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Abstract: Extracellular-signal regulated kinase (ERK) signaling is required for a multitude 

of physiological and patho-physiological processes. However, the identities of the proteins 

that ERK phosphorylates to elicit these responses are incompletely known. Using an 

affinity purification methodology of general utility, here we identify cytoplasmic dynein 

intermediate chain 2 (DYNC1I-2, IC-2) as a novel substrate for ERK following epidermal 

growth factor receptor stimulation of fibroblasts. IC-2 is a subunit of cytoplasmic dynein, a 

minus-end directed motor protein necessary for transport of diverse cargos along 

microtubules. Emerging data support the hypothesis that post-translational modification 
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regulates dynein but the signaling mechanisms used are currently unknown. We find that 

ERK phosphorylates IC-2 on a novel, highly conserved Serine residue proximal to the 

binding site for the p150Glued subunit of the cargo adapter dynactin. Surprisingly, neither 

constitutive phosphorylation nor a phosphomimetic substitution of this Serine influences 

binding of p150Glued to IC-2. These data suggest that ERK phosphorylation of IC-2 

regulates dynein function through mechanisms other than its interaction with dynactin.  
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1. Introduction 

The ERK cascade regulates a variety of processes including proliferation, survival, motility and 

differentiated cell function downstream of receptor tyrosine kinase stimulation. Many receptor tyrosine 

kinases, including the EGF receptor, are internalized by endocytosis following ligand-binding [1]. The 

original view was that internalization of the EGF receptor led to a termination of signaling activity and 

ultimately degradation of the activated receptor in lysosomes (reviewed in [2]). However, this notion 

was challenged by the demonstration that the majority of active EGF receptors and associated 

signaling molecules localize to early endosomes shortly after ligand stimulation [3–5], and that active 

EGF receptor interacts with Grb2 [6] and engages the major signaling pathways required for cell 

survival and mitogenesis after endocytosis [7,8]. Indeed, signaling from internalized active EGF and 

PDGF receptor signaling complexes is sufficient to stimulate cell survival [7] and proliferation [9], and 

long-range endosomal trafficking of activated neurotrophin receptors is essential for survival of 

neuronal cells [10]. In contrast, cell surface retention of the activated EGF receptor reduces the activity 

of some downstream signaling pathways, including ERK [11], and forced mislocalization of EGF 

receptor signaling to the periphery or perinuclear area alters nuclear signaling by ERK [12]. Together, 

these data are consistent with the overall hypothesis that intracellular trafficking of receptor tyrosine 

kinases on membrane bounded organelles is not simply a means to receptor degradation and signal 

termination but is essential for their signaling and physiological functions. 

Diverse observations suggest that ERK regulates movement of membrane bounded organelles along 

microtubules. A fraction of ERK has long been known to associate with microtubules [13–15] and it is 

perhaps interesting to reflect that ERK was once known as microtubule-associated protein (MAP) 

kinase [16]. Melanosomes support activation of MEK (MAP kinase or ERK, kinase) and ERK on their 

cytoplasmic surface and melanosome movement along microtubules is blocked by MEK inhibitor in 

amphibians [17,18]. The mechanism by which ERK regulates melanosome movement is unknown, but 

Olofsson and colleagues have identified the motor protein dynein as a potential target for ERK during 

the formation of cytosolic lipid droplets [19], organelles that bud from the plasma membrane, contain 

microsomal proteins, and whose formation requires microtubules and motor proteins. Of particular 

relevance, knock-out of the ERK activator MEK1 displaces late endosomes to the periphery [20,21].  

Here we identify cytoplasmic dynein intermediate chain 2 (DYNC1I-2 [22], IC-2) as a novel ERK 

substrate. We identify the major site of EGF-stimulated intermediate chain phosphorylation as Serine 

81 and show that ERK activity is necessary and sufficient for its phosphorylation. Dynein intermediate 
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chain 2 is robustly and dynamically phosphorylated in response to EGF stimulation. Given its 

proximity to phosphorylation sites shown to inhibit binding to the cargo adapter dynactin, we were 

surprised to find that binding to the p150Glued subunit of dynactin was unaffected by Serine 81 

phosphorylation. We hypothesize that ERK phosphorylation regulates dynein through mechanisms 

other than its interaction with dynactin.  

2. Results 

2.1. Identification of Potential ERK Substrates Using Phosphomotif-Specific Antisera 

ERK often phosphorylates substrate proteins on Serine and Threonine residues in PXSP and PXTP 

sequence motifs (where X is any amino acid) [23]. We first asked whether antisera with affinity for 

phospho PXSP and phospho PXTP motifs could blot proteins potentially phosphorylated directly by 

ERK in response to growth factor stimulation. Little phospho PXSP or phospho PXTP reactivity was 

seen in serum-deprived fibroblasts whereas a number of proteins were detected in EGF stimulated cells 

(Figure 1A). Anti-phospho PXSP and anti-phospho PXTP reactivity was inhibited by pre-treatment of 

cells with UO126, a MEK inhibitor (Figure 1A). A number of proteins were immunoprecipitated by 

anti-phospho PXSP antiserum from lysates of EGF stimulated cells and immunoprecipitation was 

blocked by prior treatment of cells with UO126 (Figure 1B). Similar data were obtained using the  

anti-phospho PXTP motif antiserum (data not shown). To extend these observations we asked if we 

could identify a known ERK substrate using this affinity purification approach. MEK1 is 

phosphorylated on Threonines 292 and 386 within PXTP motifs in response to ERK activation [24–26] 

and it was immunoprecipitated with the anti-phospho PXTP (but not anti-phospho PXSP) antiserum 

when ERK was active (Figure 1C). These data demonstrate that putative ERK substrates can be 

immunopurified with the phosphomotif-specific antisera. 

2.2. Identification of Dynein Intermediate Chain 2 as a Potential ERK Substrate 

To identify new ERK substrates we treated cells with EGF for 30 min. with or without prior 

treatment with UO126. Anti-phospho PXSP immunoprecipitates were made from each lysate, labeled 

with Cy5 and Cy3 dye respectively, combined and resolved on a single 2D gel. By comparing 

fluorescence intensities between Cy3 and Cy5 channels a number of proteins whose apparent 

abundance was substantially decreased in immunoprecipitates from UO126-treated cells were 

identified. One spot much less abundant in the UO126-treated sample (Figure 2A) was picked, 

digested with Trypsin and identified by mass spectrometry with a high degree of confidence as the 

cytoplasmic dynein intermediate chain IC-2 (Figure 2B). To verify this identification, we blotted 

independent anti-phospho PXSP immunoprecipitates with dynein intermediate chain monoclonal 

antibody 74.1 [27]. Dynein intermediate chain was present in anti-phospho PXSP immunoprecipitates 

from EGF-stimulated WT cells, and the amount of dynein in the immunoprecipitate was reduced by 

pretreatment of cultures with UO126 (Figure 2C). To confirm the general utility of this approach, we 

performed similar experiments with anti-phospho PXTP antiserum. Two proteins whose apparent 

abundance was substantially decreased in immunoprecipitates from UO126-treated cells (Figure 2D) 

were tentatively identified by mass spectrometry as SEC31A and RNA polymerase II-associated 
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protein 2 (RPAP2, data not shown). These data are evidence that this affinity purification approach can 

identify potential ERK substrates with novel functions.  

Figure 1. (A) Phospho-motif antisera recognize potential ERK substrates. Serum-starved 

cultures were pre-treated with or without the MEK inhibitor UO126 before stimulation 

with EGF for 10 min. Lysates were blotted with anti-phospho PXSP, anti-phospho PXTP 

or anti-phospho ERK antisera. (B), (C) Phospho-motif antisera immunoprecipitate known 

and potentially novel ERK substrates. Lysates prepared as in (A) were immunoprecipitated 

(IP) with anti-phospho PXSP (B) or anti-phospho PXTP (C) antisera. Immunoprecipitates 

were blotted with anti-phospho PXSP antiserum (B) or with antiserum to MEK1, a known 

ERK substrate (C). 

 

There are several isoforms of the vertebrate cytoplasmic dynein intermediate chain, the product of 

two genes and alternative splicing [28–31]. However, it is most likely that IC-2C is the isoform  

present in these cells, as all of the fibroblastic cell lines examined to date express only this  

isoform [28,30,32,33]. In addition our mass spectrometry analyses failed to detect the peptides that 

would unambiguously identify the other IC-2 isoforms, IC-2A and IC-2B, in the immunoprecipitates 

(shown in Figure 3A). This is consistent with observations that the only cultured cells in which IC-2B 

was found were neuronal cells, and that IC-2A was found only in brain tissue [28,29,34–36]. Similarly, 

no peptides from intermediate chain 1 were observed in our mass spectra (data not shown). This is 

consistent with the observations that IC-1 isoforms have only been found in cultured primary neurons 

or tissue from brain, testis, or ovary [28–32,37].  

The migration of the IC-2C band shifted to a slightly higher apparent molecular weight in response 

to EGF stimulation, and this mobility shift was blocked by pre-treatment with UO126 (Figure 2E). 

While not definitive, UO126-sensitive mobility shifting is consistent with ERK stimulating 

phosphorylation of IC-2C. In repeated time course experiments we found that mobility shifting of  

IC-2C was maintained for at least 2 hrs post EGF-stimulation (Figure 2E; data not shown). 

Interestingly, mobility shifting at the 2 hr time point could be blocked by UO126 given either  

before or significantly after EGF stimulation (Figure 2E), indicating that initial MEK-dependent 
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phosphorylation of IC-2C is not indefinitely stable, but rather that dynamic MEK-dependent 

dephosphorylation/phosphorylation of IC-2C occurs post EGF-stimulation. We conclude that  

IC-2C is a MEK-dependent substrate phosphorylated on ERK consensus (PXSP) motifs following  

EGF stimulation.  

Figure 2. (A) 2D DIGE identification of a candidate ERK substrate. Proteins 

phosphorylated on PXSP motifs were immunoprecipitated from cultures treated with EGF 

with or without prior treatment with the MEK inhibitor UO126. Immune complexes were 

labeled with Cy5 or Cy3 respectively, combined and resolved on a single 2D gel. Proteins 

whose immunoprecipitation by anti-phospho PXSP antiserum was substantially inhibited 

by pre-treatment with UO126 (i.e., Cy3 fluorescence > Cy5 fluorescence) were picked for 

identification. Shown are the Cy3 and Cy5 fluorescence images and quantitation for the 

protein subsequently identified as dynein intermediate chain 2C; (B) Identification of 

dynein intermediate chain 2C (IC-2C). Following digestion with Trypsin, the indicated 

peptides (red) were identified by MS/MS (see Methods). The highlighted sequence 

identifies the PXSP motif presumably recognized by the anti-phospho PXSP antiserum; 

(C) Independent identification of dynein intermediate chain in phospho PXSP motif 

immunoprecipitates. Phospho PXSP immunoprecipitates were blotted with monoclonal 

antibody against dynein intermediate chains (top). Pre-treatment with UO126 inhibits both 

ERK phosphorylation (bottom) and immunoprecipitation of dynein intermediate chain. 

Note the EGF-stimulated, UO126-sensitive mobility shift of dynein intermediate chain in 

the lysates (middle panel); (D) Tentative identification of potential ERK substrates in 

phospho PXTP immunoprecipitates; see (A); (E) Dynamic phosphorylation of dynein 

intermediate chain following EGF stimulation. Dynein intermediate chain is mobility 

shifted following EGF stimulation for 30 min. or 2 hr (compare lanes 1, 3 and 5). As 

expected, mobility shifting can be inhibited by pre-treatment with UO126 (lanes 2, 4 and 

6) or by adding UO126 1 hr post-EGF stimulation. 
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Figure 2. Cont.  

 

2.3. EGF Stimulates Phosphorylation of Serine 81 of Dynein Intermediate Chain 2C 

IC-2C contains a single PXSP motif (PMSP, residues 79–82; Figure 2B) conserved in available 

vertebrate IC-1 and IC-2 sequences (Figure 3A). We sought to determine if EGF stimulates 

phosphorylation of Serine 81 within this motif. IC-2C was immunoprecipitated with monoclonal 

antibody 74.1 under stringent conditions and digested with Trypsin, endoproteinase Glu-C or 

endoproteinase Asp-N. Resulting peptides were analyzed by LC/MS and MS/MS as described in 

Methods. Digestion with Trypsin, Glu-C and Asp-N yielded 78% amino acid coverage of IC-2C from 

EGF-stimulated cells (Figure 3B) and similar coverage in the unstimulated sample (data not shown). 

Serine 81 was identified as the predominant site of phosphorylation in EGF stimulated cells as 

determined by the ratio of the abundance of phosphorylated to non-phosphorylated species (Table 1); 

five other phosphorylation sites were identified at much lower abundance (Table 1). Figure 3C shows 

the MS/MS spectrum for the tryptic peptide containing Serine 81 (underlined in Figure 3B). Selected 

ion chromatograms (Figure 3D, inset) were used to estimate the ratio of phosphorylated S81 peptide to 

non-phosphorylated S81 peptide (+P/−P) in control and EGF-stimulated samples following either 

Trypsin or Asp-N digestion (Table 2). Serine 81 phosphorylation increased 5.5–6 fold following  

30 min. EGF stimulation (Table 2).  
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Figure 3. (A) Serine 81 lies within a PXSP (highlighted in red) motif conserved in 

vertebrates. Aligned are partial primary sequences from rat (Rattus norvegicus), mouse 

(Mus musculus), human (Homo sapiens), zebra finch (Taeniopygia guttata), chicken 

(Gallus gallus), Western clawed frog (Xenopus tropicalis) and zebrafish (Danio rerio);  

(B) IC-2C was purified from EGF stimulated cultures and subject to digestion with 

Trypsin, endoproteinase Asp-N or endoproteinase Glu-C. Residues identified by mass 

spectrometry are shown in red (~78% sequence coverage). The tryptic peptide containing 

Serine 81 is underlined; (C) MS/MS spectrum for the tryptic peptide containing Serine 81. 

The theoretical b- and y-ions are shown and those found experimentally are underlined; a 

double underline indicates that the doubly charged ion was also seen. These ions are also 

shown on the spectrum along with several brackets indicating prominent water losses. The 

spectrum is magnified 5X except for the y9, y9
2+ and b18

2+ ions which are extremely intense 

proline directed fragments; (D) The parent m/z for the S81 phosphorylated peptide 

producing a M+H+ of 2863.3536 (1.1 ppm). This particular peptide was seen in four forms 

due to the presence of two Methionine residues. Selected ion chromatograms (inset) were 

used to estimate the ratio of phosphorylated S81 peptide to non-phosphorylated S81 

peptide in control and EGF-stimulated samples following either Trypsin or Asp-N 

digestion (see Table 2).  
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Figure 3. Cont. 
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Table 1. Identification of six phosphorylation sites in IC-2 from EGF-stimulated cells.  

Protease Digest IC-2C peptide +P/−P ratio, EGF 30 min 

Trypsin EAEALLQSMGLTTDSPIVPPPMSPSSK (S81) 4.873 
Endo AspN DSPIVPPPMSPSSKSVSTPSEAGSQ (S81) 3.318 

Trypsin SVSTPSEAGSQDSGDGAVGSR (T89/S95/S98 *) 0.006 
Endo AspN DDVATPKPPVEPEEEKTLKKDEEN (T154) 0.080 
Endo GluC TQTPVTAQPKEDEEEEDDVATPKPPVEPEEE (T154) 0.019 
Endo GluC AAVSVQE (S51) 0.005 

Phosphopeptides were identified by mass spectrometry as described in Materials and Methods. The 

abundance of the phospho- (+P) and corresponding non-phosphopeptides (−P) was determined following  

30 min. EGF stimulation. * Phosphoisomers of this peptide were incompletely resolved by chromatography 

and hence they are considered as a group.  

Table 2. Identification of Serine 81 phosphorylation after Trypsin or endo Asp-N digestion.  

Protease Digest IC-2C S81 peptide  Control EGF 

Trypsin     
 EAE….  1.74 × 106 1.45 × 106 
 EAEmM….  1.39 × 106 8.57 × 106 
 EAEMm….  2.68 × 106 2.58 × 106 
 EAEmm….  5.62 × 106 4.75 × 106 
  Total 1.14 × 107 9.64 × 106 
 EAE p….  1.60 × 106 8.66 × 106 
 EAEmM p….  1.21 × 106 5.50 × 106 
 EAEMm p….  2.35 × 106 1.22 × 106 
 EAEmm p….  4.10 × 106 2.06 × 106 
  Total 9.26 × 106 4.70 × 107 
  +P/−P 0.81 4.87 
  Fold change 1 6.01 
     

Endo Asp-N     
 DSP….  1.67 × 107 1.61 × 106 
 DSPm….  2.98 × 107 9.66 × 106 
  Total 4.65 × 107 1.13 × 107 
 DSP p….  8.27 × 106 7.69 × 106 
 DSPm p….  1.97 × 107 2.97 × 107 
  Total 2.80 × 107 3.74 × 107 
  +P/−P 0.60 3.32 
  Fold change 1 5.52 

The abundance of peptides containing phospho- and non-phospho Serine 81 was determined. M and m 

methionine and oxidized methionine residues respectively; since the Tryptic peptide containing Serine 81 

contains two methionine residues, four peptide masses are possible for the phosphorylated (p) species, and 

four are possible for the non-phospho species. The ratio of the abundance of the phospho and non-phospho 

forms was then compared between control and EGF treatment conditions to give an approximate fold 

induction in phosphorylation. 
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2.4. ERK Activity Is Necessary and Sufficient to Stimulate Serine 81 Phosphorylation of Dynein 

Intermediate Chain 2C 

To test whether ERK activity is necessary and sufficient for EGF stimulated IC-2C 

phosphorylation, we co-transfected mRFP-tagged IC-2C with either empty vector or constitutively 

active (ca) MEK1 in which the sites of activating phosphorylation, Serines 218 and 222, are mutated to 

phosphomimetic aspartate residues [25]. Cells were deprived of serum, treated with or without UO126 

and stimulated with EGF for 10 min. Anti-phospho Serine 81 antibody [38] was used to detect  

mRFP-IC-2C phosphorylated on Serine 81. Serine 81 of mRFP-IC-2C was phosphorylated at low but 

detectable levels in unstimulated cells and induced by EGF (Figure 4). Pre-treatment with UO126 

prevented EGF-stimulated Serine 81 phosphorylation (Figure 4). In contrast, co-transfection with 

constitutively active (ca) MEK1 induced robust Serine 81 phosphorylation in the absence of EGF 

stimulation (Figure 4). Mutation of Serine 81 to alanine eliminated reactivity with the anti-phospho 

Serine 81 antibody, confirming its specificity. These observations indicate that MEK and by extension 

ERK activity are necessary and sufficient for phosphorylation of IC-2C on Serine 81. In a companion 

paper we verified direct phosphorylation of recombinant IC-2C with recombinant active ERK1 and 

Mg2+/ATP in vitro. ERK1 phosphorylated IC-2C on Serine 81 in a time-dependent manner as 

measured by blotting with the anti-phospho Serine 81 antiserum [38].  

Figure 4. MEK activity is necessary and sufficient to stimulate phosphorylation of IC-2C 

Serine 81. Cells were transiently transfected with the indicated mRFP-tagged IC-2C 

construct with or without HA-tagged constitutively active MEK1. Cultures were  

serum-starved before treatment with UO126 and EGF as indicated. Anti-mRFP 

immunoprecipitates were blotted with anti-phospho Serine 81 IC-2C antiserum, stripped, 

and blotted with anti-dynein intermediate chain antibody. EGF stimulates phosphorylation 

of wild type IC-2C on Serine 81, and this phosphorylation is substantially inhibited by 

prior treatment with UO126. Expression of constitutively active MEK1 renders 

phosphorylation independent of EGF stimulation. Note that the apparent differences in  

IC-2C loading signal result from incomplete removal of the phospho-S81 antiserum.  

 



Int. J. Mol. Sci. 2013, 14 3605 

 

Figure 5. (A) Mimicking S81 phosphorylation has no effect on the ability of recombinant 

IC-2C to bind p150Glued. Increasing amounts (0.5–12.5 μg) of recombinant  

polyhistidine-tagged wild type (WT) and S81D IC-2C were incubated with brain lysate and 

bound proteins recovered by pull down and imidazole elution from Nickel agarose beads; 

empty Nickel agarose beads (Con) served as a negative control. 1% of the starting lysate is 

shown (Lys) together with 1% of the supernatants following control bead pull down (Con) 

and following pull down with 12.5 μg of either wild type or S81D IC-2C. Multiple p150 

bands are routinely observed when dynactin from brain lysates is analyzed [36]. They are 

known to be products of alternative splicing [39] and/or phosphorylation [40,41]; (B) A375 

melanoma cells exhibit constitutive ERK-dependent phosphorylation of IC-2C. A375 cells 

were serum deprived overnight before treatment with either DMSO vehicle (D) for 3 h, or 

UO126 for 1–3 h (lanes 1–4). Phosphorylation of IC-2C on S81 is lost in a time-dependent 

manner. Pre-incubation with a distinct MEK inhibitor (PD98058) similarly inhibited IC-2C 

phosphorylation (lane 8) whereas inhibitors of p38 (SB203580; lane 7) and JNK 

(SP600125; lane 9) were without substantial effect; (C) Phosphorylation of S81 is not 

required for p150Glued binding. A375 cells were transiently transfected with mRFP-tagged 

IC-2C constructs, and P2 membrane fractions were immunoprecipitated using anti-RFP 

antiserum. Similar amounts of p150Glued were co-immunoprecipitated with wild type and 

S81A IC-2C.  

 

2.5. Phosphorylation Does Not Regulate Binding of Dynein Intermediate Chain to p150Glued 

Dynein engages many cargoes through an interaction between its intermediate chains and the 

p150Glued subunit of the dynactin cargo adapter complex [42]. Since Serine 81 is proximal to sequences 
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mediating the intermediate chain-dynactin interaction, we asked whether phosphorylation alters 

p150Glued binding. First we asked if mimicking S81 phosphorylation modulates binding of p150Glued to 

recombinant IC-2C protein. Bacterially expressed (non-phosphorylated) wild type and S81D IC-2C 

proteins were equally able to bind p150Glued in these pull-down assays (Figure 5A). Second, we asked 

if phosphorylation in situ would regulate co-immunoprecipitation of p150Glued with IC-2C. A375 

melanoma cells express an oncogenic form of B-Raf that causes constitutive activation of ERK [43]. 

We found that endogenous dynein intermediate chain(s) are constitutively phosphorylated on Serine 81 

in A375 cells, and that phosphorylation can be substantially reduced by treating cultures with the MEK 

inhibitors UO126 or PD90859 but not with inhibitors of JNK or p38 MAPK (Figure 5B), confirming 

that phosphorylation is largely mediated by ERK. p150Glued co-immunoprecipitated equally well with 

mRFP-tagged wild type or S81A IC-2C from transiently transfected A375 melanoma cells, suggesting 

that Serine 81 phosphorylation is without effect on the IC-2C-dynactin interaction (Figure 5C). These 

data suggest that phosphorylation at S81 does not markedly alter the affinity of the intermediate chain 

for p150Glued. 

Figure 6. (A) Phospho S81 IC-2C fractionates with membrane bound organelles.  

Serum-starved REF cells were left untreated or stimulated with EGF for 30 or 60 min. 

before homogenization. Extracts were fractionated as described in Methods and  

normalized fractions were probed for phospho IC-2C. Approximately 40% of Serine  

81-phosphorylated IC-2C is found in the high speed pellet (P2) after EGF stimulation.  

* Denotes a non-specific protein that does not blot or immunoprecipitate with anti-dynein 

intermediate chain antibody; (B) MEK activity and S81 IC-2C phosphorylation are 

dispensable for fractionation of IC-2C in the high speed pellet. Cells were fractionated as 

described in (a) except cultures were pre-treated with or without the MEK inhibitor 

UO126. UO126 substantially inhibits S81 phosphorylation but does not prevent IC-2C 

from fractionating in P2. *, See (A).  
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2.6. A Portion of Phospho Serine 81 Dynein Intermediate Chain Fractionates with Membrane  

Bound Organelles 

Dynein is instrumental in the intracellular trafficking of membrane-bound cargos [42]. To ask 

whether Serine 81 phosphorylated IC-2C associates with membrane bound organelles we performed 

subcellular fractionation experiments. Serum-deprived cells were treated with or without EGF for time 

periods up to 60 min. before homogenization and fractionation as described [44,45]. We found that 

approximately 40% of IC-2C phosphorylated on Serine 81 was recovered in a high speed postnuclear 

pellet (P2; Figure 6A). The remainder of the phospho-intermediate chain was largely found in the high 

speed supernatant (S2; ~40%) with a small portion fractionating in the low speed pellet (P1; Figure 6A) 

containing cell ghosts and nuclei. Pre-treatment with the MEK inhibitor UO126 substantially inhibits 

Serine 81 phosphorylation without detectably altering the level of IC-2C recovered in P2 (Figure 6B).  

3. Discussion 

Intracellular trafficking of receptor tyrosine kinases involves the actions of at least three motor 

protein complexes: the kinesin and myosin families and cytoplasmic dynein (reviewed in [46]). The 

dynein complex is a minus-end directed microtubule motor that traffics membrane associated cargo 

(including Golgi apparatus, lysosomes, and endosomes) towards the microtubule organizing center in 

the perinuclear region of the cell [47–49]. Depolymerization of microtubules or inhibition of dynein 

function attenuates retrograde delivery of Trk receptors activated in axons to the cell body, and inhibits 

cell survival [10]. Similarly, genetic interactions between dynein and EGF receptor in Drosophila 

support the idea that dynein is important for EGF receptor function in eye development [50], and 

indeed inhibition of dynein function inhibits the movement of EGF-containing early endosomes 

towards the perinuclear region of HeLa cells [51] and redistributes late endosomes to the cell  

periphery [52]. Furthermore, dynein activity is important for the sorting of internalized EGF receptor, 

destined for degradation, from the recycling transferrin receptor [51]. From these experiments it is 

clear that dynein regulates tyrosine kinase receptor fate. Importantly, it is now becoming apparent that 

receptor signaling regulates dynein function. Thus, dynein-dependent retrograde trafficking of the 

TrkB receptor is dependent upon receptor kinase activity [10], and trafficking of TrkA signaling 

endosomes is promoted by NGF stimulation [37]. These elegant studies demonstrate essential roles for 

the dynein/microtubule system in the trafficking of tyrosine kinase receptor signaling endosomes, and 

a reciprocal role for the receptors in regulating dynein-mediated trafficking. However, it is not known 

which receptor signaling pathways regulate receptor movement, and how these regulatory influences 

modify dynein function.  

Each cytoplasmic dynein complex has two heavy chains that contain a motor domain encoding 

ATPase units and microtubule binding elements, and a smaller N-terminal domain that encodes the 

cargo binding function of the complex. Most of the dynein cargo binding subunits bind to the base of 

the molecule. Thus, the intermediate and light intermediate chains bind as dimers to the base of the 

heavy chain, while the light chain dimers bind the intermediate chains. While it is clear that the dynein 

heavy chain functions as an ATP-dependent microtubule motor [48,49], the function of the 

intermediate and light chains is only now coming into focus. There are two dynein intermediate chain 
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genes, but alternative splicing yields at least six intermediate chain isoforms [37] that are differentially 

expressed according to tissue and/or physiological state [34,53]. This diversity of expression is 

proposed to contribute to cargo selectivity, and indeed dynein complexes containing distinct 

intermediate chains are differentially localized in optic nerve axons [36] and specific intermediate 

chain isoforms transport TrkB signaling endosomes [44]. However, some cell types, including 

fibroblasts and glia, express only intermediate chain 2 splice form C [29,30,33,37]. In these cases, 

cargo binding specificity must result in part from differential regulation of the common intermediate 

chain. Intermediate chains are known to be phosphorylated [27,37], and phosphorylation can be 

regulated by receptor stimulation [34,54]. Relatively little is known regarding the identity or regulatory 

role of such phosphorylation sites.  

3.1. Identification of Dynein Intermediate Chain 2C as an ERK Substrate 

To identify new targets for ERK phosphorylation in the context of EGF stimulation we used Cell 

Signaling Technology, Inc.’s PTMScan technology. This approach uses antibodies to phosphorylated 

kinase consensus motifs as a means to identify substrates. Using antisera that recognize 

phosphorylated Serine or Threonine residues in consensus motifs for ERK phosphorylation (PXSP and 

PXTP, where X is any amino acid [23]), initial experiments (Figure 1) demonstrated that we could blot 

and immunoprecipitate candidate and known ERK substrates, and importantly, that antibody reactivity 

was largely dependent upon MEK activity. Since other proline-directed kinases (e.g., cyclin-dependent 

kinases) may utilize these phosphorylation motifs, we combined anti-phospho PXSP immunoprecipitation 

with prior treatment of EGF-stimulated cultures with or without the MEK inhibitor UO126. 

Immunoprecipitates from UO126- and vehicle-treated cells were individually labeled with Cy5 and 

Cy3 respectively before being combined and resolved on a single 2D gel. By comparing fluorescence 

intensities between Cy3 and Cy5 channels, a number of proteins whose apparent abundance was 

substantially decreased in UO126-treated cells were identified. One such MEK-dependent candidate 

was identified by mass spectrometry with a high degree of confidence as dynein intermediate chain 2C 

(Figure 2).  

3.2. Dynein Intermediate Chain 2C Is Phosphorylated on Serine 81  

Inspection of the IC-2C sequence reveals a single PXSP motif (PMSP) encompassing Serine 81 

(Figure 2) that is invariant in available vertebrates IC-2 and IC-1 sequences (Figure 3A). Using a 

combination of Trypsin, endoproteinase AspN and endoproteinase GluC digests combined with mass 

spectrometry, we identified Serine 81 as the predominant site of EGF stimulated phosphorylation. 

Calculations were performed to determine changes in phosphorylation between samples. Serine 81 

phosphorylation rises ~6 fold following 30 min. EGF stimulation, and then returns to baseline by 4 h 

EGF stimulation (Table 2 and data not shown). These data are in good agreement with data obtained 

using the phospho S81 IC-2C antiserum (Figure 4).  

In addition to the predominant site of phosphorylation at Serine 81, we identified five additional 

minor (low +P/−P ratio) phosphorylation sites in mouse IC-2C: Serine 51, Threonine 89, Serine 95, 

Serine 98 and Threonine 154 (Table 1). The weakness of these sites and in cases their overlapping 

chromatography precluded definitive conclusions regarding their regulation by EGF. Threonine 89 was 
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previously identified as a site of phosphorylation in mitotic cells [33]. Of potential interest, Serine 51 

is flanked N- and C-terminal by a number of negatively charged residues making it a candidate for 

phosphorylation by casein kinase II [55]. Casein kinase II was previously shown to associate with and 

in vitro phosphorylate dynein intermediate chain on an unknown site(s) [56] but to our knowledge it is 

not known if this enzyme phosphorylates dynein in cells. Serine 51 also resides within a potential 

consensus for phosphorylation by Casein kinase I [55] and Casein kinase I was recently shown to 

phosphorylate Xenopus dynein intermediate chain and stimulate minus-end directed movement of 

melanophores [57]. Serines 95 and 98 are both found within SXD motifs; such motifs have been found 

to be substrates for Ca2+/calmodulin-dependent kinase II in some proteins [42,58,59]. Further work is 

necessary to determine if these sites and/or kinases are physiologic regulators of dynein. Notably, we did 

not detect phosphorylation of Serine 84 [32] which was previously implicated in Golgi distribution [32]. 

3.3. ERK Activity Is Necessary and Sufficient to Phosphorylate Serine 81 

Using MEK inhibitor and a constitutively active form of MEK1 we determined that MEK activity is 

necessary and sufficient for phosphorylation of IC-2C in fibroblasts (Figure 4). Similarly, intermediate 

chains are constitutively phosphorylated in a MEK-dependent manner in A375 melanoma cells 

endogenously expressing an oncogenic form of B-Raf (Figure 5B). In vitro reconstitution assays 

verified that ERK directly phosphorylates IC-2C on Serine 81 [38]. Although our data make clear that 

ERK is largely responsible for phosphorylating IC-2C on Serine 81 after EGF stimulation, two 

observations warrant further consideration. First, while pre-treatment with UO126 inhibits  

EGF-stimulated Serine 81 phosphorylation as expected, we were surprised to find that UO126 added 

significantly after EGF stimulation also inhibited IC-2C phosphorylation. One possibility is that  

initial IC-2C phosphorylation is unstable, and that both dephosphorylation and MEK-dependent 

phosphorylation of IC-2C occur over the time course. However, we cannot rule out an alternate 

mechanism whereby MEK or ERK inhibit a phosphatase that dephosphorylates IC-2C. Adding UO126 

after EGF stimulation would be predicted to elevate this phosphatase activity and cause the observed 

dephosphorylation of IC-2C.  

Second, it should be noted that neither serum-starvation nor UO126 completely eliminate reactivity 

with the phospho Serine 81 antibody in fibroblasts, while mutation of Serine 81 to Alanine does. 

Similarly, MEK inhibitors do not entirely eliminate S81 phosphorylation of endogenous intermediate 

chain(s) in A375 melanoma cells. These observations indicate that some intermediate chain is likely 

phosphorylated on Serine 81 by kinases distinct from ERK and/or resides in compartments not 

accessed by the MEK inhibitors. 

3.4. Association of Phospho-S81 IC-2C with Membrane Bounded Organelles 

We postulated that IC S81 phosphorylation triggered by EGF stimulation of ERK might be 

important for the recruitment of dynein to EGF receptor signaling endosomes. This is consistent with 

the observations that MEK1 is required for perinuclear localization of late endosomes containing 

EGFR [20] and that S81 phosphorylation triggered by neurotrophin binding to Trk receptors is 

necessary for dynein binding to Trk containing signaling endosomes but not mitochondria [38]. In 

efforts to test this hypothesis we found that pre-treatment of cells with UO126 largely eliminated  
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EGF-stimulated S81 phosphorylation and had no discernible effect on the fractionation pattern of total  

IC-2C. This observation was consistent with the lack of correlation of IC phosphorylation with dynein 

association with the total membrane fraction observed when Trk containing signaling endosomes were 

purified in neurons [38]. It is most likely due to the relatively small contribution that EGFR signaling 

endosomes make to this total membrane fraction, and we further found that in REF52 cells the high 

speed pellet material fraction contained only a small (and variable) proportion of total EGF receptor, 

the majority of which fractionated in the low speed pellet. Unfortunately, our inability to consistently 

purify the EGF receptor-containing organelles from REF52 cells obstructed our efforts to test the 

hypothesis further by characterizing this class of organelles (data not shown). It thus remains to be 

shown if S81 phosphorylation is the general mechanism for recruitment of dynein to receptor  

signaling endosomes. 

3.5. Serine 81 Phosphorylation Is without Effect on p150Glued Binding 

Dynactin is thought to be important in dynein binding to many cargos (reviewed in [60]). This 

interaction is mediated by the p150Glued subunit of dynactin which binds directly to the N-terminus of 

dynein intermediate chain. Previously reported sites of dynein phosphorylation (Serine 84 and 

Threonine 89) proximal to the p150Glued binding site are reported to inhibit the IC-2/p150Glued 

interaction in gel overlay assays [32,33] and indeed exogenous expression of the S84D 

phosphomimetic mutant alters Golgi organization [32,61]. Interestingly however, the S84D mutation 

has a variable effect on the distribution of late endosomes [32,61] indicating that undiscovered 

regulatory inputs control other dynein-organelle interactions. Given its proximity to Serine 84, 

Threonine 89 and the p150Glued binding site, we reasoned that Serine 81 phosphorylation might also 

modulate p150Glued binding. Since gel overlay and solution binding assays have yielded contradictory 

results [32,61], we chose to use solution binding assays which are more likely to resemble binding 

conditions in the cytoplasm. Surprisingly, we found no evidence that wild type and phospho-deficient 

(S81A) IC-2C differed in their ability to co-immunoprecipitate p150Glued from the high speed pellet 

material of malignant melanoma cells exhibiting constitutive ERK-dependent phosphorylation of  

IC-2C. Similarly, recombinant (dephospho) wild type and phosphomimetic S81D IC-2C did not 

detectably differ in their binding to p150Glued in pull-down assays. These observations are in agreement 

with those of Vaughan and colleagues who, before our formal demonstration of phosphorylation of 

Serine 81, also found an S81D mutant to be without effect on p150Glued binding in gel overlay  

assays [32]. While it is possible that the aspartate substitution fails to fully mimic phosphorylation (as 

is the case for the T89D mutant [33]), together these data suggest that Serine 81 phosphorylation does 

not regulate p150Glued binding to IC-2C. We hypothesize that Serine 81 phosphorylation might recruit 

dynein to receptor signaling endosomes by engaging a novel cargo adapter, much like Threonine 89 

phosphorylation promotes dynein binding to kinetochores via zw10 [33].  

3.6. Is Serine 81 Phosphorylation a Universal and Selective Mechanism for Receptor Tyrosine  

Kinase Trafficking?  

The retrograde movement of Trk-containing endosomes is important for axonal and neuronal 

survival [10]. Trk receptor activity has been shown to be required for this movement, and we recently 
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demonstrated that neurotrophin stimulation of neurons results in MEK-dependent phosphorylation of 

dynein intermediate chains 1 and 2 on Serine 81 [38]. ERK phosphorylated intermediate chains 

preferentially associate with Trk-and Rab7-containing organelles, but not with mitochondria. 

Importantly, expression of non-phosphorylatable intermediate chain 1B reduced nerve growth factor 

(NGF)-dependent survival of sympathetic neurons, establishing that dynein phosphorylation is not 

only important for binding to Trk-containing organelles, but for their retrograde Trk transport. 

Similarly, the retrograde transport of EGF receptors is important for EGF-stimulated mitogenesis in 

fibroblasts [8]; dynein function is required for perinuclear localization of EGF receptor-containing 

organelles [12]; and knock-out or inhibition of components of the ERK signaling pathway also inhibit 

appropriate localization of EGF receptor containing organelles [20,21], Our data now show that EGF, 

like NGF and brain-derived neurotrophic factor (BDNF), stimulates dynein intermediate chain 

phosphorylation on Serine 81, although technical limitations prevented us from ascertaining whether 

Serine 81-phosphorylated intermediate chains preferentially associated with EGF receptor containing 

organelles. Of importance, Serine 81 phosphorylation enhances binding of dynein to Trk- and  

Rab7-containing organelles but is without detectable effect on binding to p150Glued, implying that 

Serine 81 phosphorylated intermediate chains bind to a distinct cargo adapter(s) on receptor signaling 

organelles destined for retrograde transport. 

It will be important to determine if other receptor tyrosine kinases, and other classes of cell surface 

receptor that trigger ERK signaling, also utilize Serine 81 phosphorylation as a means to modify 

dynein. While EGF, BDNF and NGF are currently the only extracellular stimuli known to cause Serine 

81 phosphorylation, our data are consistent with the idea that these receptors utilize Serine 81 

phosphorylation as a means to target dynein intermediate chains to receptor tyrosine kinase-containing 

organelles, perhaps pointing to a universal mechanism for engaging receptor signaling organelles 

destined for retrograde transport by the dynein motor complex. Moreover, since these receptor tyrosine 

kinases continue to signal from endosomes on their intracellular journey, and it is known that the 

amplitude and kinetics of ERK activity can trigger different cell fate outcomes (for example, EGF vs. 

NGF in PC12 cells [62]), it is tempting to speculate that the duration of in situ ERK activation and 

dynein phosphorylation could determine the journey time and/or destination of such receptor  

signaling endosomes. 

While additional studies are clearly necessary to further discern the role of dynamic Serine 81 

phosphorylation in regulation of dynein function, the methodology described here is of general utility 

in identifying novel substrates for ERK in diverse contexts. 

4. Materials and Methods 

4.1. Cells 

MEK1-null fibroblasts [63] reconstituted with physiological levels of MEK1 (WT cells) or MEK1 

mutants will be described elsewhere (Pullikuth and Catling, unsubmitted). REF52 rat embryo 

fibroblasts were obtained from Dr. Tom Parsons (University of Virginia) and cultured as  

described [64]. A375 malignant melanoma cells were obtained from ATCC. 
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4.2. Plasmids 

mRFP-tagged IC-2C constructs are described elsewhere [38]. Polyhistidine tagged IC-2C in 

pET21a was a kind gift from Dr. K. Vaughan. The S81D mutation was subcloned using  

standard methods.  

4.3. Phospho-Specific Antisera 

Generation of the phospho Serine 81 IC-2C antiserum is described elsewhere [38]. We found that 

the phospho Serine 81 antibody was difficult to strip from membranes (see for instance Figure 4). 

Hence, we typically ran duplicate membranes for parallel incubation with either phospho Serine 81 

antibody or anti-intermediate chain 74.1 antibody. 

4.4. Anti-Phospho PXSP and PXTP Motif Immunoprecipitation 

Novel ERK substrates were identified under license using Cell Signaling Technology, Inc.’s 

PTMScan technology (Cell Signaling Technology, Inc., Immunoaffinity isolation of modified peptides 

from complex mixtures, U.S. Patent #7198896, 3rd April 2007 [65]; Cell Signaling Technology, Inc., 

Immunoaffinity isolation of modified peptides from complex mixtures, U.S. Patent #7300753, 27th 

November 2007 [66]). WT cells at 80% confluency were washed twice with PBS and serum starved in 

0.1% FBS for 16–18 h. Cells were pretreated with or without UO126 (25 μM, Calbiochem) for 3 h and 

stimulated with EGF (10 ng/mL, Invitrogen, Carlsbad, CA, USA) for 30 min. Cultures were lysed in 

ice cold lysis buffer (20 mM HEPES-KOH, pH 7.5, 150 mM NaCl, 5 mM MgCl2, 1% Trition X-100,  

1 mM PMSF, 3 mM benzamidine, 10 μg/mL each of leupeptin and pepstatin, 10 nM microcystin LR,  

1 mM sodium orthovanadate, 5 mM sodium pyrophosphate, 50 mM sodium fluoride), and centrifuged 

at 13,000g for 5 min. Cell lysates were precleared with 40 μL of rProtein-A Sepharose CL4B 

(Invitrogen, Carlsbad, CA, USA) for 1 h at 4 °C, and centrifuged at 600g for 5 min. Cleared 

supernatant was assayed for protein concentration with BCA kit (Pierce, Rockford, IL, USA). Two 

micrograms protein (in 1 mL volume) was incubated with anti-PXSP (15 μL) or anti-PXTP (15 μL, 

both from Lot 2, Cell Signaling Technology, Beverly, MA, USA) overnight at 4 °C. Immune 

complexes were sedimented with 40 μL of rProtein-A Sepharose CL4B for 2 h at 4 °C followed by 

two washes in lysis buffer (1 mL each time). Beads were suspended in 100 μL 2X SDS-Sample buffer, 

boiled, centrifuged and the supernatant was assayed by western blotting with anti-dynein intermediate 

chain mAb (Clone 74.1 [27]; Covance, Princeton, NJ, USA). For DIGE labeling, immune complexes 

were subsequently washed twice with water and processed as described below.  

4.5. Identification of Candidate ERK Substrates  

Anti-phospho PXSP immunoprecipitates from control and UO126-treated cells were suspended in  

7 M urea, 2 M thiourea, 4% CHAPS, 20% glycerol, 30 mM Tris, pH 8.5, prior to labeling with  

400 pmol either Cy3 (DMSO/EGF) or Cy5 (UO126/EGF) for 30 min. on ice in the dark. Reactions 

were quenched by the addition of 10 mM lysine for 10 min. on ice in the dark. This protocol results in 

minimal labeling (~1%) to minimize molecular weight shifting and results in sensitivities on the order 

~1 ng. The Cy3- and Cy5-labeled samples were combined, mixed with an equal volume of Destreak 
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Rehydration Buffer (GE Healthcare, Pittsburgh, PA, USA) and actively rehydrated into 24 cm 3–10 nL 

immobilized pH gradient (IPG) strips (GE Healthcare) for 15 h, followed by isoelectric focusing using 

an Ettan IPGphor II (GE Healthcare) for a total of 90,000 Vhrs (step 300V 1 h, gradient 1000 V 6 h, 

gradient 8000 V for 6 h, step 8000 V for 8 h and a final step 250 V for HOLD). Cysteines were 

reduced and carbamidomethylated while the proteins were equilibrated into the second-dimensional 

loading buffer by incubating the focused strips in equilibration buffer (6 M urea, 20% glycerol, 2% 

SDS, 375 mM tris, pH 8.8) supplemented with 20 mg/mL DTT for 15 min. at room temperature with 

shaking, followed by 25 mg/mL iodoacetamide in equilibration buffer for an additional 15 min. room 

temperature incubation. IPG strips are then cemented onto 2nd dimension gels using an overlay 

consisting of 0.5% agarose in SDS running buffer (25 mM Tris, 192 mM glycine, 0.1% SDS, trace of 

Bromophenol Blue). Second-dimension SDS-10% PAGE was performed using a DALTsix system (GE 

Healthcare, Pittsburgh, PA, USA) at 5 W/gel for 30 min. followed by 13 W/gel for 4 h at 25 °C. The 

Cy3 and Cy5 signals for each gel were individually imaged on a Typhoon 9400 scanner (GE 

Healthcare, Pittsburgh, PA, USA) using mutually exclusive excitation/emission wavelengths of 532nm 

(ex) and 580nm (em) for Cy3, and 633nm (ex) and 670 nm (em) for Cy5. After imaging, the gels were 

fixed (10% methanol, 7% acetic acid; 1 h), rinsed in water three times and then incubated overnight in 

SYPRO Ruby in the dark. The SYPRO Ruby post-stain allows for the correction of the unlabeled 

proteins’ migration in relation to the cognate Cy-Dye labeled proteins, and ensures accurate spot 

excision. SYPRO Ruby images were acquired on the Typhoon using 450 nm (ex) and 610 nm (em) 

filters, and re-imaged post-excision to ensure accurate spot picking. Proteins whose Cy5 fluorescence 

was decreased (i.e., whose immunoprecipitation with antiphospho PXSP antiserum was decreased 

following UO126 treatment) were identified using DeCyder software (GE Healthcare, Pittsburgh, PA, 

USA) and picked using a robotic Ettan Spot Handling Workstation (GE Healthcare, Pittsburgh, PA, 

USA). Spots were de-stained by successive changes of 20 mM ammonium bicarbonate and 50% 

acetonitrile, followed by dehydration with 100% acetonitrile (20 min.). Dehydrated gel plugs were 

digested in-gel with 8 μL 20 μg/mL porcine modified trypsin protease (Promega) in 20 mM 

ammonium bicarbonate for 6 h at 37 °C. Tryptic peptides were then extracted from the gel plugs in 

two cycles of 50% acetonitrile/0.1% trifluoroacetic acid and dried by evaporation. Peptides were 

reconstituted in 5 μL 2% acetonitrile/0.1% formic acid prior to LC-MS analysis. A Thermo LTQ-XL 

(CA) was coupled with an Eskigent nanoLC system (Framingham, MA, USA). Peptides were loaded 

on a Dionex C18 trap column and separated on a PicoFrit C18 column/emitter at 200 nL/min with 

gradient 2% acetonitrile/0.1% formic acid to 40% acetonitrile/0.1% formic acid in 20 min., to 60% 

acteonitrile in 5 min, to 90% acetonitrile in 15 min. before returning to starting solvent. The peptides 

are eluted directly into the LTQ-XL mass spectrometer. One survey scan was acquired first. The 5 

most abundant peptide ions (precursor ions) were selected for MS/MS for partial sequencing. In-house 

MASCOT 2.2 (Matrix Science, London, UK) was used to search against SWISS-PROT and NCBI 

non-redundant rodent databases (updated 6/2009) without constraining protein molecular weight or 

isoelectric point and allowing for carbamidomethylation of cysteine, partial oxidation of methionine 

residues, and one missed trypsin cleavage. The significance threshold of 5% probability (Mascot 

default) was used. Proteins with protein scores above 55 and two or more peptides with ion scores 

greater than 20 are considered matches.  
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4.6. Identification of Phosphorylation Sites in Dynein Intermediate Chain 2C 

Confluent 15 cm plates of WT cells (2 per time point) were serum deprived overnight in 

DMEM/0.1% FBS before incubation with or without 10 ng/mL EGF for 30 min. at 37 °C. Lysates 

were prepared in RIPA buffer containing protease and phosphatases inhibitors, clarified by 

centrifugation and triplicate 1.7 mg aliquots of lysate protein were immunoprecipitated with 10 μg 

anti-dynein intermediate chain antibody 74.1 [27] for 3 h at 4 °C. The mixture was re-centrifuged and 

the supernatant transferred to a clean tube containing protein A agarose. After 1 h at 4 °C, the 

immunoprecipitates were washed three times with lysis buffer before electrophoresis on an 8% gel. 

The gel was fixed in three changes of 10% acetic acid/50% methanol over 2 h, and stained with 

Coomassie Blue. After destaining, IC-2C bands were excised, transferred to a siliconized tube, washed 

and destained in 200 μL 50% methanol overnight. The gel pieces were dehydrated in acetonitrile, 

rehydrated in 30 μL of 10 mM DTT in 0.1 M ammonium bicarbonate and reduced at room temperature 

for 0.5 h. The DTT solution was removed and the sample was alkylated in 30 μL 50 mM 

iodoacetamide in 0.1 M ammonium bicarbonate at room temperature for 0.5 h. The reagent was 

removed and the gel pieces dehydrated in 100 μL acetonitrile. The acetonitrile was removed and the 

gel pieces rehydrated in 100 μL 0.1 M ammonium bicarbonate. The pieces were dehydrated in 100 μL 

acetonitrile, the acetonitrile was removed and the pieces completely dried by vacuum centrifugation. 

The gel pieces were rehydrated in 20 ng/μL of Trypsin, endoproteinase Glu-C or endoproteinase  

Asp-N in 50 mM ammonium bicarbonate on ice for 10 min. Any excess enzyme solution was removed 

and 20 μL 50 mM ammonium bicarbonate added. The sample was digested overnight at 37 °C and 

extracted in two 30 μL aliquots of 50% acetonitrile/5% formic acid. These extracts were combined and 

evaporated to 15 μL for mass spectrometry analysis.  

The LC-MS system consisted of a Thermo Electron LTQFT (Surveyor HPLC) mass spectrometer 

system with a Protana nanospray ion source interfaced to a self-packed 8 cm × 75 um i.d. Phenomenex 

Jupiter 10 μm C18 reversed-phase capillary column. 7.5 μL volumes of the extracts were injected and 

the peptides eluted from the column by an acetonitrile/0.1 M acetic acid gradient at a flow rate of  

0.5 μL/min over 1 h. The nanospray ion source was operated at 2.5 kV. The digest was analyzed by 

acquiring 1 full scan mass spectra (MS-100K, ICR) to determine peptide molecular weights followed 

by 10 product ion spectra (MS/MS-ion trap) to determine amino acid sequences. The data were 

analyzed by using the Sequest search algorithm (Bioworks 3.3.1) against mouse IC-2C. Any 

potentially phosphorylated peptides that passed minimal cutoff scores and 10ppm parent mass error 

were manually verified for identity and modification site. Once the sequence and modification site 

were verified, the data was further examined to determine all possible forms of each peptide that could 

be identified in each time point digest—nonphosphorylated, phosphorylated, missed cleavages, 

oxidized Met, acrylamide Cys, etc. Areas (phosphorylated and nonphosphorylated) for all forms of a 

peptide were determined using selected ion chromatograms from QualBrowser (Xcalibur 2.1) using 

the most abundant isotope with a mass window of +/− 0.02Da. A ratio of phosphorylated divided by 

nonphosphorylated was determined for each sample. Semi-quantitative changes in extent of 

phosphorylation were determined by comparing this ratio in the EGF-stimulated sample to the 

unstimulated sample. 
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4.7. Subcellular Fractionation 

Isolation of membrane-bound organelles was accomplished essentially as described [44,45]. 

Briefly, REF52 cells were serum-deprived overnight before treatment with or without EGF (10 ng/mL) 

for the indicated times. In some experiments UO126 was added prior to growth factor stimulation. 

Cultures were washed twice in PBS and once in cytoplasm-like buffer (CB, 38 mM each of the 

potassium salts of aspartic, gluconic, and glutamic acids; 20 mM MOPS; 5 mM reduced glutathione; 

10 mM potassium bicarbonate; 0.5 mM magnesium carbonate; 1 mM EGTA; 1 mM EDTA adjusted to 

pH 7.1 at 37 °C with potassium hydroxide). All procedures were carried out on ice or at 4 °C. Cells 

were scraped into CB, gently pelleted and resuspended in CB containing protease and phosphatases 

inhibitors. After homogenization by 8 passes through a ball bearing homogenizer (Isobiotec; 8 micron 

clearance) extract was centrifuged twice at 1000g for 10 min. to yield low speed supernatant (S1) and 

pellet (P1) fractions. The S1 fraction was subsequently centrifuged at 100,000g for 60 min. to yield the 

high speed supernatant (S2) and pellet (P2) fractions. Portions equivalent to a fixed number of cells 

were resolved on 8%–15% gradient gels. 

4.8. Recombinant Proteins and Pull down Assays 

E. coli Rosetta (DE3) pLysS (Novagen, Madison, WI, USA) harboring rat dynein intermediate 

chain 2C in pET 21a were grown to OD600 = 0.6 in 3L LB media at 37 °C. Cultures were cooled to  

30 °C and induced with 0.3 mM IPTG for 2 h. The following steps were carried out at 0–4 °C unless 

noted. Cells were lysed in TN buffer (50 mM Tris-HCl, 50 mM NaCl, pH 8.0) containing 15 mM 

imidazole and protease inhibitors by two passes through an Emulsiflex C5 (Avestin, Ottawa, Canada). 

Lysates were clarified by centrifugation at 100,000g for 60 min, and loaded onto a 1 mL HiTrap HP 

Nickel column (GE Healthcare, Pittsburgh, PA, USA). The column was washed extensively with 

TN/15 mM imidazole before elution with a linear gradient of 15–500 mM imidazole in TN. Fractions 

containing IC-2C (200–300 mM imidazole) were pooled and applied to a Q2 anion exchange column 

(BioRad, Hercules, CA, USA) equilibrated in TN before elution with a linear gradient of  

0–450 mM NaCl in TN. Fractions containing IC-2C were pooled, frozen as aliquots in liquid nitrogen 

and stored at −80 °C. Yield was approximately 0.5–1 mg per 3 L culture, of which approximately  

50%–75% was full length IC-2C protein. To determine if phosphorylation of Serine 81 modulates 

binding of IC-2C to p150Glued 0, 0.5, 2.5 and 12.5 ug of recombinant polyhistidine-tagged wild type or 

S81D IC-2C were incubated with rat brain lysate overnight, subsequently captured with Nickel agarose 

and extensively washed with FLAG buffer [67]. Bound proteins were eluted with 1 M imidazole in TN 

buffer for 1 h on ice and blotted with anti-p150Glued antiserum. 

4.9. Co-Immunoprecipitation Assays 

P2 fractions were prepared from A375 melanoma cells transfected with mRFP-tagged IC-2C 

constructs. Pellets were resuspended in cold CB buffer and immunoprecipitated with monoclonal  

anti-RFP antibody (MBL, Madison, WI, USA) for 2.5 h at 4 °C. Immune complexes were bound to 

protein G-coupled Dynabeads (Invitrogen, Carlsbad, CA, USA) and collected with a magnetic tube 

rack according to manufacturer’s instructions. After washing 3 times with cold CB buffer, bound 



Int. J. Mol. Sci. 2013, 14 3616 

 

proteins were eluted with 200 mM glycine, pH 2 for 30 min. on ice and blotted with anti-RFP (Abcam, 

Cambridge, MA, USA) and anti-p150Glued antisera (BD Biosciences, San Jose, CA, USA).  
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