behavior of PCa in both the localized and mCRPC states, there is an urgent need 

to identify biomarkers that will be useful in predicting the progression and outcome of individual tumors. 

MicroRNAs (miRNAs) are small RNA molecules consisting of 19–23 nucleotides that play 

important roles in regulating numerous biological processes [3,4]. It is estimated that miRNAs regulate 

the expression of at least 60% of all human genes [5], thus accounting for the large number of known 

human miRNAs [6]. Alterations in miRNA levels can influence cellular processes, such as proliferation, 

apoptosis and cell cycle regulation, thus providing a link between miRNA dysregulation and cancer [7].  

The inherent regulatory role of miRNAs, coupled with the high degree of tissue-specificity of their 

expression, suggests that they might be informative of disease stage [8,9], making miRNAs attractive 

candidates as biomarkers. miRNAs are very stable, and they can be readily detected using highly 

specific and sensitive detection methods (i.e., quantitative RT-PCR) [9,10] in a variety of different 

sample types. In PCa, miRNAs have been shown to discriminate between healthy individuals and those 

with cancer [10–14]. In addition, some miRNAs correlate with the risk of disease progression [15] and 

other predictors of disease outcome, such as the Gleason score and lymph node involvement [12]. Both 

miRNA-141 and miRNA-375 have been shown to be upregulated in the blood of PCa patients in 

numerous studies [10,12,14]. Despite the efforts in this field, the degree of overlap amongst the 

candidate miRNAs identified in these studies is not extensive, perhaps due to the inherent 

heterogeneity of PCas. As such, there is a need for further investigation to establish a consensus core 

of blood biomarkers to reliably determine the stage and likelihood of progression of PCa. We thus 

sought to elucidate the expression levels of miRNAs in the plasma of patients with localized PCa and 

those with mCRPC as a first step toward identifying novel biomarkers of disease progression. 
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2. Results and Discussion 

2.1. Detection of Differentially Expressed miRNAs in PCa Patients’ Plasma Samples  

The primary goal of this study was to determine if differences in plasma miRNA levels might be 

useful to differentiate between patients with localized PCa and mCRPC. Of the 742 miRNAs represented 

on the Exiqon miRNA qPCR panel, 246 had quantification cycle (Cq) values <35 in at least one of the 

two pooled samples and, thus, were used for further analysis (Supplementary Table S1). Comparisons 

of mCRPC versus localized PCa were carried out to identify miRNAs showing ≥2 Cq differences  

in expression (Supplementary Table S1). Using this threshold, there were 63 miRNAs upregulated  

in mCRPC versus localized PCa. Surprisingly, considerably fewer miRNAs—only four—were 

downregulated in mCRPC versus localized PCa.  

2.2. Deregulated Expression of Plasma miRNAs in Prostate Tumor Tissue 

The miRNAs detected in plasma may arise from a number of different sources, such as circulating 

blood cells, circulating tumor cells or exosomes released from the tumor. We thus determined if the 

differentially expressed plasma miRNAs showed similarly deregulated expression in a previously 

analyzed paired xenograft model of human non-metastatic and metastatic PCa [16]. For this 

comparison, we used a threshold of ≥1 Cq increased expression, which expanded the list of differentially 

expressed plasma miRNAs to include 123 candidates (Supplementary Table S1). Comparison of these 

two groups revealed 15 commonly increased miRNAs in metastatic PCa (Table 1). We next carried out 

a similar comparison using miRNAs that were decreased ≥1 Cq in mCRPC versus localized PCa 

(Supplementary Table S1). Of these, four were downregulated in both the mCRPC plasma samples 

analyzed in this study and the metastatic tumor tissue xenografts (Table 1). 

Table 1. Cq values for miRNAs that show similar trends in expression differences in 

plasma from patients with localized PCa versus mCRPC and in non-metastatic versus 

metastatic tumor tissue.  

Increased miRNA Localized mCRPC Notes 1 

miRNA-125b-2 * ND 33.88 >2 
miRNA-136 34.58 31.35 >2 
miRNA-151-3p 31.61 29.26 >2 
miRNA-200a 34.27 31.52 >2 
miRNA-744a * 38.09 34.51 >2 
miRNA-9 39.09 34.79 >2 
miRNA-9 * ND 34.12 >2 
miRNA-99a 34.28 32.02 >2 
Let-7d 33.21 31.37 >1 
miRNA-126 26.49 24.93 >1 
miRNA-142-5p 30.35 29.16 >1 
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Table 1. Cont. 

Increased miRNA Localized mCRPC Notes 1 

miRNA-18b 30.14 28.98 >1 
miRNA-27a 29.07 27.31 >1 
miRNA-27b 29.15 27.25 >1 
miRNA-30a * 35.48 34.33 >1 
Decreased miRNA Local mCRPC Notes 
miRNA-205 32.43 34.90 >2 
miRNA-106b 30.38 31.50 >1 
miRNA-16 22.64 23.97 >1 
miRNA-363 29.93 31.08 >1 

1 >2 or >1 refer to Cq differences in expression in the mCRPC versus localized PCa group (Supplemental 

Table S1). miRNAs showed increased or decreased expression in a metastatic prostate tumor xenograft 

model, as described previously [16]. 

2.3. Expression Analysis of Selected miRNAs in Individual Plasma Samples 

As the primary goal of this study was to identify miRNAs differentiating localized PCa from 

mCRPC, we selected a number of candidates for validation of expression differences in the 50 individual 

plasma samples based on the analyses described above and our pooled plasma miRNA expression 

profiles. Included in this list were miRNAs-141, -152 [17] and -375, which have previously been 

shown to be potential biomarkers [12,14], as well as miR-16, -21, -126, -151-3p, -200c, -205 and -423-3p 

(selected from Supplementary Table S1). A dilution series of the reference RNA was used to ensure 

that the amplification efficiency of the qPCR primer set for each miRNA had Cq ≤35 in more than 

80% of the samples.  

Figure 1 shows the normalized miRNA levels for the selected up- and down-regulated candidates in 

the individual plasma samples isolated from patients with localized PCa or mCRPC. In confirmation of 

the data from the panel assay, the expression level of each selected miRNA in the mCRPC group was 

significantly different in the localized PCa patients. Among the samples, miR-141, -375 and -200c 

showed similar patterns of expression, and analyses of the Pearson’s correlation amongst pairs of these 

three candidates were the highest (Figure 2). A second group showing high correlation included  

miR-126, -21, -151-3p, -152 and -423-3p (Figure 2). The two downregulated miRNAs included in this 

analysis, miR-16 and miR-205, showed no correlation (Figure 2). Principle Component Analysis 

(PCA; Figure 3) depicts the three groups of miRNAs and demonstrates that two components are able 

to distinguish localized PCa from mCRPC, with each miRNA contributing in the manner predicted by 

the correlations. Importantly, combining one miRNA from each group was comparable to all ten in 

differentiating between localized PCa and mCRPC. 
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Figure 1. Quantitative RT-PCR analysis of upregulated and downregulated miRNAs in 

individual plasma samples from patients with localized (local) prostate cancer (PCa) or 

metastatic castration-resistant PCa (mCRPC). Quantification cycle (Cq) values were 

converted to log base amounts based on the cell line reference expression as outlined in  

the Materials section. Statistical analysis was carried out using the Student’s t-test.  

* indicates p < 0.05, ** indicates p < 0.01 and *** indicates p < 0.001. 
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Figure 2. Pearson’s correlation amongst the validated differentially expressed miRNAs. 

Black dots represent localized PCa, and red dots represent mCRPC.  

 

Figure 3. Principle Component Analysis (PCA) on the ten validated differentially 

expressed miRNAs. (A) Visual representation of the highly correlated pattern observed in 

the Pearson’s correlation; (B) PCA using all 10 miRNAs is able to distinguish localized 

PCa from mCRPC; although (C) PCA using a combination of only miR-141 + miR-151-3p 

+ miR-16 shows a similar ability to separate the two conditions. 

A B

C 



Int. J. Mol. Sci. 2013, 14 7763 

 

 

Based on these results, we determined the minimal number and combination of miRNAs required to 

differentiate localized PCa from mCRPC with high specificity and sensitivity. To do this, we selected 

one miRNA from each of the three groups shown in Figure 3A and used logistic regression to calculate 

the probability that one miRNA or a combination of three miRNAs could distinguish mCRPC from 

localized PCa. The error values were determined using leave-one-out cross-validation (LOOCV); 

Akaike’s Information Criterion (AIC) values were calculated and probabilities were plotted to generate 

receiver operating characteristic (ROC) curves for each miRNA alone, as well as the combination 

(Figure 4). The area under the curve (AUC) was calculated for each (Table 2). Due to the high 

correlation of expression, the combination of miRNAs in a group (e.g., miR-141 + miR-375) was less 

useful for differentiating mCRPC from localized PCa than a single miRNA (data not shown). We 

assessed different combinations of three miRNAs, each from one group. Surprisingly, the combination 

of the best single discriminators from each group did not yield the highest AUC value (data not 

shown). To the contrary, miR-141, miR-151-3p and miR-16 in combination yielded an AUC of 0.944, 

slightly below that for PSA (0.964). Interestingly, combining the PSA test and mir-141-1513p-16 test 

increased PSA sensitivity by 8%.  

Figure 4. Receiver operating characteristic (ROC) curves to assess the utility of selected 

individual miRNAs compared with the combination or with PSA to differentiate localized 

PCa from mCRPC. ROC curves for miR-141 (light squares), miR-151-3p (triangle),  

miR-16 (upside-down triangle), the combination of all three miRs (dark square) and  

PSA (circle). 

 

Table 2. ROC analysis to assess the specificity and sensitivity of individual or pairs of 

miRNAs to differentiate between localized PCa and mCRPC. Sensitivity and specificity 

refer to the threshold value with the highest likelihood ratio. 

AUC 95% Confidence interval Sensitivity Specificity 
miR-141 0.8784 0.7832 to 0.9736 56% 96% 
miR-375 0.8576 0.7499 to 0.9653 56% 96% 
miR-151-3p 0.7696 0.6310 to 0.9082 60% 96% 
miR-126 0.7488 0.6100 to 0.8876 48% 96% 
miR-16 0.7160 0.5708 to 0.8612 24% 96% 
miR-205 0.7536 0.6094 to 0.8978 60% 88% 
miR141 + 151-3p + 16 0.9440 0.8795 to 1.008 84% 96% 
PSA 0.9640 0.9040 to 1.024 88% 96% 
PSA + miR141 + 151-3p + 16 0.9680 0.9087 to 1.027 96% 96% 
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2.4. Clinical Significance of Differentially Expressed miRNAs 

Finally, we determined if any of the ten validated differentially expressed plasma miRNAs 

correlated with clinicopathological parameters of PCa in a recently analyzed large cohort of PCa 

patients (Table 3) [18]. Our results indicate that and miR-205 (downregulated in mCRPC) is associated 

with a lower Gleason Score and a lower probability of both biochemical recurrence and clinically 

evident metastatic events after prostatectomy. To the contrary, miR-141, 151-3p, 152 and 423-3p are 

associated with a poorer outcome and/or a higher Gleason Score. MiR-141 and mir-152 seemed to 

discriminate a rare, but highly significant sub-group of PCa patients, i.e., individuals with a higher than 

90% probability of recurrence after prostatectomy. MiR-423-3p and miR-205 emerged as novel and 

particularly meaningful prognostic factors, since they are correlated with several clinical parameters.  

Table 3. Association of miRNAs with clinical parameters of PCa progression. We analyzed 

the correlation between clinical parameters and expression levels of 11 miRNAs  

(3 downregulated and 8 upregulated in mCRCPC versus localized PCa plasma samples). 

Selected miRNAs were the ones not previously correlated with PCa progression. p values 

are considered significant when p < 0.05/11 (Bonferroni correction for multiple comparisons). 

For each parameter, we show the p value (NS, non-significant) and the absolute value of 

gene expression in the 2 sub-categories (e.g., low versus high Gleason score). For each 

sub-category, the number of patients analyzed is shown in brackets. Significant results are 

presented in bold font. Biochemical recurrence is defined as PSA ≥ 0.2 ng/mL on two 

occasions after prostatectomy.  

  

Upregulated in CRPC 
Downregulated  

in CRPC 

miR-141 miR-151-3p miR-152 miR-423-3p miR-205 

Pathological Gleason score 

p-value NS NS NS 0.002 0.004 

7 or less (87) 13.186 7.734 7.165 3.709 10.68 

8 or more (19) 13.389 8.152 6.919 4.26 7.093 

Lymph node involvement 

p-value NS NS NS 0.003 NS 

Abnormal N1 (13) 13.692 8.193 6.707 4.423 5.744 

Normal N0 (79) 13.139 7.762 7.164 3.757 10.339 

Time to tumor recurrence 

p-value 0.003 NS 0.01 NS NS 

<1 year (19) 13.641 8.101 6.736 4.192 7.218 

>1 year (81) 13.144 7.754 7.181 3.727 10.568 

PSA at diagnosis 

p-value NS NS NS 0.003 0.005 

<20 (100) 13.198 7.787 7.125 3.79 10.17 

>20 (11) 13.603 8.151 6.568 4.337 5.748 

Probability of freedom of 

biochemical recurrence  

(5 years) 

p-value <0.001 NS 0.002 NS NS 

<90% (21) 13.715 8.118 6.647 4.133 6.77 

>90% (74) 13.155 7.713 7.203 3.678 10.74 

Metastatic events 

p-value NS NS NS <0.001 <0.001 

Clinical (19) 13.149 8.145 6.466 4.529 5.045 

none (94) 13.231 7.764 7.169 3.723 10.657 

Biochemical recurrence 

event 

p-value NS <0.001 NS <0.001 0.006 

yes (27) 13.36 8.125 6.923 4.177 8.03 

no (80) 13.189 7.711 7.162 3.685 10.629 
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2.5. Discussion 

We previously demonstrated, using human metastatic versus non-metastatic PCa xenograft tumor 

tissue lines, a significant number of differentially expressed miRNAs associated with PCa  

metastasis [16]. MiRNAs originating from tumor tissue can enter the circulation and function as 

reliable biomarkers in human cancers [10]. Compared with proteins or mRNAs, it has been shown that 

miRNAs can stably exist in plasma samples even after 24 h of incubation at room temperature [10]. 

We therefore initiated this study to compare levels of circulating miRNAs in patients with  

treatment-naive localized PCa or mCRPC.  

The vast majority of differentially expressed miRNAs were found at higher levels, rather than lower 

levels, in mCRPC versus localized PCa. The reason for this is not immediately clear. One possibility is 

that many of these might be tumor-derived and, thus, reflect the increased tumor burden and 

potentially a larger number of circulating cancer cells. Among the upregulated miRNAs selected for 

more in-depth analysis, miR-141and miR-375 were the first ones reported as a circulating miRNAs  

in PCa [10,19]. Upregulation of miR-141 and miR-375 has been reported in PCa versus benign  

tissues [19]. In this study, we also observed increased expression of miR-141 and miR-375 in plasma 

from patients with mCRPC compared to those with localized PCa. 

Expression of miR-126, -151-3p, -152, -423-3p and -21 was also upregulated in mCRPC versus 

localized PCa, but the pattern of upregulation was different from that of miR-141/375, as shown by the 

lower Pearson’s correlation (Figure 2). miR-21 is an androgen receptor (AR)-regulated miRNA that 

promotes PCa growth [20]. In addition, miR-21 levels are increased in the serum of docetaxel-resistant 

patients [13]. Integrating PSA levels with miRNA-21 and miR-141 profiles significantly increases the 

positive predictive value for PCa compared to that of PSA alone [21]. We observed that both miR-126 

and miR-152, upregulated in this study, were also upregulated in metastatic versus non-metastatic PCa 

tumor tissue xenografts [16]. Interestingly, in conflict with our previous and current findings, miR-126 

has been reported to be a tumor suppressor [22], and miR-152 was shown to be decreased in PCa [23]. 

Given the heterogeneous nature of PCas, the observation that levels of tumor suppressive miRNAs are 

elevated in the plasma raises the interesting possibility that cells expressing elevated levels of these 

miRNAs are actively shed from the tumor. In contrast to the upregulated plasma miRNAs in the 

mCRPC group, the downregulated miRNAs comprised a much smaller group. In addition, the majority 

of the downregulated plasma miRNAs are downregulated in PCa tissues [16].  

Amongst the validated miRNAs upregulated in mCRPC, we observed variations in the expression 

patterns suggesting that those with highly correlated expression may be under similar transcriptional 

control or be secreted into the circulation by the same mechanisms. These variations in expression 

patterns divide mCRPC into subgroups such that expression of certain miRNAs may be linked to 

metastasis, some to the status of AR signaling (i.e., miR-141 and miR-375) and some to both. ROC 

curve analysis of miRNA expression and regression analysis of the AUC indicated that no single  

over-expressed plasma miRNA was useful for differentiating between localized PCa and mCRPC.  

In contrast, certain combinations of differentially expressed miRNAs (i.e., miR-141 + miR151-3p + 

miR-16) were almost as good as PSA levels in discriminating between mCRPC and localized PCa, and 

combining the miRNA test to the classical PSA dosage might result in a relevant sensitivity gain. 
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Those results may pave the way to larger clinical studies, assessing the feasibility of coupling miRNA 

dosage with the PSA test in the clinical setting.  

Finally, we sought to determine if the changes in plasma miRNA levels associated with disease 

progression had any relation to clinical parameters in a large patient cohort [18]. Our findings revealed 

that altered levels of three miRNAs not previously identified as blood biomarkers (miR-151-3p,  

miR-423-3p and miR-205) correlated with several clinical parameters.  

3. Experimental Section  

3.1. Human Plasma Samples 

After obtaining institutional REB approval and informed consent from all study participants, blood 

samples were drawn at the British Columbia Cancer Agency (BCCA) in Vancouver in accordance with 

the National Institute of Cancer standard operating procedures for serum and plasma processing [24]. 

Two cohorts were evaluated: 25 PCa patients with treatment-naive localized disease (localized PCa) and 

25 patients with metastatic castration resistant PCa and a rising PSA (mCRPC patients). The 

demographics of the mCRPC group have been published previously [14], but the characteristics of 

patients in both the localized cancer and mCRPC groups are provided in Table 4. All blood samples 

were collected in ethylenediaminetetraacetic acid (EDTA)-containing tubes and refrigerated. Samples 

were processed within 4 h of collection, and the resultant plasma samples were stored in a −80 °C 

freezer until RNA extraction.  

Table 4. Baseline and clinical demographics of the patients with localized PCa and 

mCRPC from whom plasma samples were obtained. 

Clinically Localized Prostate Cancer Patients (N = 25) 
Median Age = 67 years; Range = 51–82 years 

Patient Characteristics Number of Patients 
T Stage  

T1C 11 
T2a 7 
T2b 6 
T3 1 

PSA at Diagnosis  
≤10 15 

>10 to ≤20 9 
>20 1 

Gleason Score  
≤6 7 
7 15 
≥8 3 

Risk Group [25]  
Low 4 

Intermediate 17 
High 4 
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Table 4. Cont. 

mCRPC Patients (N = 25) 
Median Age = 73 years; Range = 45–86 years 

Patient Characteristics Number of Patients 
PSA  
<50 6 

>50 to ≤300 14 
≥300 5 

Metastatic Site  
Bone 17 

Lymph Node ± Other 5 
Other 3 

Therapy at Time of Sampling  
Observation * 15 (1 was not on LHRH-A) 

Complete Androgen Blockade 4 
Prednisone ± LHRH-A 4 

Abiraterone 2 

* For patients on observation, the assumption is that they were either on LHRH-A or had had  

previous orchiectomy. 

3.2. RNA Extraction, cDNA Preparation, qRT-PCR 

RNA was extracted from 200 µL of plasma using the miRNeasy mini kit (Qiagen, Toronto, 

Canada), following the manufacturer’s instructions with the following modifications: Trizol LS  

(600 µL) (Invitrogen, Burlington, Canada) was used for RNA extraction instead of Qiazol, glycogen 

was added as an RNA carrier, an extra chloroform extraction step was added following the 

phenol/chloroform extraction and an additional wash step with RPE buffer was added. The RNA was 

eluted in 50 µL of nuclease-free water, and 5 µL of each sample was pooled to yield two groups of 

samples (localized PCa and mCRPC) for assay using the human microRNA qPCR panel (Exiqon, 

Woburn, MA, USA).  

Eight microliters of each pooled RNA sample was reverse transcribed using the Universal cDNA 

Synthesis Kit (Exiqon, Woburn, MA, USA), according to the manufacturer’s instructions. The 

resultant cDNA was diluted and mixed with the microRNA LNA PCR primers and SYBR Green master 

mix (Exiqon, Woburn, MA, USA). Quantitative PCR (qPCR) was done on the ABIPrism 7900HT 

(Applied Biosystems, Streetsville, Canada), following the manufacturer’s instructions.  

RNA isolated from the prostate cell lines, BPH1 and 22Rv1, was used as a reference RNA sample 

to generate a standard curve for expression of each miRNA, as well as to calculate their relative 

expression. The quantity of each miRNA was calculated, and logarithmic values were plotted. For 

normalization of the miRNA qPCR data, we screened the expression of all miRNAs represented in the 

panel and selected the miRNA with the minimal variation between the 2 groups (mir-30e). Mir-30e 

stability was confirmed by qPCR and compared to the levels of mir-16, which is frequently used as a 

reference miRNA. Based on this analysis, we selected mir-30e as an internal control, since mir-30e 

expression was very stable with no significant differences between the groups in a Student’s t-test 

(Figure S1).  



Int. J. Mol. Sci. 2013, 14 7768 

 

 

3.3. Analysis of Differentially Expressed miRNAs in Human Tumor Tissues 

We determined whether the miRNAs differentially expressed in plasma also had altered expression 

levels in PCa tissues analyzed in a previously published dataset [18]. The raw data was obtained from 

GEO (accession number GSE21036) and converted to a Z-score. A Z-score ratio of greater than 1.96 

between primary and metastatic PCa groups was considered significantly different. We also compared 

the differentially expressed miRNAs identified with those differentially expressed in a metastatic  

PCa xenograft [16].  

3.4. Statistical Analysis 

The correlation between pairs of miRNA expression levels was evaluated using Pearson’s 

correlation [26]. Logistic regression analysis was done using the glm package of R [27] and calculated 

leave-one-out cross-validation (LOOCV) using cv.glm for selecting the best combination. Principle 

component analysis (PCA) was also carried out using R. All other statistical analyses (Mann-Whitney 

U test, student’s t-test, ROC curve and AUC) were carried out using GraphPad Prism.  

4. Conclusions  

In this study, we compared plasma levels of miRNAs in localized PCa versus mCRPC and 

identified selected combinations of miRNAs that appear to be suitable for differentiating localized PCa 

and mCRPC. Larger patient cohorts are required to confirm their potential utility as biomarkers in PCa 

detection and stratification. Monitoring expression levels of plasma miRNAs may also be useful as 

predictive and prognostic biomarkers, particularly those associated with AR signalling, like miR-21, 

given the recent availability of treatments for mCRPC, like abiraterone acetate [28] and enzalutamide 

(MDV3100) [29], which target persistent AR signalling more effectively. 
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