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Abstract: With the accumulation of next generation sequencing data, there is increasing 

interest in the study of intra-species difference in molecular biology, especially in relation 

to disease analysis. Furthermore, the dynamics of the protein is being identified as a critical 

factor in its function. Although accuracy of protein structure prediction methods is high, 

provided there are structural templates, most methods are still insensitive to amino-acid 

differences at critical points that may change the overall structure. Also, predicted 

structures are inherently static and do not provide information about structural change over 

time. It is challenging to address the sensitivity and the dynamics by computational 

structure predictions alone. However, with the fast development of diverse mass 

spectrometry coupled experiments, low-resolution but fast and sensitive structural 

information can be obtained. This information can then be integrated into the structure 

prediction process to further improve the sensitivity and address the dynamics of the 

protein structures. For this purpose, this article focuses on reviewing two aspects: the types 

of mass spectrometry coupled experiments and structural data that are obtainable through 

those experiments; and the structure prediction methods that can utilize these data as 

constraints. Also, short review of current efforts in integrating experimental data in the 

structural modeling is provided.  

Keywords: constraint-base structure prediction; integrative structure prediction; sequence 

variants; protein dynamics; mass spectrometry 
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1. Introduction 

In the post-genomics period, more researches are focused on functional and conformational analysis 

of proteins in a genomic scale [1]. Although experimental methods, such as nuclear magnetic 

resonance (NMR) spectroscopy and X-ray crystallography, have advanced in the past two decades, 

these methods are still labor intensive, high cost, and it can take weeks to months to solve a three 

dimensional structure [2]. Due to the difficulties associated with the experimental methods, the number 

of protein structures that have been solved is much smaller than the number of protein sequences. With 

advancements in the sequencing machines, the gap between the numbers is growing even faster 

(Figure 1). Structure prediction approaches can be used to overcome this chasm. By determining three 

dimensional (3D) molecular structures [3,4], they can be used to analyze structural interactions 

between biomolecules [5,6] and to determine the functionality of a protein or protein complexes [7,8]. 

However, prediction of precise structures in the presence of variations (or mutations) remains 

challenging. Determination of their atomic level dynamics also remains difficult.  

Figure 1. Number of solved structures versus number of identified protein sequences. 

Numbers of sequences and protein structures are obtained through Uniprot 

(http://www.ebi.ac.uk/uniprot/) and RCBS PDB (http://www.rcsb.org), respectively.  

 

Integration of proteomics results, such as mass spectrometry (MS) coupled experiments, can reduce 

the difficulties associated with structural modeling. MS-coupled methods such as hydrogen-deuterium 

exchange (HDX), hydroxyl-radical mediated covalent labeling (protein footprinting), chemical  

cross-linking, ion mobility spectrometry, and native methods have emerged as structural proteomics 

techniques for analyzing the protein complexes, for identifying structural change up-on binding, and 

for detection of post-translational modifications. MS-coupled experiments provide fast and highly 

sensitive spatial information of the structure being analyzed. Much of the spatial information can be 

integrated into the structure prediction methods. They can be used to choose the structure that is most 

consistent with the MS-coupled experiments. They can be also used directly in the structure 

optimization procedure. MS-coupled methods, in addition to being fast and highly sensitive, require 

less mass of sample to extract the structural information compared to traditional structure solvers. This 

means that multiple experiments can be done without being limited by the available sample.  

Although there are many studies on both the MS-coupled experiments and the structure prediction 

methods, the integration of the experimental data with the computation methods is still not widely 
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explored. Developments in the integrative methods will provide advancements in the structural biology 

area. For this reasons, this review focuses on the mass spectrometry for studying the structural and 

dynamics of biomolecules [9,10] and structure prediction methods to promote integrative method 

development and researches in structural bioinformatics. The review is organized as follows. First, 

types and characteristics of MS-coupled experiments are overviewed. Then, a review of structure 

prediction methods is provided. In the last section, existing integrative methods are described with 

suggestions for further integrations.  

2. Mass Spectrometry Techniques 

Mass spectrometry experiment (MS) is a high-throughput experimental method that characterizes 

molecules by their mass-to-charge (m/z) ratio. The MS is composed of sample preparation, molecular 

ionization, detection, and instrumentation analysis processes [11]. MS is beneficial in that it is 

generally fast, requires a small amount of sample, and provides high accuracy measurements. For these 

reasons, MS alone or combined with other structural proteomics techniques is widely used for various 

molecular biology analysis purposes. Examples of the analysis include post-translations modifications 

in proteins, identification of vibrational components in proteins, and analysis of protein conformation 

and dynamics [12]. We will focus on MS-coupled methods that provide information about 

conformation and dynamics of the protein being studied (Table 1). For a comprehensive review on MS 

procedures, refer to [12], and for a review on various types of MS-coupled methods, refer to [9].  

Table 1. Types and characteristics of mass spectrometry-coupled experiments.  

MS-coupled methods Types of information detected Characteristics  

HDX [13] 

-Solvent accessibility  

-Binding stoichiometry,  

-Affinity for protein-ligand interactions 

-Exchange target backbone nitrogen 

Protein footprinting [14] -Solvent accessibility -Labeling reagents target side-chains 

Chemical cross-linking [15] 
-Distance between protein subunits  

-Subcomplex topology  

-Type of activator differs by the type of  

cross-linking reagents 

Ion mobility (IM)-MS [16] 

-Protein complex shape and size  

-Subcomplex topology  

-Radius of Gyration  

-Analyzed in the gas phase 

All four methods -Conformational change 

-Can detect changes on a wide timescale  

-Requires very little sample  

-Crystallization is not required  

2.1. Hydrogen/Deuterium Exchange Mass Spectrometry  

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) exploits the chemical exchange 

pattern of amide hydrogens, i.e., hydrogens that are attached to the backbone nitrogen in proteins [13]. 

In a HDX experiment, proteins are placed in a solution containing deuterated water (D2O). Inside the 

solution, the amide hydrogens (H) exchange with the deuterium (D). This exchange increases the mass 

of proteins. The proteins can then be treated for the MS analysis to find out the overall mass change. 
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Alternatively, the protein can be fragmented and fragments can be treated for the MS analysis to find 

out the mass change for each of the fragments.  

The location and rate of the exchange depends on the solvent accessibility, hydrogen-bonding, pH 

level, and temperature. Assuming that the pH level and the temperature can be controlled, the solvent 

accessibility and hydrogen-bonding can be detected through analysis of the change in mass. The 

hydrogen exchange event occurs primarily in the amide hydrogen of residues on the solvent accessible 

region of the protein. However, not all solvent accessible residues have amide hydrogen available for 

the exchange event. Amide hydrogen also plays a role in constructing secondary structures such as 

alpha-helices and beta-sheets. When a secondary structure is formed, hydrogen bonding occurs 

between amide hydrogen and electro-negative atom in the side chains of other residues. A stable 

structure makes hydrogen exchange in the amide hydrogen less likely.  

Depending on the availability and stability of the (local) structures, the rate of the exchange differs. 

Amide hydrogens that are exposed on the surface exchange hydrogen with deuterium quickly, while 

those buried in the core have much slower exchange rates. For the amide hydrogens that are solvent 

accessible but are part of hydrogen bonding, the exchange happens much slower through  

low-frequency vibration motions of the proteins.  

Some of the successful applications of HDX include detecting binding affinity between HIV-1 Nef 

and Lyn SH3 [17], detecting conformational dynamics of the scaffold protein in the presence and 

absence of lipid [18], and examining the structural changes in the binding cites of the vitamin D 

receptor when bound to its natural ligand, 1α,25-dihydroxyvitamin D3, and two analogs ligands, 

alfacalcidol and ED-71 [19].  

2.2. Hydroxyl-Radical Mediated Covalent Labeling Mass Spectrometry  

Hydroxyl-radical mediated covalent labeling, or protein footprinting, is a MS-coupled technique 

that is conceptually similar to HDX-MS. Similar to HDX-MS, protein footprinting also probes the 

solvent accessible residue and makes modifications to the accessible residues. The major difference 

between the HDX-MS and the protein footprinting is that HDX-MS targets the backbone amide 

hydrogen whereas the protein footprinting targets the side chains of the residues. In the protein 

footprinting, relative hydroxyl radicals, which have water-like solvent properties, interact with the 

side-chains of the solvent accessible residues and form stable covalent modifications that are 

detectable by MS [14]. More specifically, side-chains of the solvent accessible residues are exposed to 

hydroxyl radicals and undergo covalent oxidation. The oxidation of the side chains results in mass shift 

which can be detected by MS. The comparison between the unmodified and modified proteins reveals 

which residues are solvent accessible [10]. Protein footprinting provides a more direct measurement of 

solvent accessibility compared to the HDX-MS experiments.  

The location and rate of the oxidation differs depending on the solvent accessibility of the residues 

and the reactivity of the side chains to hydroxyl radicals. Solvent accessibility of the protein structures 

can be evaluated through analyzing the correlation between the accessibility and the oxidation level for  

each type of amino acid [20]. The relative reactivity of residue to hydroxyl radical depends on the  

side-chain chemistry, that can be listed by order of reactivity as follows: Cys > Met > Trp > Tyr > Phe 

> Cystine (two disulfide bonded Cys) > His > Leu ~ Ile > Arg ~ Lys ~ Val > Ser ~ Thr ~ Pro >  
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Gln ~ Glu > Asp ~Asn > Ala > Gly [21]. Of these residues, Gly, Ala, Asp, and Asn have low 

reactivity, and thus, are not useful. In addition to the reactivity, mass change after oxidation needs to 

be large enough for MS to detect. For this reason, although Ser and Thr are reactive, they cannot be 

used for detection of solvent accessibility. In summary, 14 residues out of the 20 amino-acids can be 

used to detect structural properties via the protein footprinting method [22].  

Detection of solvent accessibility enables the protein footprinting to be an attractive method for 

identifying interaction regions [23]. One of the first uses of protein footprinting was in characterizing 

DNA-protein interactions such as detecting sequence-specific interactions of I12-X86 lac repressor 

with non-operator DNA [24]. Protein footprinting has also been used to study the structural aspects of 

transmembrane proteins such as G protein-coupled receptors. In one study, protein footprinting was 

used to provide evidence that water molecules embedded and conserved in the G protein-coupled 

receptors are likely to be functionally important [25].  

However, the preferential interaction quality makes the analysis of the MS results challenging. In 

order to apply the protein footprinting method for solvent accessibility analysis, accurate analysis of 

the correlation between the solvent accessibility and the reactivity of the residues is needed [10]. For 

further details on various protein footprinting techniques, readers can refer to a review by Kiselar and 

Chance [14].  

2.3. Chemical Cross-Linking 

Chemical cross-linking combined with a MS analysis is another important proteomics technique for 

structural analysis. Chemical cross-linking experiments are used to detect spatial closeness between 

residues in a protein for structure analysis purposes. They are also used to detect interacting  

region between proteins [15]. Chemical cross-linking involves the use of a special reagent called  

cross-linkers, most often lysine linkers, to covalently attach two residues within a protein or between 

proteins that are spatially close. After the chemical cross-linkage process, MS analysis is performed to 

detect the cross-linked regions [14]. The identified cross-link location information can be transferred to 

as distance constraints between residues. A sufficient number of distance constraints is known to 

provide important clues about the 3D structure of the protein.  

Cross-links are generally formed by chemical reactions that are initiated by various factors, such as 

change in pH, heat, and radiation. The type of activator differs by the type of cross-linking reagents 

and results in cross-links of different characteristics. Figure 2 shows four types of cross-linking 

reagents in a cartoon form. In a homo-bifunctional cross-linking, two of the same types of reactive 

groups are linked by a carbon-chain spacer arm (Figure 2A). In a hetero-bifunctional cross-linker, two 

different types of reactive groups are linked by a spacer arm (Figure 2B). In a zero-length  

cross-linking, cross-linking agents mediate amide or a phosphoramidate bond formation of the two 

reactive groups without the intermediate spacer (Figure 2C). The zero-length cross-linker is especially 

useful when we want to detect residues that are within 3Å in space. There is also a hetero-trifunctional 

cross-linking agent, where three types of reactive group can be cross-linked. In the trifunctional  

cross-linking, a third reactive group from a protein can be attached or can be used for affinity 

purification purposes in case a biotin moiety is incorporated [26].  
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Figure 2. Four types of cross-links (adapted from figure 3 of [26]). (A) Homo-bifunctional; 

(B) Hetero-bifunctional; (C) zero-length; and (D) hetero-trifunctional cross-link.  

 

Cross-linking coupled MS has been successfully used to determine interactions between proteins. It 

has been used to identify interaction sites between heat shock protein and substrates [27], determine 

the structural organization of 19S regulatory particles in the 26S proteasome [28], and assess dynamic 

structures of viral capsid by identifying residue specific inter- and intra-subunit interactions in the viral 

capsid precursor [29]. There are various advantages of chemical cross-linking experiments including 

the importance of the distance constraint information obtainable from the experiment and the ease of 

the cross-link experiment. However, due to the complexity in the cross-linking chemistry, the MS 

analysis is considered to be challenging and requires advances in both the experimental and 

computational analysis strategies [14]. A survey of chemical cross-linking technique can be found in a 

review by Sinz [26].  

2.4. Ion Mobility-Mass Spectrometry  

Ion mobility-mass spectrometry (IM-MS) is a multi-dimensional separation method that combines 

the ion-mobility spectrometry experiment with the MS experiment to identify components in the test 

sample. The major contribution of IM-MS in the proteomics studies is the capability to separate 

molecules by their size and shape, which enables the discrimination and determination of 

heterogeneity in the biomolecules [16].  

In the IM-MS process, the ion mobility spectrometry experiment (IM) separates the initial batch of 

ionized test sample according to their mobility in the gas phase. The mobility depends on the size and 

shape of each ion. Other factors, such as structural heterogeneity and flexibility that effects the 

orientation and distribution of charges on the ion, also play important roles in the mobility of  

ions [16,30]. However, comprehensive list of factors and their mechanisms are not yet known. Known 

factors are controlled and utilized to analysis the characteristics of the molecule. After IM process, the 

ions are further separated by their mass-to-charge ratio (m/z) by the MS analysis. The MS process, in 

most case, is done in vacuum conditions and utilizes the distinctive properties of ions to determine 

their mass.  

Since IM-MS experiment is executed in gas and vacuum states, the molecules being studied are 

more dynamic compared to when they are in a crystalline state, which is a required state for X-ray 

crystallography. This property allows for better analysis of the dynamics of the proteins being studied 

as well as providing more native-like information about the fold of the proteins [31]. Also, diffusion 

cross-section data obtained in the IM process provides information about the radius of gyration of the 

protein [32].  
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IM-MS has been successfully used to identify the ring-like topology of trp RNA binding protein, 

composed of 11 members, by determining its collision cross section[33] to study the relative 

population of oligomers of 42-residue amyloid beta-protein and its alloform with 19th residue 

substituted to proline [34], and to characterize the oligomeric population detected during the formation 

of fibrils of β(2)-microglobulin. This helped to identify the properties of transient, oligomeric 

intermediates formed during assembly of the fibrils [35]. Diverse types of IM and MS exist that can be 

combined to form the IM-MS technique. A review on the types of IM methods coupled with MS can 

be found in [36]. Also, further description and application of IM-MS method in the context of 

applications to structural biology can be found in [16].  

2.5. Native Mass Spectrometry 

Native MS is a group of MS-coupled experiments that focuses on the structure, dynamics, and 

subcomponent interaction of intact biomolecular complex in a native-like state [37]. Native MS is 

often combined with various MS-coupled methods, such as electrospray ionization MS (ESI-MS) and 

ion mobile MS (IM-MS), and structure optimization programs to determine the topology and dynamics 

of quaternary structures in their native-like state [38]. Native MS in itself is a low resolution structure 

determination technology. However, compared to the traditional structure determination technologies 

such as X-ray crystallography and NMR, it is more sensitive, faster, and allows higher selectivity as 

well as providing information on stoichiometry, stability, and spatial arrangement of the subunits in the 

complex [38,39]. The higher sensitivity comes from the environmental property of native MS that 

preserves the native-like conditions of the native structure and dynamics of the complex.  

There is diversity in the methodology and the application of the native MS. However, only the key 

characteristics are pointed out to enhance understanding of its usefulness in structural modeling. Native 

MS has special properties such as non-denaturing ionization of electrospray ionization (ESI) [40]. The 

electrospray ionization of native MS involves the dispersion of the liquid state solution into  

nano-droplets which are then reduced to maximal surface charge of molecular till a certain size and 

composition is reached. Then, the ion-free state is accomplished through uses of volatile ESI 

compatible buffers under native-like conditions. More details of the electrospray ionization process can 

be found on review by Kebarle and Verkerk [41]. After this process, the complex can be decomposed 

to sub-complexes and subunits. Denaturing MS can be used to find the mass of subunits and 

subcomplexes, revealing the topology of the complex [40]. Tandem MS can be used additionally to 

validate the subunits and also to identify peripheral subunits. Ion mobility MS is a rather young 

addition to the native MS pipeline that can be used to determine the shape and cross-section of intact 

complexes and subcomplexes [38,42].  

Native MS has been used to characterize the structure of 20S proteasome [43,44], confirm the 

subcomponents and stoichiometry of RNA polymerase II and III [45], and study the endogenously 

expressed protein complexes including exosome [46]. More details in the application of native MS for 

structural analysis will be described in Section 4.  
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3. Structure Prediction Methods 

In this section, we focus on the structure prediction methods which often act as prerequisites of 

function annotation of protein or protein complexes. We take special interest in properties that have the 

potential for being integrated with the MS experimental data for sensitive modeling of structure and 

dynamics of biomolecules of interest.  

Protein structure prediction falls into three categories depending on the availability of solved 

structures: homology (comparative) modeling, threading (fold recognition), and free (ab initio) 

modeling [47]. Comparative modeling builds a model using experimentally solved 3D structures 

(templates) that have high sequence similarity to the protein being analyzed. Threading involves the 

alignment of the target sequence directly to 3D structures of proteins utilizing structural and biochemical 

similarities detectable between the target sequence and 3D structures in the database. This allows for 

relaxation of sequential similarity between the target and the template. Free modeling, or the ab initio 

method, predicts a model without a template structure, utilizing the force fields and knowledge-based 

potentials of the target sequence. Table 2 summarizes the three types of modeling methods.  

Table 2. Structure prediction methods and their limitations. 

 Accuracy range  Protein size limit Structure prediction methods 

Homology 

modeling 

1–2 Å NA MODELLER [48],  

SWISS-MODEL [49] 

Threading 2–6 Å NA HHpred [50], RaptorX [51],  

MUSTER [52], Sparks-X [53] 

Ab initio 4–8 Å 150 Rosetta [54], I-TASSER [55],  

SimFold [56,57], QUARK [4], CABS [58] 

3.1. Homology Modeling 

The structure prediction process of homology modeling, according to Martí-Renom et al. [59], is 

composed of four sequential steps: (1) fold assignment and template selection; (2) target-template 

alignment; (3) model building; and (4) model evaluation. Templates are selected based on the sequence 

similarities that are analyzable after the sequence alignments. The first two steps can be executed 

together using fast but accurate alignment methods. It has been shown that homology modeling can 

achieve accuracy up to backbone RMSD of 1–2 Å when a template of 50% or higher sequence identity 

is found and used [60].  

Template selection and alignment are two of the most important components in comparative 

modeling. Thus, development of sequence alignment methods with high sensitivity and specificity is 

critical [61]. Template selection and alignment methods have evolved towards improving the balance 

between the two criteria. Earlier approaches used pairwise alignment methods, such as FASTA [62] 

and BLAST [63], to compare sequence similarity between target sequence and sequences on the 

database. Nowadays, multiple sequence alignments are being used. Multiple sequence alignments are 

shown to improve the sensitivity of alignment without sacrificing the selectivity. Multiple sequence 

alignment also has been shown to be better in preserving structural similarities [64]. They are also used 

to find highly conserved region, such as ligand binding sites. Some of the available multiple sequence 
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alignment tools are MUSCLE [65], ClustalW [66], PSI-BLAST [67], and HHsearch (as part of the 

HH-suite [50]).  

Once the model has been aligned, the next step is the model building. This involves initial 

assignment of Cartesian coordinates to the target. The idea of conventional model building started 

from copying 3D coordinates from a database of templates. The easiest, yet widely used approach is 

called rigid body assembly. In the rigid body assembly, first a conserved core region from a small 

number of templates is constructed by superposing and averaging coordinates of Cα atoms or 

backbone molecules [68]. After initial assignment is made, the model rebuilds non-core regions such 

as side chains. Loop regions are often optimized further since the structure of those areas are less 

conserved [69,70]. Alternative model building methods utilize the segment-matching approach. The 

segment-matching approach is an extension of rigid body assembly that utilizes the coordinates of 

small segments that best align with the protein of interest. Unger and co-workers [71] introduced and 

experimented the “building blocks” approach on hexametric structures. The building block approach 

first builds a model from the representative segments (blocks), then replaces them by another segment 

within the cluster whose RMSD is smaller. Similarly, Levitt [72] first divided the target sequence into 

short segments, then matched fragments from the database using energetic or geometrical criteria, 

which are: Sequence similarity, conformational similarity (secondary structure and atomic coordinates), 

and compatibility (van der Waals interactions). Modern homology modeling has evolved into much 

more sophisticated approach, conjoined with global energy minimization procedure. This approach is 

called modeling by satisfaction of spatial restraints [59,70].  

3.2. Threading 

Threading shares many methodological similarities with that of homology modeling. The difference 

lies in the properties used for target-template alignment. Unlike homology modeling that relies solely 

on the sequence information, threading aligns the target protein sequences and target structures by their 

statistical similarity between sequence and structural properties. This idea expanded from the 

observation that the diversity of sequences is higher than that of the folds. An earlier threading 

approach by Bowie et al. [73,74] introduced the sequence-structure profile matching method. The 

method generates structural profiles from the environmental factors of the residues in the 3D structure. 

The environmental factors include the area of the residue buried in the protein which is inaccessible to 

solvent, the fraction of side-chain area that is covered by polar atoms, and the local secondary 

structure. The 3D profiles are aligned with dynamic programing based on the statistical compatibility 

with the 1D target sequence independent of the template sequence information.  

One of the representative threading algorithms, PROSPECT [75], utilizes residue-residue contacts 

information. PROSPECT finds globally optimal threading alignment between the target sequence and 

the template structure with a divide and conquer approach. It first divides the template into small 

substructures in the form of a tree, and then an iterative procedure of alignment and local optimization 

is performed until the whole template is considered and the total energy is minimized. Their scoring 

function is a weighted linear function consisting of four energy terms [76]: mutation, singleton,  

pair-contact potential, and alignment gap penalty. The mutation energy term is a compatibility 

measurement for substituting the template amino acids by target acids. The singleton energy term 
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measures the compatibility of aligning the target amino acid onto the template position base. More 

specifically, the singleton term examines the likelihood of substituting one residue to another and the 

preference of secondary structure and solvent accessibility for the particular residue. Pairwise-contact 

potential energy is a statistical term reflecting the likelihood of the residue of types i and j to be in 

contact, i.e., resides within 9Å but separated by three or more residues in sequence. The alignment gap 

penalty energy term gives more penalties to larger gaps in alignment. 

One exemplar of recently developed threading algorithm is MUSTER [52]. MUSTER also uses 

dynamic programming to identify the best match between the target and the template sequences. The 

scoring function of MUSTER consists of seven energy terms. The first term is the sequence profile, 

which denotes the frequency of the residue types at a position in template and can be acquired by  

PSI-BLAST multiple sequence alignment. The second term indicates secondary structure match 

between the residues of the target, predicted by PSI-PRED, and the analyzed secondary structure of the 

residues of the template. The third term is the structure profile that is derived by a depth-dependent 

structure analysis. The depth of the residue is the measurement of the depth from the protein surface to 

the residue by calculating average distance of a residue from the solvent water molecule. Unlike 

solvent accessibility, it can distinguish atoms just below the surface and those in the core [77,78]. 

MUSTER splits the initial templates with nine residues by a gapless threading. Then fragments with 

similar depth (those with smaller RMSD) from the database are collected to calculate the frequency 

profile at each position of the template. Fourth term is solvent accessibility term, which compares the 

solvent accessibility of the template assigned by STRIDE [79] and the solvent accessibility of the 

target predicted by the two-state neural network machine. The fifth and sixth term assigns scores based 

on the similarity between the two torsion (psi and phi) angles of the template and the torsion angles of 

the target predicted by support vector regression. The last term is from hydrophobic scoring matrix, 

matching the hydrophobic patterns of target and template.  

3.3. Ab Initio Method 

Ab initio method, alternatively called de novo or free modeling, is a structural modeling approach 

that does not rely on template structures. Although homology modeling and threading can achieve 

higher prediction accuracy, ab initio methods are needed when there are no detectable template 

structures in the database. There have been numerous advances in the ab initio methods. However, 

computation time cost is still high and building models with more than 150 residues are still 

challenging in terms of accuracy [4,60].  

There are two directions in the ab initio methods, one is more physics-based and other is more 

knowledge-based. Physics-based methods are generally more interested in the fold dynamics 

themselves while knowledge-based methods are focused on the accuracy of the final structure. 

Physics-based methods are often integrated with molecular dynamics simulations using physics-based 

force fields. Representative examples of modeling systems using all-atom physics based force fields 

include CHARMM [80], AMBER [81], and OPLS [82]. Their force fields share potential terms 

including intra-molecular terms such as bond lengths, angles and torsion angles, as well as non-bonded 

terms such as Coulomb potential and Lennard-Johns. Knowledge-based methods are focused on the 

resulting structure rather than the actual fold mechanism. For this reason, they use knowledge-based 



Int. J. Mol. Sci. 2013, 14 20645 

 

potential energy functions in addition to simple energy terms. Also, reduced models of the residues are 

often used to speed up the computation and increase the conformational search space [58,83]. 

Knowledge-based ab initio methods rely on the efficient structure space sampling algorithms as well 

as the effective scoring functions. It is not feasible to consider all possible conformations a structure 

can have. Thus, often variants of Monte Carlo sampling methods are used to search for possible 

conformations. Scoring function integrated with the sampling methods is also important for finding the 

most native-like structures. Following are some of the energy terms used in the scoring functions of  

ab initio methods, including SimFold [56] and QUARK [4].  

3.3.1. Backbone Torsion Angles (Dihedral Angles) Potential 

Many structure prediction approaches take advantage of statistically probable phi/psi angle 

distributions. Ramachandran plot—i.e., plot of psi and phi angle present in a structure—is useful tool 

for visualizing the torsion angles of a conformation and determining if they fall into a native-like  

psi-phi distribution. Both SimFold and QUARK defined this energy function as the sum of probability 

of phi and psi angles:  

               

               

 
(1) 

Weights in SimFold depend on the type of amino acids and their position in the “quadrant” bin of a 

Ramachandran plot. Each quadrant corresponds to alpha-helix, beta-strand, alphaL, and rare  

regions [56]. In QUARK, probabilities of phi and psi angles are conditioned on residue type and 

secondary structure type. For this purpose, 60 different Ramachandran plots of each condition pairs are 

generated (20 amino acid types × 3 secondary structure types) and used [4].  

3.3.2. Hydrogen Bond Potentials 

Hydrogen bonds are one of the dominant energy factors for forming the secondary structure and the 

global topology of a protein structure. SimFold defines the hydrogen bond potential as the summation 

of following terms: (i) hydrogen bond interaction between any two atoms in the backbone (N, Cα, C); 

(ii) four-body hydrogen bond characteristic in the β-sheet, which incorporates two hydrogen bonds in 

neighboring β-sheets; and (iii) the Born- or Self-energy term which is effected by charged and polar 

groups that determines the propensity for residue to be buried or exposed to solvent [84]. In contrast, 

QUARK algorithm does not compute hydrogen bonds directly. Instead, QUARK utilizes the geometric 

features governed by the hydrogen bones between the two closest by residues i and j: the distance 

between Oi and Hj, the inner angle between Ci, Oi, and Hj, the inner angle between Oi, Hj, and Nj, and 

the torsion angle between Ci, Oi, Hj, and Nj [4].  

3.3.3. Solvent Accessibility 

Solvent accessibilities are the extent to which a protein structure interacts with the solvent [85]. 

Explicit computation of the solvent accessibility involves various types of factors including 

electrostatic potential, hydrophobicity, and van der Waals force. Thus, the calculations are 

computationally intractable and require approximation algorithms. Provided the protein structures, 
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solvent accessibility of biomolecules is often inferred by calculating the solvent-accessible surface area 

(SASA) or per-residues solvent-accessibility surface area (rSASA) of the structure. The typical method 

of calculating the precise SASA is done by rolling spherical probe around the bimolecular. The probe 

size is often 1.4 Å to represent the size of water molecule. rSASAs are often divided by the surface 

area of each type of residue after assigning the SASA for each of the residues of the biomolecules. 

Readers interested in extensive discussion of the SASA calculation methods are referred to work by 

Durham et al. [85]. QUARK estimates the solvent accessibility in their optimization process while 

SimFold does not explicitly account for them in their scoring function [4].  

There are also several other energy terms used such as van der Waals interaction, solvation, radius 

of gyration, and secondary structure packing. Also, spatial constraints are used to avoid collisions, to 

preserve distance between residues, and to form globular structure. In an integrative structural 

modeling, energy and spatial constraints can be obtained through experiments instead of prediction 

from sequences. Application of experiment data will thus increase the accuracy of modeling.  

3.4. Composite Protein Structure Prediction 

Recently, many structure prediction methods consist of a combination of all three types of structure 

prediction methods [60]. In homology modeling and threading, modification of unconfident regions 

such as loops are done in ab initio fashion. Also, many ab initio approaches have adapted the uses of 

spatial restrains or structural fragments detectable by threading [4,86]. Threading relies more on 

multiple sequence alignment and sequentially conserved properties to align the sequence to structures. 

In general, a composite protein structure prediction will first search the template library to determine 

the availability of homolog structures. If the templates are found, coordinates are assigned to aligned 

regions between the target and template. Unaligned regions and evolutionarily diverse regions are 

modeled by ab initio methods. If the templates are not found, ab initio modeling is performed on all 

the areas. After the initial prediction, models are evaluated and selected. Then, the full atomic 

coordinates of side-chains are assigned and optimized [60].  

We take a closer look at two structure prediction pipelines of the top CASP predictors:  

I-TASSER [4,87] and Rosetta [54,86]. Both methods are threading-integrated model free structure 

prediction methods. The flowcharts of the two methods are shown in Figure 3. Common steps for both 

methods are fragment generation process, modeling assembly, and atom-level refinement.  

Figure 3. Structure prediction pipeline (A) Rosetta [54]; and (B) I-TASSER pipeline 

(adapted from Figure 1 of [55]).  
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3.4.1. Fragment Generation 

Sophisticated threading algorithms are used to generate and score target-template alignments. Many 

algorithms use a combination of both sequence and structure information. Fragments are generated for 

each segment of the query sequence using the profile that best aligns the sequence segments [4].  

I-TASSER builds fragments with continuous lengths from 1 to 20; Rosetta builds possible 3-residue 

and 9-residue fragments for each of the sequence segments. In Table 3, we show terms used in the 

scoring function of Picker [88] from Baker’s group and MUSTER [52] from Zhang’s group. 

Table 3. Scoring criteria of two fragment generators.  

 Rosetta (Picker) I-TASSER (MUSTER) 

Amino Acid Sequence ●  

Query Sequence Profile ● ● 

Secondary Structure ● ● 

Chemical Shifts ● ● 

Distance Restraints ●  

Dihedral Restraints ● ● 

Solvent Accessibility  ● 

3.4.2. Initial Model Assembly 

Reduced model of protein is generally used in the initial assembly. With knowledgebase force field 

and efficient search algorithm, conformational search is done by Monte Carlo algorithms that 

iteratively update and optimize confirmation to native structure by energy function. I-TASSER model 

assembly starts from single decoy and generates many reasonable (i.e., global energy is low and close 

to zero) decoys by fine tuning Cα atom positions and torsion angles. In contrast, Rosetta fragment 

assembly finds combinations out of candidate fragments that minimize global energy. Commonly used 

energy functions are shown on Table 4. A number of possible models are generated as result of the 

initial model assembly. Those models are then clustered into few categories and structures in the 

cluster centroids are chosen for further refinement. 

Table 4. Energy functions used in structure prediction.  

Type Energy Function Description 

Physics 

Van der Waals Non-bonded Energy 

Electrostatics Coulomb Potential 

Atomic Bond Length Equilibrium of Bonds 

Knowledge 

Backbone Torsion Angle From Ramachandran Plot 

Hydrogen Bonds Secondary Structure 

Radius of Gyration Structure Compactness 

Fragment Distance Distance between Fragments 

Solvent Accessibility Tertiary Structure 
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3.4.3. Atom-level Refinement 

Detailed backbones and side chains of protein are represented and refined. In the previous step, 

knowledge based force field that is based on the statistics of the known structures are used. In the 

atom-level refinement step, realistic potential energy terms are used for model refinement. Other terms 

such as bond length, angle constraints, steric overlaps and hydrogen-bonding network are also used  

for refinement.  

4. Integration of Proteomics Data and Structural Modeling 

Computational methods that integrate structure prediction and experimental methods are emerging 

strategies in the structural biology field. There are notably many efforts in integrating low resolution 

structure analysis methods with computational methods, such as docking substructure to cryo-electron 

microscopy (cryo-EM) images and small angle X-ray scattering (SAXS) profiles in structure 

determination. However, there are not many attempts to integrate MS-coupled experiment with 

structure prediction. For readers interested in the integrative structure modeling methods using  

cryo-EM images or SAXS profiles, detailed reviews can be found in [89] and [90], respectively. In this 

section, we first cover some of the existing researches on the application of MS experiments to 

structural modeling. Then, we provide suggestions on possible MS experimental results that can be 

used in the structural modeling process to analyze the structure and dynamics of biomolecules. 

4.1. Chemical Cross-Linking Experiment Integrated Structure Modeling  

Chemical cross-linking based MS experiments that provide information about molecules close in 

distance are one of the earliest and most intuitive MS-coupled experiments that can be integrated to the 

structure modeling. Using the result for the chemical cross-linking to extract distance constraints, 

structure modeling can use the distance constraints to either refine the structures in comparative 

modeling or use in order to limit the sample space in ab initio modeling.  

In the early work by Young et al. [91], intra-molecular cross-linking, MS and threading are used to 

identify the structure or the fold of a bovine basic fibroblast growth factor (FGF)-2. Using a  

lysine-specific cross-linking agent, they identify the eight lysine-lysine links in the FGF-2 that are 

validated with the MS. With the distance constraints from the cross-linking experiment combined with 

the threading method, they were able to correctly identify the fold type of FGF-2 as the b-trefoil fold. 

They were also able to model the FGF-2 with homology modeling with backbone RMSD of 4.8 Å.  

Chemical cross-linking has been applied for determining the topology of macromolecules that are 

difficult to detect by the traditional structure solution techniques. Chen et al. [92] applied the chemical 

cross-linkage information to determine the architecture of RNA polymerase II with the transcriptional 

initiation factor (TFIIF) at a peptide resolution. With the cross-linking coupled with the MS, they were 

able to identify 253 inter-protein and 149 intra-protein links. The subcomponents of the complex were 

predicted by homology modeling, when the crystal structures are not available. Then, the linkage 

information was applied to determine the distance constraints used to manually reconstruct the 

complex using the structures of the 15 subunits.  
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Chemical cross-linkage can also be used to determine the fold of a single protein. In the work by 

Fioramonte et al. [15], the utility of the intra-protein chemical cross-linking in determining the 

secondary structure of polypeptides without any homology information was illustrated. They exploit 

the geometric characteristics of alpha-helix and beta-sheets, such as the tendency of residues with 

bulky side chains to form beta-sheets and distance between the linkages formations used to derive  

cross-linking rules. Cross-linkage rules are then used to determine the secondary structure of 

polypeptides or proteins. More recent researches exploit the technical advances in the cross-linking. 

Instead of being restricted to lysine cross-linking, cross-linking is now possible between divers residue 

types. This increases the detectable number of distance constraints. A review on chemical cross-linking 

applied to structure modeling can be found in [93,94].  

4.2. Native Mass Spectrometry Integrated Structural Solvers  

Native MS is an emerging technique for macromolecular structure determination. As described in 

the previous section, native MS is a combinatorial method that involves several MS-coupled methods 

to detect large molecular complexes that are often not detectable by traditional structure determination 

methods. It is often combined with computational modeling methods to integrate the exiting 

knowledge of structure with the experimental results. Heck [37] points out that a native MS can be 

used to bridge the gap between the interactomics—the study of biomolecular interaction—and the 

structural biology. The study of the interaction of molecules is traditionally performed by yeast  

two-hybrid screening or by affinity purification MS. These methods are often high throughput and can 

be applied in massive scales. Although native MS is currently unable to scale up to high throughput 

studies, both in time and size, it has been often shown to be successful in determining interaction 

between subcomponents of complex structures. Successful applications of macromolecules, such as 

virus [95], yeast exosome [46,96], proteasome structure [43,44], RNA polymerase structure [97], and 

therapeutic antibodies [98], have been shown.  

Taverner et al. [42] propose an integrative modeling method for identifying the subunit architecture 

for intact protein complexes using MS and homology modeling. In their method, complex of interest is 

first isolated using affinity tag and column chromatography. Then, gel electrophoresis and tryptic 

digestion is performed to determine the subunit composition of the complex. The masses of the 

complex and identified subunits were then determined by a spectrum of the denatured proteasome lid. 

Mass of subunits and their stoichiometry was searched against the known units in the database using 

their search engine, SUMMIT, to identify the actual subunits. Also, interaction network was built 

using their subunit interaction information. Homology modeling method was used to model the 

structure of subunits and the structure of the complex was derived manually based on the interaction 

information obtained through native MS experiment. Then, the structural fit to the experimental result 

was evaluated.  

There are various applications of native MS in analysis of oligomeric structures. Most of the focus 

is not on computational structural modeling, although homology modeling of subunits is used in 

several cases [42,99,100]. There are several reviews on native MS and applications to structure  

modeling [37,38,40].  
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4.3. Multiple-Experiment Combination for Structural Modeling 

Lasker et al. [101] suggested an automatic iterative four-step integrative structure modeling 

procedure that can be used to combine experimental methods in structural modeling. The four steps 

consist of (1) finding available information about the structure of interest; (2) designing systems that 

will extract spatial restraints from the available experiments; (3) computing candidate structures that 

satisfy the spatial restraints; and (4) evaluating the candidate structures. They proved the usefulness of 

this procedure by predicting the architecture of the human RNA polymerase II and verifying the 

prediction against a known experimentally solved complex. The initial data used, in addition to the 

experimental data, were 12 homology modeled subcomponents found in the MODBASE [102], 

proteomics data including affinity capture MS proteomics data for yeast RNA polymerase II subunits 

extracted from the BioGRID [103], and an electron density map of human RNA polymerase at 20 Å 

resolution found in the EMDataBank [104], which were processed to extract spatial restraints.  

Zhou and Robinson [105] also review how superimposition of high resolution subunits into low 

resolution complex extracted from various MS experiments, including ion mobility (IM)-MS, and 

cyro-EM image, can be done. Benesch et al. [106] provide a comprehensive review on gas phase 

(native state) proteomics methods that can be applied to analyze protein complexes.  

4.4. Constraints Common in MS-Coupled Experiments and Structure Modeling Methods 

Structural proteomics is becoming more practical with the advancement of computational models 

and proteomic methods [107]. However, they are still either experiment-dominant, not exploring the 

benefits of computation methods, or computation-dominant, being limited by the available 

experimental data. Also, most experiments are used to find the topology of the complex structure or 

their structural change altered by binding. However, we argue that experimental methods can also be 

used to model individual structure focusing on their change in structure and dynamics upon mutation 

and/or modification. To promote balanced integration of both experimental and computational 

methods, we identify some of the constraints that can be used to model structures as shown in Table 5.  

Table 5. Constraints and energy terms and their availability. 

Constraints and energy  MS-coupled experiments Structure prediction methods 

Solvent accessibility HDX, protein footprinting I-TASSER, QUARK, SimFold, Rosetta, 

PROSPECT, RaptorX, MUSTER 

Pair-wise distance constraints Chemical cross-linking I-TASSER, QUARK, SimFold, Rosetta, 

PROSPECT, CABS 

Secondary structure HDX, chemical cross-linking I-TASSER, QUARK, SimFold, Rosetta, 

PROSPECT, RaptorX, MUSTER Sparks-X, 

Swiss-Model 

Radius of gyration Ion mobility I-TASSER, QUARK, SimFold, Rosetta 

Topology Ion mobility, chemical cross-linking I-TASSER, QUARK, Rosetta 
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5. Conclusions  

Although there have been various efforts for integrating proteomics data into the structural 

modeling, they are not enough. In this review, we identified and reviewed both the MS-coupled 

experiments and structure prediction methods such that researchers working on one field (MS or 

structure prediction) will have a better understanding of the other. Examples of efforts in integrative 

structure modeling were provided to argue that integrative methods can be successful. However, there 

are not many methods that are available to directly apply the experimental results in the structural 

optimization process. There are several reasons for the limitations. One reason is that translating the 

experimental result to spatial constraints that are addressable by structural modeling has not been 

investigated enough. Another reason is that availability of the MS-coupled data is limited. More efforts 

in sharing the MS-coupled data will promote advances in the constraint modeling and also in the 

integrative structural optimization methods.  

To promote the idea of integrating the two methods, we have also listed out some of the constraints 

that are used in the structure prediction methods and ones that are available through the experiments. 

By listing out information for both the MS-coupled experiments and the structure prediction methods, 

we showed that there are still wide possibilities in the marriage between the proteomics studies and the 

structure prediction. Advances in the constraint modeling methods of experimental data and 

developments of integrative structural modeling methods that are flexible in integrating various 

constraints will greatly promote the structural genomics. This in turn will enhance our understanding 

of biology as well as disease mechanisms that are unable to be detected by genomics alone.  
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