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Abstract: Osteoarthritis (OA) is characterized by a loss of extracellular matrix which is 

driven by catabolic cytokines. Proteomic analysis of the OA cartilage secretome enables 

the global study of secreted proteins. These are an important class of molecules with roles 

in numerous pathological mechanisms. Although cartilage studies have identified profiles 

of secreted proteins, quantitative proteomics techniques have been implemented that would 

enable further biological questions to be addressed. To overcome this limitation, we used 

the secretome from human OA cartilage explants stimulated with IL-1β and compared proteins 

released into the media using a label-free LC-MS/MS-based strategy. We employed QconCAT 

technology to quantify specific proteins using selected reaction monitoring. A total of  

252 proteins were identified, nine were differentially expressed by IL-1 β stimulation. Selected 

protein candidates were quantified in absolute amounts using QconCAT. These findings 

confirmed a significant reduction in TIMP-1 in the secretome following IL-1β stimulation. 

Label-free and QconCAT analysis produced equivocal results indicating no effect of 

cytokine stimulation on aggrecan, cartilage oligomeric matrix protein, fibromodulin, matrix 

metalloproteinases 1 and 3 or plasminogen release. This study enabled comparative protein 

profiling and absolute quantification of proteins involved in molecular pathways pertinent 

to understanding the pathogenesis of OA. 
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1. Introduction 

Articular cartilage, an avascular connective tissue, provides a nearly frictionless bearing surface for 

transmitting and distributing mechanical loads between the bones of the skeleton [1]. The chondrocyte, 

the sole cell type [2] is embedded within an extracellular matrix (ECM) whose unique load bearing 

properties are dependent upon its structural composition and organisation particularly the interactions 

between collagens and proteoglycans [3]. Progressive articular cartilage loss leads to joint pain and 

dysfunction that is clinically identified as osteoarthritis (OA). In OA the normal equilibrium between 

matrix deposition and degradation is disrupted resulting in progressive loss of important ECM 

components, especially aggrecan and collagens.  

Mass spectrometry (MS) has emerged as an important analytical tool for protein analysis with  

MS-based proteomics enabling proteins within a sample to be identified and quantified. Cartilage 

proteomic studies have permitted the investigation of cartilage proteins in both the intact cartilage 

tissue [4,5] and the cartilage secretome [6–9] with a number of studies reporting IL-1 driven protein 

secretion from cartilage ECM [10,11]. The cartilage secretome is defined as the proteins identified in 

the media surrounding the chondrocyte or explants and includes proteins secreted or shed from the cell 

surface, plus intracellular proteins released into the supernatant due to cell lysis, apoptosis or  

necrosis [12]. In cartilage explant studies, proteins released into media by chondrocytes and ECM may 

be similar to proteins released in vivo in cartilage degradation [4]. Data from these studies has enabled 

improved understanding of OA pathogenesis [13]. An accepted method of studying matrix metabolism 

in experimental investigations of OA in vitro is alteration of the secretome by addition of  

pro-inflammatory cytokines to explants [14,15]. Indeed, cytokine stimulation of normal and OA 

cartilage explants has been used in numerous studies to initiate a catabolic response [16–18] and assess 

different facets of the degradative process. 

The two types of protein quantification are absolute quantification, which determines real amounts 

of a protein in terms of concentrations, for example, as copies per cell, and normally uses external or 

internal standards and relative quantification. The latter determines differences in protein abundance 

relative to an internal control but does not report on absolute concentrations. Within cartilage research 

there is a need for absolute quantitative MS in order to define proteins in tangible amounts. This will 

aid the understanding of and define how protein content of chondrocyte ECM alters in both ageing and 

disease. Moreover, such data will provide necessary information for mathematical modelling of 

biological systems. Although relative quantification of the cartilage secretome has been undertaken in 

numerous studies [8,19–21], these experiments focus on “discovery” proteomics and the detection of 

differentially expressed proteins. Few studies have attempted to quantify the cartilage secretome in 

exact amounts. Whilst this work has enabling biomarker discovery to progress [6,20], a more detailed 

knowledge of the quantities, interactions and dynamics of matrix components and the protease 

enzymes involved in degradation will increase our understanding of the as yet undefined mechanisms 

involved in ECM destruction typical of OA. For example, knowledge of the exact nature of protease/tissue 
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inhibitors of metalloproteinase (TIMP) will further our comprehension of OA pathogenesis, which in 

turn could aid in the discovery of treatments. Metabolic isotope labelling in culture using stable isotope 

labelling of amino acids in cell culture (SILAC) has been employed in comparative cartilage  

studies [22]. Whilst SILAC is suitable for the quantification of the same protein under different 

conditions, it is not suitable for quantification of different proteins under any conditions. Furthermore, 

such data is dimensionless leading to difficulties in interpretation. 

The two current approaches to absolute quantification are label-free and label-mediated quantification. 

Label-free methods are based on the direct measurement of the MS acquired signal. When constituent 

peptides are produced following protein digestion and are converted into ions, the most abundant 

proteins will produce the most ions and thus the greatest signal intensities [23]. This method provides 

acceptable quantification for the high abundance components of a sample but suffers at the low 

abundance range due to technical variance [24]. Stable isotope labelled quantification includes the use 

of chemically synthesized peptide standards known as AQUA peptides [25] and QconCAT [26]. 

QconCAT are artificial proteins that permit highly accurate parallel absolute quantification of large 

sets of analyte proteins [26]. These constructs are a set of mass-tagged internal standard peptides (each 

internal standard of the stable-isotope labeled reference peptide is known as a “Q-peptide”) with 

sequences unique to the proteins of interest. Multiple peptides are concatenated into a synthetic gene 

and expressed as a heterologous QconCAT protein in bacterial cultures [27,28], allowing large 

numbers of biological samples to be analyzed in a cost effective and reliable manner [29]. The proteins 

selected in this QconCAT included ECM proteins and proteases relevant to OA pathology that were of 

interest to our group. For example, the role of the membrane-bound protease MMP-16 in cartilage 

degradation is controversial [30] and of interest to us. We wished to use our QconCAT as a tool to 

quantify proteins in a number of different projects as it enables the absolute quantification of many 

proteins in a single experiment. Whilst there are commercially available enzyme linked 

immunosorbent assays (ELISA) to some of these proteins such as MMP-13, for others, such as link 

proteins, these are not available. Furthermore, QconCAT quantification has the advantages of 

sensitivity, specificity and the ability to quantify a wide dynamic range [31]. Both AQUA and 

QconCAT rely on the MS quantification of a known amount of isotope-labelled peptide standard 

relative to the otherwise identical non-labelled within an analyte peptide. This approach benefits from 

a high level of sensitivity with quantification possible to the atomole level. A number of papers have 

used QconCAT technology to quantify multiple proteins including muscle development proteins [27], 

glycolytic proteins in yeast [32], surface proteins in Schistosoma mansoni blood fluke [33], host 

response to bovine mastitis pathogens [34] and cohesion interactions in human cell lines [35]. 

The aim of this study was to develop and test a targeted quantification method for the multiplexed 

analysis of proteins involved in the pathogenesis of OA. To achieve this we have used label-free data 

to give a preliminary assessment of the OA secretome protein profile and protein abundance. We then 

used absolute quantification to validate and give absolute baseline values for a number of key matrix 

proteins. We hypothesize that there are measurable changes in protein abundance in the human OA 

secretome following cytokine stimulation that can be absolutely quantified using QconCAT.  
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2. Results  

2.1. Comparative Analysis by Mass Spectrometry  

All cartilage was graded as severe OA using a modified Mankin scoring [36] (original score proposed 

by Mankin et al. 1970) [37] with scores of between 9 and 13 out of 14. 1D-SDS-PAGE of the cartilage 

OA secretomes (Figure 1A) demonstrated no significant difference in the profiles of the control and 

IL-1β treatment using densitometry (data not shown).  

Figure 1. 1D-SDS-PAGE of the cartilage OA secretomes demonstrated little difference in 

the profiles following IL-1β treatment. (A) OA human articular cartilage explants (n = 3) 

were cultured in media supplemented with 10 ng/mL IL-1β (T) or un-supplemented  

media (C). Culture media were collected at two days for further analysis by SDS-PAGE 

and staining with Coomassie Brilliant Blue. Equal protein loading of 20 μg of protein per 

well allowed a qualitative comparison of the secretomes; (B) the most abundant proteins in 

the media marked at the positions of the bands were excised from the gel, trypsin digested, 

and the protein content of each single band was analysed using peptides identified using  

LC-MS/MS. Proteins indicated on the gel correlate to the size and are the primary protein 

identified in the corresponding gel analysis. 

 

The repertoire of proteins secreted by explants was then analysed by MS (Figure 1B). Proteins 

included in the results had a Mascot score >40 with two or more identifying peptides and a confidence 

interval of 95%. The cartilage explant secretomes contained a number of cartilage matrix proteins as 

expected, plus proteins associated with catabolic aspects of cartilage matrix turnover such as MMP-3.  
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Explant experiments were undertaken in duplicate and in-solution tryptic digestion of media was 

then performed in duplicate. This gave a total of four secretome replicates per donor per condition. We 

processed these samples for mass spectrometry as described and performed quantitative analysis with 

Progenesis™ LC-MS software. All identified features in the 2-D maps were aligned between samples, 

normalised and assigned to control or IL-1β treatment groups. ANOVA was performed on normalised 

peptide intensities and Mascot was then used to identify all features with MS/MS data against the 

UNIHUMAN database with search results implemented into the experiment file. Peptide identifications 

were merged into non-redundant protein identifications.  

2.2. Label-Free Protein Profiling of the OA Secretome 

A total of 278 proteins were identified including aggrecan, fibromodulin, cartilage oligomeric matrix 

protein, fibronectin, matrix metalloproteinase 1 and 3, link protein and plasminogen (Table S1). Gene 

ontology determined that 53% of genes were identified as “secreted” and 18% were identified as 

belonging to ECM. Of these, 242 were identified with ≥2 unique peptides.  

Nine proteins showed greater than two-fold differential expression between control and IL-1β 

stimulation groups (p < 0.05) in expression (Table 1). Four of these were increased following IL-1β 

stimulation and five were decreased.  

Table 1. A number of differentially expressed proteins were identified by Progenesis™ 

LC-MS software. Proteins shown were identified with ≥2 unique peptides and with a  

>2-fold change in normalised abundance. 

Highest Mean 

Condition 
Accession Description 

Max Fold 

Change 

ANOVA 

(p) 

Treatment 

P09341 Growth-regulated alpha protein 58.99 0.01 

P08254 Stromelysin-1 5.70 0.02 

Q61PR1 LYR motif-containing protein 5 3.89 0.03 

P01876 Ig alpha-1 chain C region 3.06 0.00 

Control 

P36222 Chitinase-3-like protein 1 9.64 0.04 

P08571 Monocyte differentiation antigen 

CD14 

4.53 0.01 

Q14UF6 Decay- accelerating factor splicing 

variant 1 

4.11 0.02 

Q5H9A7 TIMP metalloproteinase inhibitor 1 3.09 0.03 

P01034 Cystatin-C 2.40 0.05 

In order to both quantify proteins of interest and validate findings of some of the secreted proteins 

in our study, we employed QconCAT technology. 

2.3. QconCAT Protein Design, Expression and Validation  

The QconCAT containing proteins of interest to our research studies was designed with two 

peptides per protein. The QconCAT had an average mass of 58.8 kDa which included the N-terminal 

fibrinopeptide and C-terminal glufibrinopeptide (to allow quantification of the QconCAT) together 
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with a hexahistidine tag for purification. The proteins were selected with their respective accession 

numbers, peptide sequences and m/z values of the protonated molecules, and are presented in Table 3. 

Following gene synthesis into pET21a vector and successful transformation into E. coli, induction of 

expression and purification led to a recombinant protein band which migrated on SDS-PAGE with 

mobility consistent with an approximate mass of 58 kDa, indicating correct expression of the QconCAT. 

The putative QconCAT protein band excised from the gel following purification was trypsin digested 

and analysed with MALDI-TOF mass spectrometry. In total, 27 out of 40 predicted peptides from the 

product ion spectra were identified (Figure S1). Although the peptides were equimolar in proportions 

within the QconCAT, the MALDI spectra demonstrated the expected variability of ionisation between 

individual peptides. Furthermore, the peptides glufibrinopeptide and fibrinopeptide were identified, 

indicating full length expression of the QconCAT, as these peptides are positioned at the beginning 

and end of the sequence cassette. In order to further validate the QconCAT we identified Q-peptides 

using LC-MS/MS on the LTQ-Orbitrap Velos from an in-solution tryptic digestion, with 100 fmol on 

column QconCAT. MASCOT identified 91% sequence coverage of the QconCAT (data not shown). 

DGFFYFFHGTR and VARPAQLASPTR demonstrated weak fragmentation patterns during the 

identification and assembly of peptide transitions lists for SRM experiments. No miscleavages were 

identified indicating complete QconCAT proteolysis. 

A 200 mL bacterial culture, grown to a cell density of ODA600 0.6–0.8, yielded 33 μg of the QconCAT. 

The identity and chromatographic retention time of the Q-peptides from the unlabelled and labelled 

QconCAT recombinant proteins were established by preliminary tandem MS analyses of pure QconCATs. 

QconCAT peptides were labelled to 98.7%, reflecting the quality of the starting isotopes [
13

C6]Arg  

and [
13

C6]Lys.  

The linearity of the response for the QconCAT peptides was established prior to these analyses 

using labelled and unlabelled QconCAT mixed at different ratios using 50 fmol QconCAT loaded on 

column in a SRM experiment using the XEVO TQ (Figure S2).  

2.4. Peptide Choice and Detectability 

We chose two peptides per protein in an attempt to circumvent possible problems such as poor 

peptide ionisation or detectability by the mass spectrometer which would prevent quantification. For 

proteins we wished to quantify in the cartilage secretome with a SRM experiment using the QconCAT, 

a simple classification was applied to peptides as described by Brownridge et al. 2011 [38]. Peptides 

were classified for quantification purposes as A, B, C for a particular protein loading. “Type A” 

quantifications were defined as were both the QconCAT and native peptides observed. For “Type B” 

quantifications, the peptide was detected in the QconCAT but not in the native peptide, and for these 

peptides, sample protein abundance sets the limit on detection. Neither QconCAT nor native peptides are 

detected in “Type C” quantification, typically due to poor peptide fragmentation or chromatographic 

behaviour (Table 2). Of the 40 peptides composite of the QconCAT, we wished to use 30 peptides in 

order to quantify their constituent proteins within the cartilage secretome. Of these, 12 were “Type A”, 

10 were “Type B”, and eight were “Type C”. This enabled the quantification of seven proteins in our 

human OA secretome using the criterion that at least one Q-peptide per protein was detected in  

all samples. 
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Table 2. Represents peptide types as determined by SRM experiments. Q-peptides are 

classified for quantification purposes as A, B, C. “Type A” native and QconCAT peptides 

are detected. “Type B” are peptides detected for the QconCAT but not in native form and 

when neither QconCAT nor native peptides are detected a “Type C” classification is given 

(ADAMTS; A disintegrin and metalloproteinase with thrombospondin motifs). 

Protein Q-peptide amino acid sequence Peptide classification 

Aggrecan EVVLLVATEGR A 

Cartilage oligomeric matrix protein DTDLDGFPDEK A 

Cartilage oligomeric matrix protein SSTGPGEQLR A 

Fibromodulin IPPVNTNLENLYLQGNR A 

Matrix metalloproteinase-1 SQNPVQPIGPQTPK A 

Matrix metalloproteinase-3 IVNYTPDLPK A 

Metalloproteinase inhibitor 1 GFQALGDAADIR A 

Plasminogen EAQLPVIENK A 

ADAMTS1 DAEHYDTAILFTR B 

ADAMTS1 GPEVTSNAALTLR B 

ADAMTS4 FVETLVVADDK B 

ADAMTS4 NPVSLVVTR B 

ADAMTS5 LPLAAVGPAATPAQDK B 

ADAMTS5 GLVQNIDQLYSGGGK B 

Aggrecan LEGEVFFATR B 

Cathepsin D LVDQNIFSFYLSR B 

Cathepsin D YSQAVPAVTEGPIPEVLK B 

Cathepsin K SNDTLYIPEWEGR B 

Link protein GGSDSDASLVITDLTLEDYGR B 

Metalloproteinase inhibitor 1 FVGTPEVNQTTLYQR B 

Metalloproteinase inhibitor 3 WDQLTLSQR B 

Metalloproteinase inhibitor 4 GHLPLR B 

Cathepsin K VGPVSVAIDASLTSFQFYSK C 

Fibromodulin LYLDHNNLTR C 

Link Protein FYYLIHPTK C 

Matrix metalloproteinase-1 DGFFYFFHGTR C 

Matrix metalloproteinase-13 LHPQQVDAELFLTK C 

Metalloproteinase inhibitor 3 YQYLLTGR C 

Metalloproteinase inhibitor 4 LEANSQK C 

Plasminogen HSIFTPETNPR C 

2.5. Quantification of Proteins Using SRM 

SRM of multiple product ions were used for quantification as it provided a sensitive method for 

targeted analyte identification and quantitation. When possible, two transitions per peptide were used 

for quantification. Transitions were defined using Skyline software [39] and selected after monitoring 

for the greatest intensity fragments using 50 fmol QconCAT digest on the XEVO TQ. Fragmented  

y-ions were selected in order to differentiate labelled and unlabelled peptide as the C-terminal residue 

contained the isotope-labelled amino acid. In addition, to maximise specificity we selected transitions 
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whose m/z was greater than the parent ion m/z (Table S2). We were unable to identify any adequate 

transitions for quantification purposes for two peptides—VGPVSVAIDASLTSFQFYSK (cathepsin K) 

and DGFFYFFHGTR (MMP-1)—emphasizing the need to include at least two peptides within a 

QconCAT to quantify a protein. 

The seven proteins quantified using an SRM approach were aggrecan, COMP, fibromodulin, MMP-1, 

MMP-3, plasminogen and TIMP-1 (Figure 2). For COMP we were able to quantify using both peptides: 

SSTGPGEQLR and DTDLDGFPDEK. DTDLDGFPDEK consistently produced a lower ratio of light 

peak area/heavy peak area compared to SSTGPGEQLR. Analysis of MASCOT data of analyte digests 

revealed that occasional miscleavage of DTDLDGFPDEK was evident resulting in an underestimation 

of protein abundance when this peptide was used for absolute quantification. We therefore used 

SSTGPGEQLR for quantification of COMP. Following IL-1β treatment, there was an apparent 

increase in aggrecan, COMP, fibromodulin, MMP-1, MMP-3 and plasminogen and a reduction in 

TIMP-1. The only protein that achieved statistical significance was TIMP-1, with a reduction in IL-1β 

treated samples (p = 0.0017), although MMP-3 exhibited a trend (p = 0.06).  

Figure 2. Proteins measured in human secretome media using QconCAT. Extracted ion 

chromatograms were performed for each peptide and the total ion count used to determine 

the ratio of light peak area/ heavy peak area at a given QconCAT loading. The protein 

abundance in the media was then calculated based on the amount of total protein in the media 

sample. This was then normalised to the dry weight of explants. Mean concentrations and 

±SEM (n = 3) are indicated. Data were evaluated using mixed effect linear regression.  

** indicates significant difference relative to control at the p < 0.01 level; # indicates p = 0.06. 

 

2.6. Validation of SRM Results for MMP-3 Using Immunoblotting 

Quantitative immunoblotting confirmed there was no significant difference in the abundance of 

MMP-3 in cartilage explant supernatant following IL-1β treatment (Figure 3). 
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Figure 3. Cartilage explants treated with Il-1β did not demonstrate altered MMP-3 protein 

expression. Western blot analysis using antibodies to MMP-3 on cartilage explant supernatant 

cultured with and without IL-1β. Images of western blots for control and IL-1β treated 

(treatment) cartilage explants. Volumes of supernatant loaded were normalised to dry weight 

of cartilage. Human recombinant MMP-3 was used as a positive control. There was no 

difference in the relative intensity the bands following analysis in ImageJ (data not shown). 

 

3. Discussion  

Cartilage proteomics is developing from simple protein identification through to quantitation. For 

OA research, absolute quantitative proteomics will enable further biological questions to be addressed, 

by facilitating the experimental determination of absolute protein amounts. However, there have been 

few studies able to absolutely quantify cartilage secreted proteins and experiments have employed 

relative quantification approaches using platforms including 2D gel approaches [9,21], SILAC  

studies [40], isobaric tags for relative and absolute quantitation (iTRAQ) [8], and quantitative western 

blotting [41]. Absolute quantification techniques and its variations have been utilized to measure 

absolute amounts of a given peptide, allowing quantitative comparisons of different proteins. QconCAT 

technology allows the cost efficient production of heavy isotope labelled standards. The aim of devising 

this human cartilage QconCAT was to provide an accurate, low-cost method able to support large scale 

protein quantification in cartilage studies.  

The established cartilage explant model mimics the catabolic events that occur in OA [18,42]. For the 

purposes of this study, cartilage from osteoarthritic joints was used since we wished to evaluate 

quantitative proteomic techniques including QconCAT in cartilage research. It would have been 

advantageous to compare the results to normal cartilage; though, direct comparison may be obscured 

due to inherent heterogeneity of normal and OA cartilage and difficulty in recruiting age-matched 

controls. However, there is precedence in using such samples as pathological human cartilage has been 

utilized to examine the role of cytokines and the targeted analysis of protein expression alterations in  

OA [43]. Cartilage explant cultures enable chondrocytes to be retained within their ECM and keep 

their phenotypic stability. The ECM also provides native substrates for proteolysis and protein release.  

Using 1D-SDS-PAGE, we were able to take a qualitative proteomics approach in order to identify 

the predominate proteins in the HAC OA secretome. Densitometry of the gel did not identify 
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differential protein expression following 48 h stimulation with IL-1β and this may be due to 

insufficient exposure time to the cytokine or previous findings by others that responsiveness to IL-1β 

is reduced in late stage OA chondrocytes [44]. Furthermore, results from the label-free study indicated 

very few differentially altered proteins in our model (nine out of 278 proteins identified) in comparison 

to our other studies in normal cartilage stimulated with IL-1β, which demonstrated over  

100 differentially expressed proteins [45]. 

High-throughput proteomic technologies created large data sets posing challenges in interpretation. 

Therefore, a proteomics tool called Progenesis LC-MS™ was utilized, enabling the analysis and relative 

quantification of proteins in our experiment. Following Progenesis LC-MS™ analysis, we applied 

insightful data mining using the bioinformatic tool DAVID [46] in order to interpret the data in 

relationship to protein location and function. As predicted, a large proportion (53%) of proteins 

identified by GO, which uses statistical analysis to validate results, were secreted. Whilst the dataset of 

differentially expressed proteins identified by Progenesis™ was small, it was interesting that a number 

of them were involved in inflammation and the innate immune response. Inflammation plays an 

important role in the pathogenesis of OA [47], and following proinflammatory cytokine stimulation of 

already diseased cartilage, it was not surprising that proteins, implicated in pathways associated with 

rheumatoid arthritis and OA, were identified. It is hypothesised that inflammation might actually be 

driven by the fragments such as fibronectin [48] that are released by cartilage degradation, through 

activation of the innate immune responses. More recently it has been identified that inflammatory 

complement cascade has a key role in the pathogenesis of OA [49]. One interesting finding was the 

reduction in decay accelerating factor splice variant (DAF) in IL-1β stimulated explant media. DAF 

belongs to the complement system and protects cells from complement mediated lysis. 

Immunohistochemistry studies identified an increase in OA cartilage compared to normal [50] and there 

was an increase in transcript in macroscopically affected OA joint cartilage compared to intact cartilage 

in the same joint [51]. It is possible that aberrant regulation of DAF is occurring due to IL-1β 

stimulation of already diseased cartilage. Further work into the role of this protein is warranted. 

Finally, as inflammation is an early and persistent event, the involvement of joint tissues in OA could 

be monitored by quantifying levels of a panel of markers such as the inflammatory factors identified as 

differentially expressed in this study: DAF, growth-regulated alpha protein and IG alpha-1 chain  

C region.  

Many ECM proteins and proteases were identified in the secretome using LC-MS/MS. However, 

some interesting proteins, particularly proteases/protease inhibitors, were not identified. We hypothesised 

that a more targeted SRM approach that increases sensitivity [52] would enable the identification and 

subsequent quantification of further proteins. Therefore, a human cartilage QconCAT was designed. This 

approach identified and quantified aggrecan, COMP, fibromodulin, link protein, MMP-1, MMP-3 and 

TIMP-1 from within the secretome. 

A strategy was used where two peptides were included per protein in the QconCAT to allow 

quantification with at least one peptide should one fail. For the eight proteins identified in MS/MS data 

and then quantified with SRM, we were reduced to a single peptide for quantification for all peptides 

except COMP. For this protein, a single peptide was nominated for quantification purposes. The main 

reason for redundant Q-peptides was poor peptide selection, resulting in “Type C” peptides within our 

QconCAT. The primary reason for “Type C” peptides was poor fragmentation of the parent peptide 
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resulting in inadequate transitions for quantification using an SRM approach. Interestingly both link 

protein peptides were identified in the label-free experiments (where both MS and MS/MS are used in 

protein identification), but we were unable to quantify either peptide. One Q-peptide, FYYLIHPTK, was 

identified as a “Type C” peptide. The other peptide, GGSDSDASLVITDLTLEDYGR, was readily 

detected down to 0.1 fmol in the standard but was not detected in analyte. It is possible that there may be 

a previously unidentified PTM on this peptide. In addition, this peptide displayed a poor fragmentation 

pattern as demonstrated by the identification of only a single transition for SRM experiments.  

For aggrecan, EVVLLVATEGR was used in quantification experiments, as the other peptide, 

LEGEVFFATR, was not detected in any sample. The tryptic cleavage site at the N-terminal of this 

peptide was close to an aspartic acid, possibly leading to miscleavages, although no evidence was 

found for this in MS/MS data. While we were able to quantify COMP using both peptides, 

DTDLDGFPDEK consistently produced a lower ratio of light peak area/heavy peak area, possibly 

resulting from miscleavage due to the positioning of an aspartic acid residue adjacent to the cleavage 

site in the analyte. Thus, SSTGPGEQLR was utilized in the quantification of COMP. For the proteins 

fibromodulin, MMP-1, TIMP-1 and plasminogen, one peptide per protein was a “Type C” peptide, 

resulting in a single peptide being used for quantification by SRM.  

Il-1β is one of the most significant cytokines in OA [53], and is assumed to cause damage to OA 

cartilage through both the induction of protease expression, resulting in cartilage matrix  

degradation [14,54] and reduction in the expression of anabolic genes such as aggrecan and 

COL2A1[55]. This results in the anabolic-catabolic discrepancy characteristic of OA. Here, we 

examined OA cartilage degeneration in culture using secretome protein identification and both relative 

and absolute quantification. Relative quantification identified the induction of MMP-3 protein 

expression following IL-1β stimulation. The absolute quantification also revealed an increase in  

MMP-3 in all donors in each replicate, although this did not reach statistical significance (p < 0.06). 

Whilst others identified an induction of MMP protein expression along with degradation of matrix 

constituents in OA HAC explants [56], the induction of MMP-3 demonstrated in this study is not 

accompanied by an increase in ECM degradation. This could be due to the short time scale of the 

experiment or that there is a reduced responsiveness to IL-1β in late stage OA chondrocytes.  

One of the most abundant proteins quantified here was COMP, a non-collagenous matrix protein. 

Its presence in the secretome corresponded to previous studies of cartilage explants [57]. COMP 

organizes ECM assembly [58] and attaches the chondrocyte to the ECM [59]. Considered as a marker 

of cartilage breakdown, it has been studied as a biological marker [60,61]. Measurements of intact 

COMP and fragments thereof in synovial fluid or serum have been shown to correlate to cartilage 

destruction in OA patient studies [62] and so it is no surprise that it is abundant in the secretome.  

Fibromodulin, a collagen-binding protein [63], was also quantified. This protein protects the surface 

of collagen type I and II fibrils from proteolysis by MMPs [64]. Cleavage products of fibromodulin 

have been identified during IL-1 stimulation of cartilage explant studies in vitro [63,65] and, as such, 

cleavage of fibromodulin may represent an important initial episode that interrupts the collagen 

fibrillar network leading to more sites for proteases to cleave collagen further. Furthermore, it has been 

suggested that some ECM proteins including fibromodulin become endogenous catabolic factors 

during joint damage and stimulate innate immune pathways via complement activation [66]. Thus, the 
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presence of fibromodulin in relative abundance within the OA secretome presents a means by which 

ongoing joint damage may be further precipitated. 

Plasminogen, a serine protease and important activator of pro-MMPs, has been demonstrated to 

induce cartilage degradation [67]. Its production is stimulated by Il-1β in cartilage [68]. Although it 

was not evident in initial MS/MS experiments, it was quantified using SRM. SRM experiments are 

unique in their ability for reliable quantification of analyte of low abundance in complex mixtures [69]. 

This demonstrates the advantage of our QconCAT approach to proteomics experiments in the study of 

low abundance proteins such as plasminogen involved in OA.  

MMP activity is regulated by a family of tissue-specific inhibitors including TIMP-1 [70]. 

Presently, it is believed that the local balance of MMPs and TIMP activities is crucial for cartilage 

homeostasis. TIMP concentrations generally far exceed the concentration of MMPs in tissue and 

extracellular fluids, thereby limiting their proteolytic activity to focal pericellular sites by binding to 

the MMP active sites [71]. TIMPs also inhibit cleavage of proteoglycans by aggrecanases [72]. In the 

IL-1β stimulated secretome, MMP-3 concentrations exceeded TIMP-1 concentrations as identified 

using relative and absolute quantification. Interestingly, in the QconCAT study, TIMP-1 was the only 

protein significantly affected by cytokine stimulation agreeing with the label-free study. TIMP-1 

mRNA has been previously identified in OA [73] and rheumatoid arthritis [74]. Our results agree with 

other studies demonstrating that IL-1β stimulation has a marked inhibitory effect on TIMP-1 expression 

by chondrocytes [75].  

Bringing the results of the different quantification methodologies together it would seem that there 

is good agreement with the findings from the two studies when proteins were identified as significantly 

differentially expressed in the secretome. MMP-3 was increased significantly in the label-free study 

and increased to near significance in the QconCAT study. TIMP-1 expression was identified as 

significantly reduced using both methodologies. The ECM proteins aggrecan, fibromodulin and COMP 

were not differentially expressed in the study using either method.  

4. Experimental Section  

4.1. Peptide Selection, Preparation and Purification of QconCAT 

We selected 20 proteins of interest in cartilage degradation. Two proteotypic tryptic peptides per 

protein were selected from the Global Proteome Machine database (www.thegpm.org) and the Human 

PeptideAtlas (www.peptideatlas.org) based on published criteria [28] including their suitability score, 

physicochemical properties deemed to promote MS detectability, and uniqueness to a given protein. In 

addition, amino acids that were prone to oxidation and miscleavage were avoided and all peptides 

terminated with either lysine or arginine (Table 3). Peptides were arranged in sequence context where 

possible. In the native protein, the amino acid sequence prior to the Q-peptide was noted and the 

peptides in the QconCAT ordered where possible to mimic this in order to optimise digestibility. 
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Table 3. Human cartilage QconCAT signature peptides in QconCat context order.  

The three amino acids found adjacent to the N and C termini of the Q-peptide within  

the native protein are indicated (Matrix metalloproteinase (MMP), collagen (Col), a 

disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), tissue inhibitor 

of metalloproteinase (TIMP)). 

Peptide order Protein Protein Accession Q-peptide amino acid sequence 

1 MMP16 ENSP00000286611 GIPESPQGAFVHK 

2 MMP16 ENSP00000286611 EGHSPPDDVDIVIK 

3 CathepsinD ENSP00000236671 LVDQNIFSFYLSR 

4 COMP ENSP00000222271 DTDLDGFPDEK 

5 Col11a2 ENSP00000372565 LGVPGLPGYPGR 

6 Fibromodulin ENSP00000347041 IPPVNTNLEN LYLQGNR 

7 MMP3 ENSP00000299855 IVNYTPDLPK 

8 ADAMTS1 ENSP00000284984 DAEHYDTAILFTR 

9 ADAMTS4 ENSP00000356975 FVETLVVADDK 

10 CathepsinD ENSP00000236671 YSQAVPAVTEGPIPEVLK 

11 Link protein ENSP00000274341 GGSDSDASLVITDLTLEDYGR 

12 MMP3 ENSP00000299855 YLENYYDLK 

13 ADAMTS5 ENSP00000284987 GLVQNIDQLYSGGGK 

14 TIMP3 ENSP00000266085 WDQLTLSQR 

15 TIMP4 ENSP00000287814 GHLPLR 

16 CathepsinK ENSP00000271651 SNDTLYIPEWEGR 

17 Link Protein ENSP00000274341 FYYLIHPTK 

18 COMP ENSP00000222271 SSTGPGEQLR 

19 Plasminogen ENSP00000308938 HSIFTPETNPR 

20 MMP13 ENSP00000260302 LHPQQVDAELFLTK 

21 MMP13 ENSP00000260302 SYYHPTNLAGILK 

22 Plasminogen ENSP00000308938 EAQLPVIENK 

23 Col9a1 ENSP00000349790 VVGSATLQVAYK 

24 TIMP4 ENSP00000287814 LEANSQK 

25 MMP1 ENSP00000322788 DGFFYFFHGTR 

26 ADAMTS1 ENSP00000284984 GPEVTSNAALTLR 

27 ADAMTS4 ENSP00000356975 NPVSLVVTR 

28 Aggrecan ENSP00000268134 LEGEVFFATR 

29 Fibromodulin ENSP00000347041 LYLDHNNLTR 

30 TIMP1 ENSP00000218388 GFQALGDAADIR 

31 TIMP1 ENSP00000218388 FVGTPEVNQTTLYQR 

32 TIMP3 ENSP00000266085 YQYLLTGR 

33 Col11a2 ENSP00000372565 VARPAQLSAPTR 

34 ADAMTS5 ENSP00000284987 LPLAAVGPAATPAQDK 

35 Aggrecan ENSP00000268134 EVVLLVATEGR 

36 CathepsinK ENSP00000271651 VGPVSVAIDASLTSFQFYSK 

37 Col2a1 ENSP00000338213 GAQGPPGATGFPGAAGR 

38 Col2a1 ENSP00000338213 GPPGPQGAR 

39 Col9a1 ENSP00000349790 GVQGEQGATGLPGVQGPPGR 

40 MMP1 ENSP00000322788 SQNPVQPIGPQTPK 
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The transformation, expression and purification of QconCAT has been previously described in 

detail [27]. Briefly, following synthesis of the gene by PolyQuant GmBH (Entelechon, Germany), the 

QconCAT was ligated into the expression vector pET-21a and expressed in Escherichia coli cultured 

in minimal media (1 × M9 salts, 1 mM MgSO4, 0.1 mM CaCl2, 0.00005% (w/v) thiamine, 0.2% (w/v) 

glucose, unlabeled amino acids at 0.1 mg/mL or 0.2 mg/mL histidine, tyrosine, phenylalanine, proline and 

tryptophan all Sigma-Aldrich (Gillingham, Dorset, UK)) supplemented with 
13

C6 analogues of arginine 

and lysine containing stable isotope labelled amino acids. Once cells achieved mid log phase (OD660nm 

0.6–0.8) expression was induced by addition of 1 mM IPTG Isopropyl β-D-1-thiogalactopyranoside  

(Sigma-Aldrich, Gillingham, Dorset, UK). After 5 h of induction, cells were harvested by centrifugation 

at 1400 × g at 4 °C for 15 min. Cell lysis was undertaken using BugBuster Protein Extraction Reagent 

(Merck Chemicals, Nottingham, UK). 

Inclusion bodies were first re-dissolved in 20 mM phosphate buffer, 6 M guanidine chloride, 0.5 M 

NaCl, 20 mM imidazole, pH 7.4. They were then solubilised using sonication, followed by purification 

using immobilised metal affinity columns; Ni-MAC (Novagen, Darmstadt, Germany). The purified 

QconCAT protein was desalted three times by dialysing against 100 volumes 10 mM ammonium 

bicarbonate, pH 8.5, 1 mM dithiothreitol (DTT) for 2 h changing the buffer each time.  

4.2. Characterisation of QconCAT 

The homogeneity of the QconCAT was determined by the in-gel digestion of a protein band 

corresponding to the expected molecular mass for the QconCAT of 58 kDa. Briefly, a 5 μg aliquot  

of purified QconCAT protein was separated on a 12% SDS-PAGE gel (50 min, 200 V), fixed  

with 40% methanol and 10% acetic acid then stained with Coomassie blue. In-gel digestion was 

undertaken as previously described [76]. 1 μL of the digest was mixed with 1 μL of  

α-cyano-4-hydroxycinamic acid (CHCA; Sigma, Poole, UK) in 50% (v/v) acetonitrile (ACN)/0.1% (v/v) 

trifluoroacetic acid (TFA) and 1 μL spotted on a MALDI plate. Positive-ion MALDI mass spectra 

(MS) were obtained using an Ultraflex (Bruker, Bremen, Germany) in reflector mode over m/z range 

900–4500. Monoisotopic masses were collected from centroids of raw unsmoothed data.  

4.3. Cartilage Isolation and Explant Culture 

Human articular cartilage (HAC) was obtained following total knee arthroplasty due to OA with 

informed consent and ethical approval. Full thickness cartilage that appeared macroscopically intact 

and normal was harvested from the entire surfaces of three male donors aged between 69 and 84 years.  

Cartilage was diced into explants of approximately 2 mm, mixed and placed in complete medium 

Dulbecco’s modified Eagle’s medium (DMEM), supplemented with foetal calf serum (10% v/v),  

100 U/mL penicillin, 100 U/mL streptomycin (Invitrogen, Paisley, UK) 500 ng/mL amphotericin B 

(BioWhittaker, Lonza, San Diego, California, USA). Explants were washed twice with serum-free 

DMEM (to deplete serum and synovial proteins) and allowed to equilibrate in complete medium for 24 

h at 37 °C in 5% CO2 in 12 well plates (2 mL/well). Media was then replaced with serum-free DMEM 

prior to incubation, supplemented with or without human recombinant IL-1β (10 ng/mL; R & D 

Systems) in dimethyl sulfoxide (DMSO) diluent. After 48 h, media was removed, centrifuged to 

remove debris and protease inhibitors (Complete Protease Inhibitors, EDTA-free, Roche, Lewes, UK) 
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added. Samples were stored at −80 °C prior to downstream analysis. Protein concentrations of 

supernatants were estimated by Bradford assay (Thermo Scientific, Rockford, IL, USA). Cartilage 

explants were lyophilized to obtain a dry weight for normalisation.  

4.4. 1-D SDS PAGE Separation and In-Gel Trypsin Digestion 

Cartilage extract secretomes of control and treatment condition for all donors were analyzed by  

one dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis (1D-SDS-PAGE) to 

assess quantitative/qualitative differences in protein profiles loading 20 μg of protein into each lane. 

In-gel tryptic digests of bands of interest from the 1D-SDS-PAGE was undertaken as previously 

described [76]. ImageJ software (http://rsbweb.nih.gov/ij/) was used to quantify bands using densitometry.  

4.5. Protein Identification of In-Gel Digests by Linear Ion Trap Quadruple (LTQ) Velos  

Mass Spectrometry  

Digested samples were analysed by LC-MS/MS using an UltiMate
®
 3000 Rapid Separation LC 

(RSLC, Dionex Corporation, Sunnyvale, CA, USA) coupled to a LTQ Velos Pro (Thermo Fisher 

Scientific, Waltham, MA, USA) mass spectrometer. Peptides were concentrated on a pre-column  

(20 mm × 180 μm internal diameter (ID), Waters, Manchester, UK). The peptides were then separated 

using a gradient from 99% A (0.1% formic acid (FA) in water) and 1% B (0.1% FA in ACN) to 25% B, 

in 45 min at 200 nL min
−1

, using a 75 mm × 250 μm ID 1.7 μM BEH C18, analytical column (Waters, 

Manchester, UK). Peptides were selected for fragmentation automatically by data dependant analysis. 

Raw spectra were converted to mascot generated files (mgf) using Proteome Discoverer software 

(Thermo, Hemel Hempstead, UK). The resulting mgf files were searched against the Human IPI database 

sequence databases using an in-house Mascot [12] server (Matrix Science, London, UK). Search 

parameters used were: peptide mass tolerances, 10 ppm; fragment mass tolerance, 0.6 Da, 1+, 2+ and 

3+ ions; missed cleavages, 1; instrument type, ESI-TRAP. Modifications included were: fixed; 

carbamidomethyl cysteine and variable; oxidation of methionine. Data produced were searched using 

Mascot (Matrix Science, London, UK), against the Human IPI database with taxonomy of Homo 

sapiens selected. Data were validated using Scaffold (Proteome Software, Portland, OR, USA).  

4.6. In-Solution Tryptic Digestion and Mass Spectrometry Using Linear Ion-Trap Orbitrap Mass 

Spectrometer (LTQ-Orbitrap Velos) 

Cartilage supernatant fractions or QconCAT were detergent treated with 1% (w/v) Rapigest (Waters, 

Manchester, UK) for 10 min at 80 °C in 25 mM ammonium bicarbonate. In-solution tryptic digestion 

of protein samples was carried out following sequential reduction and alkylation in 3 mM DTT (60 °C 

for 10 min) and then 9 mM iodoacetamide (30 min in the dark at room temperature) with trypsin at a 

ratio of 1:50 protein: trypsin ratio overnight at 37 °C. Detergent inactivation was then assumed by 

incubating for 45 min at 37 °C with trifluoroacetic acid (VWR International, Lutterworth, Leicestershire, 

UK) to a final concentration of 0.5% (v/v). Following centrifugation (10 min, 15,000 × g) the soluble 

phase was retrieved and used for LC-MS/MS. 
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LC-MS/MS analysis was performed using nanoAcquity™ ultraperformance LC (Waters, Manchester, 

UK) on line to an LTQ-Orbitrap Velos (Thermo-Fisher Scientific, Hemel Hempstead, UK) via a ESI 

ion source containing a 10 μm coated Pico-tip emitter (Presearch LTD, Basingstoke, UK). Aliquots of 

tryptic peptides equivalent to 250 ng of cartilage secretome protein or 100 fmol of QconCAT (for 

QconCAT verification and validation) were loaded onto a 180 μm × 20 mm C18 trap column (Waters, 

Manchester, UK) at 5 μL/min in 99% solvent A (water plus 0.1% FA) and 1% solvent B (acetonitrile 

plus 1% FA for 5 min and subsequently back-flushed onto a C18 pre-equilibrated analytical column  

(75 μm × 15 mm Waters, Manchester, UK) using a flow rate of 0.3 μL/min. Xcalibur 2.0 software 

(Thermo -Electron, Hemel Hempstead, UK) was used to operate the LTQ-Orbitrap Velos in data-dependant 

acquisition mode. The survey scan was acquired in the Orbitrap with a resolving power set to 30,000 

(at 400 m/z). MS/MS spectra were concurrently acquired on the 20 most intense ions from the high 

resolution survey scan in the LTQ. Charge state filtering >1 was used, where unassigned precursor 

ions were not selected for fragmentation. Fragmentation parameters in the LTQ were: normalized collision 

energy; 30, activation; 0.250, activation time; 10 ms and minimum signal threshold 500 counts with 

isolation width 2 m/z.  

4.7. Peptide Identification 

Raw spectra were converted to mascot generated files (mgf) using Proteome Discoverer software 

(Thermo, Hemel Hempstead, UK). The resulting mgf files were searched against either the Human IPI 

database, taxonomy; mammalian or QconCAT sequence databases using an in-house Mascot [12] 

server (Matrix Science, London, UK). Search parameters used were: peptide mass tolerances, 10 ppm; 

fragment mass tolerance, 0.6 Da; 1+, 2+ and 3+ ions; missed cleavages, 1; instrument type, ESI-TRAP. 

Modifications included were: fixed carbamidomethyl cysteine and variable; oxidation of methionine. 

4.8. Selected Reaction Monitoring Optimization 

The selected reaction monitoring (SRM) assay conditions were optimised using a XEVO TQ 

(Waters, Manchester, UK). Trypsin digestion of QconCAT was carried out as described  

previously [27]. The peptides were diluted with 97:3:0.1 ACN: water: FA and 100 fmol of peptides were 

loaded on the column. Optimisation was performed on a XEVO TQ operated with MassLynx 2.4 

(Waters, Manchester, UK) coupled to a nanoAcquity™ UPLC (Waters, Manchester, UK). Peptides 

were loaded using partial loop injection for three minutes at a flow rate of 5 μL/min with 0.1% (v/v) 

formic acid onto a trapping column (Waters, C18, 180 μm × 20 mm). Samples were separated by a  

30 min gradient of 97% A (0.1% (v/v) formic acid), 3% B (99.9% acetonitrile 0.1% (v/v) formic acid) 

to 60% A 40% B at a flow rate of 300 nL/min on a C18 analytical column (Waters, nanoACQUITY 

UPLC™ BEH C18 75 µm × 150 mm 1.7 µm column). All transitions were acquired with the following 

parameters: 3 kV ion spray voltage; an 80 °C interface heater temperature; Q1 and Q3 operating at unit 

resolution. Cone voltages and collision energies were optimised for each peptide. Dwell times for 

transitions were determined automatically based on the number of co-eluting peptides but a minimum 

dwell time of 50 ms was maintained.  
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4.9. Protein Digestion and Quantification 

For each sample 10 μg protein was detergent treated, reduced, alkylated and trypsin digested as 

described above. For SRM experiments, previously trypsin digested QconCAT was spiked into the 

samples. SRM experiments were conducted with 500 ng of tryptic analyte peptides spiked in with 

either 10 fmol, 1 fmol or 0.1 fmol heavy QconCAT, loaded onto column. MS analysis was commenced 

using the methods, parameters and gradients as described above. The ranging ensured that 

analyte:signal to noise were between 1:10 and 10:1 ratio of a QconCAT loading. MassLynx 2.4 

(Waters, Manchester, UK) software was used to produce extracted ion chromatograms of the peptide 

transitions in order to compare the ratio of analyte to standard. Ratios were converted to fmol and then 

normalised to dry weight of cartilage explant. 

4.10. Label-Free Peptide Quantification 

The Thermo raw files of the acquired spectra were analysed by the Progenesis™ LC-MS software 

(version 4, Nonlinear Dynamics, Newcastle, UK) for label-free quantification. Progenesis™ LC-MS 

takes profile data of the MS scans and transforms them to peak lists. One sample was selected as a 

reference after checking the 2-D mapping (m/z versus retention time), and the retention times of the 

other samples within the experiment were aligned. This was undertaken by studying the chromatogram 

and aligning on the major peaks. Features without the 1+, 2+, 3+ and 4+ charge and isotope peaks of 

≤2 were masked and excluded from further analysis. Samples were then divided into the appropriate 

groups using between subject design. Raw abundances of all features were normalised which corrects 

for factors due to experimental variation. 

Following feature picking, we picked the top three spectra for each feature. These were exported 

from Progenesis™-LC-MS and utilized for peptide identification with a locally implemented Mascot 

server (version 2.3.01, University of Liverpool, Liverpool, UK, 2010) in the Unihuman database. 

Search parameters used were: 10 ppm peptide mass tolerance and 0.6 Da fragment mass tolerance; one 

missed cleavage allowed; fixed modification; carbamidomethylation; variable modifications; 

methionine oxidation. Mascot determined peptides with ion scores of 33 and above and only proteins 

with at least one unique peptide ranked as a top candidate were considered and re-imported into 

Progenesis™ software. Following the import of the Mascot results for quantification, statistical 

analysis was performed on all detected features using transformed normalized abundances for one-way 

analysis of variance (ANOVA). The total cumulative abundance was calculated by summing the 

abundances of all peptides allocated to the respective protein. All peptides (with Mascot score > 33 and  

p < 0.05) of an identified protein were included and the protein p value (one-way ANOVA) was then 

performed on the sum of the normalized abundances for all runs. ANOVA values of p < 0.05 and, 

additionally, regulation of >2-fold or <0.5-fold were regarded as significant. 

4.11. Gene Ontology 

Using DAVID gene ontology (GO) analysis, all genes identified were loaded into the functional 

annotation chart.  
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4.12. Western Blot Analysis Validation 

Western blotting with matrix metalloproteinase 3 (MMP-3) was used as a complementary methodology 

to validate our results. Volumes of cartilage explant supernatant from three donors and conditions were 

adjusted to represent equal dry weights of cartilage. Human recombinant MMP-3 (Merckt, Darmstadt, 

Germany) was used as a positive control. Samples were heated to 80 °C for 10 min in NuPAGE
®

 LDS 

sample buffer (Invitrogen, Paisley, UK) and electrophoresed for 1 h at 200 V under reducing conditions 

on a Novex 4%–12% SDS-PAGE gel (Invitrogen, Paisley, UK). Protein transfer to nitrocellulose was 

performed using the Invitrogen X Cell Sure Lock apparatus according to standard protocol. Membranes 

were blocked with TBS (pH 7.4) containing 0.1% Tween-20 (Invitrogen, Paisley, UK) (TBST) and 5% 

dried skimmed milk for 1 h at room temperature. A goat polyclonal MMP-3 primary antibody (Abcam, 

Cambridge, UK) was diluted to 1:1000 in milk powder/Tween and added to the membrane for overnight 

incubation at 4 °C. Following washing in TBST, membranes were incubated for 1 h at room temperature 

with the secondary antibody conjugated to horseradish peroxidise (HRP); polyclonal rabbit anti-goat 

IgG HRP (Abcam, Cambridge, UK) at 1:5000 diluted with TBST containing 5% dried skimmed milk. 

Chemiluminescence was used to detect the protein bands using Western Lightning™ and Western 

Lightning_Plus Chemiluminescence reagents (Perkin Elmer, Beaconsfield, IA, USA). ImageJ software 

(http://rsbweb.nih.gov/ij/) was used to quantify bands using densitometry. The relative intensity of IL-1β 

treated samples were compared to the control for each donor. 

4.13. Statistical Analysis 

Statistical analysis for absolutely quantified peptides was undertaken using mixed effects linear 

regression to allow for donors with significant biological variation with SPLUS 6.1 software  

(NCSS Software, Kaysvill, UT, USA, 2001). Statistical testing for quantitative western blotting was 

undertaken following normality testing with a paired Student’s T test using Minitab 15 (Minitab 

Software, Coventry, UK, 2001) and Excel software (Microsoft, Redmond, WA, USA, 2009).  

5. Conclusions  

This study is the first to combine relative and absolute protein quantification in the analysis of the 

human OA secretome. It enabled the identification of a cohort of proteins expressed by OA cartilage 

with possible roles in its pathogenesis. A human cartilage QconCAT was designed, expressed and 

validated, which enabled the absolute levels of important proteins in the study of OA to be quantified. 

The QconCAT provides a tool for the precise definition of some matrix proteins and proteases 

important in the pathogenesis of OA.  
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