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Abstract: The MYC genes are a group of transcription factors containing both bHLH and 

ZIP motifs that play important roles in the regulation of abscisic acid (ABA)-responsive 

genes. In the present study, to investigate the roles of MYC genes under NaCl, osmotic and 

ABA stress conditions, nine MYC genes were cloned from Tamarix hispida. Real-time 

reverse-transcriptase (RT)-PCR showed that all nine MYC genes were expressed in root, 

stem and leaf tissues, but that the levels of the transcripts of these genes in the various 

tissues differed notably. The MYC genes were highly induced in the roots in response to 

ABA, NaCl and osmotic stresses after 3 h; however, in the stem and leaf tissues, MYC 

genes were highly induced only when exposed to these stresses for 6 h. In addition, most of 

these MYC genes were highly expressed in roots in comparison with stems and leaves. 

Furthermore, the MYC genes were more highly induced in roots than in stem and leaf 

tissues, indicating that these genes may play roles in stress responses mainly in the roots 

rather than the stems and leaves. The results of this present study suggest that MYCs are 

involved in salt and osmotic stress tolerances and are controlled by the ABA signal 

transduction pathway. 
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1. Introduction 

MYCs (myelocytomatosis proteins) are a group of transcription factors found in plants and  

animals [1]. MYC2, which is allelic to Jasmonate insensitive 1 (JAI1/JIN1), was firstly identified from 

a mutant screen for reduced sensitivity to jasmonic acid (JA) [2]. Previous studies have shown that 

MYC2 plays an important role in the regulation of JA- and abscisic acid (ABA)-responsive genes [3–6]. 

MYC family members belong to a group of bHLH proteins that contain both bHLH and ZIP motifs [7]. 

The presence of both ZIP and bHLH motifs in a protein determine its specificity and affinity for 

sequence-specific DNA binding and can facilitate the formation of various hetero- and homodimers [8]. 

Through the interaction of their two amphipathic helices, MYCs can form homodimers or 

heterodimers [1,9]. Many MYC transcription factors bind to a consensus hexanucleotide sequence 

called the E-box (CANNTG) [10]. E-boxes can be divided into several types based on the identity of 

the two central bases in the sequence, and these include the G-box sequence “CACGTG” and the  

G-box-related motif “CACATG” [11–13]. The MYC2 transcription factor can bind with both the  

G-box-related motif [14,15] and the G-box sequence [16]. MYCs are involved in various processes, 

including the biosynthesis of anthocyanins, Tryptophan (Trp), proanthocyanidins and flavonoids; 

controlling the development of the trichome, carpel margin tissues, embryonic epidermis and root 

hairs; regulating floral initiation, the formation of the ER body, seed germination, stomatal 

differentiation, and endosperm breakdown; certain roles in the signaling pathways of jasmonate, ABA,  

phytochrome-mediated light, and gibberellin; and finally, mediating tolerances to biotic and abiotic 

stresses [17–21]. Gene expression analysis is an important way to elucidate the biological functions of 

certain genes. The genes responding to abiotic stresses are most likely to be involved in stress responses 

and tolerance. MYC transcription factors are involved in many biological processes, including 

important roles in the regulation of abiotic stress tolerance. However, there are few reports concerning 

the expression patterns of MYCs in response to different abiotic stresses. 

Salt and drought are common adverse environmental factors and these have greatest impacts on 

plant productivity. Therefore, there is interest in selectively breeding plants that are tolerant to high salt 

and drought stresses. Studying plant tolerance to salty and arid soil at the molecular level may provide 

valuable information for improving salt and drought tolerances of plants by introducing targeted 

molecular breeding methods. Tamarisk (Tamarix hispida) is a shrub that is well adapted to arid, soda 

or saline soils. The ability of T. hispida to thrive in arid and saline soils indicates that this species has 

molecular and physiological systems that enable it to adapt and tolerate these stressful conditions, 

making it a desirable species for investigations into salt and drought tolerance in plants. 

In this present study, nine unique MYC genes were cloned from T. hispida, and phylogenetic 

analysis was performed to uncover the genetic relationships between these genes. To elucidate the 

biological functions of the MYCs in responding to abiotic stresses, time-course expression of each 

gene was assessed in root, stem and leaf tissues during exposure to salt and drought stresses and the 

exogenous application of ABA. This study provides further insights into the roles of MYCs in abiotic 

stress tolerance in plants. 
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2. Results  

2.1. Identification and Bioinformatics Analysis of MYC Genes from T. hispida  

In total, nine unique MYC genes were identified from transcriptomes of T. hispida. These genes 

were designated as ThMYC1 to ThMYC9, and these sequences have been deposited in the GenBank 

under accession numbers JN166785 to JN166790 and JN166792 to JN166794 (Table 1). 

Table 1. Primers used for real time RT-PCR. 

Gene 
GenBank 
Accession 
number 

Forward Primers (5'-3') Reverse Primers (5'-3') 

ThMYC1 JN166785 AGGCTTAATGACAAGTTTGTGG AGCGTATGCGGCTGGCATTGTT 
ThMYC2 JN166786 GTATCCGGATATAGTTGAGCAG GGATGCCATCAAGAGTTGATG 
ThMYC3 JN166787 AATGGTAGTGGTAGAGTCGGTG CTCATCATTAGGTCCTGACGAT 
ThMYC4 JN166788 GAAGCGATTGAGGGAAGATGAT CTTCACATACTCCACTGCTTCT 
ThMYC5 JN166789 TTGAGTGGAAGCGTTGATGGGT TATCACTAATTCTTGTCCTTCG 
ThMYC6 JN166790 TGAGTACTTGGTAGCTAGCTCT ATCATCATCATCAGAACCACTG 
ThMYC7 JN166792 TAGGAACCGAAGTCTGGATCCT GTATAGGTATACATACCAGAGT 
ThMYC8 JN166793 ATGAAAACTCTTTACTCACAGC TCCGACCCTACGCGTATGTGTC 
ThMYC9 JN166794 TCAAGCTACTGATAGCCACAGT TCGAATGTAGTTGGAGCAAGCT 

Actin FJ618517 AAACAATGGCTGATGCTG ACAATACCGTGCTCAATAGG 
α-tubulin FJ618518 CACCCACCGTTGTTCCAG ACCGTCGTCATCTTCACC 
β-tubulin FJ618519 GGAAGCCATAGAAAGACC CAACAAATGTGGGATGCT 

Among the nine unique ThMYCs identified, five had full open reading frames (ORFs) that encoded 

deduced polypeptides of 160 to 492 amino acids in length, with predicted MWs of 17.89 to 55.06 kDa 

and pI values of 4.77 to 7.67 (Table 2). The phylogenetic relationships between these ThMYCs were 

deduced from aligned sequences. The phylogenetic tree showed that these nine ThMYCs formed into 

three main subgroups: subgroup 1 contained ThMYC1, ThMYC9, ThMYC2, ThMYC6 and ThMYC5; 

subgroup 2 contained ThMYC3, ThMYC4 and ThMYC8; and subgroup 3 that contained ThMYC7 only. 

ThMYC7 showed similar genetic distances to subgroups 1 and 2 (Figure 1). 

Table 2. Characteristics of the five ThMYCs with a full-length open reading frame (ORF). 

Gene cDNA Length (bp) 
Mature Protein 

Amino acid length MW (kDa) pI 

ThMYC1 717 238 26.42 7.67 
ThMYC2 1479 492 55.06 4.77 
ThMYC4 483 160 17.89 5.96 
ThMYC5 810 269 28.00 6.30 
ThMYC9 906 301 31.69 6.19 
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Figure 1. Phylogenetic analysis of the nine ThMYCs and seven ATMYCs : ThMYC1 

(JN166785), ThMYC2 (JN166786), ThMYC3 (JN166787), ThMYC4 (JN166788), ThMYC5 

(JN166789), ThMYC6 (JN166790), ThMYC7 (JN166792), ThMYC8 (JN166793) ThMYC9 

(JN166794), ATMYC1 (AT4G00480), ATMYC2(AT1G32640), ATMYC4 (AT4G17880), 

ATMYC6.2 (AT5G41315), ATMYC6.3 (AT5G41320), ATMYC6.4 (AT5G41330) and ATMYC6.6 

(AT5G41350), The GenBank accession number of each ThMYC is shown in parentheses. 

 

2.2. Relative Abundances of ThMYCs in Root, Stem and Leaf tissues 

The relative abundances of the nine ThMYCs were determined by calculating CT values for each 

ThMYC in the leaves, stems and roots under normal growth conditions following real-time RT-PCR. 

The ThMYC3 gene with the lowest expression level in roots (i.e., highest delta-delta CT value) was 

used as a calibrator (designated as 1.0) to determine relative gene expression levels. Relative gene 

expression levels were log2 transformed and these data are shown in Table 3. There were notable 

differences in the abundances of the nine ThMYCs expressed in each tissue, particularly in the root 

tissues. The greatest differences in transcript abundances of the ThMYCs when cultivated under normal 

growth conditions were 511,604-fold in roots, 9.3-fold in stems and 12.7-fold in leaves in the 

ThMYC1. ThMYC3 in root tissue was the transcript of lowest abundance, while ThMYC4 was the gene 

of lowest abundance in stems and leaves.  

Table 3. Relative abundances of ThMYCs in different tissues. 

Gene 

Relative abundance 

Roots Stem Leaves 

ThMYC1 511,603.5 9.257782 12.73741 
ThMYC2 5248.417 2.206867 5.107675 
ThMYC3 1 1 1 
ThMYC4 1629.259 0.466624 0.877619 
ThMYC5 321,620.5 2.7007 2.800466 
ThMYC6 396,510.6 2.046748 3.219121 
ThMYC7 85,284.74 1.304352 1.171752 
ThMYC8 31,916.17 0.666803 1.085731 
ThMYC9 14,050.09 1.613051 2.249142 
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2.3. Expression Patterns of ThMYCs in Response to Different Stresses 

The molecular function of MYCs in leaves, stems and roots was determined by examining the 

expression profiles of the nine ThMYCs in response to different abiotic stresses using real-time  

RT-PCR. The genes were clustered according to similarities in their expression profiles for different 

treatments and after different treatment times. The clustering observed demonstrated a similar pattern 

as seen in the phylogenetic tree. 

2.4. Expression Patterns of ThMYCs in Response to NaCl Stress  

The expression patterns of the ThMYCs in response to NaCl treatment were investigated. In the 

roots, all the ThMYCs, except ThMYC4, displayed similar expression patterns. They were highly 

induced by NaCl stress at 3 h, but then their transcription levels decreased at 6, 9 and 12 h. At 24 h, the 

ThMYCs were highly expressed (increases of up to 128-fold), suggesting that the ThMYCs (except 

ThMYC4) play roles in NaCl stress tolerance in roots (Figure 2A). In stem tissues, ThMYC5, ThMYC6, 

ThMYC7, ThMYC8 and ThMYC9 displayed similar expression patterns. They were highly induced by 

NaCl stress and reached peak expression levels at 6 h. ThMYC1 was induced after 3 h of NaCl stress, 

but the expression of this gene was not significantly different from expression in the control stem 

tissues at the other time points. ThMYC3 was induced after 3 h of NaCl treatment, but was highly 

down-regulated at 9 h. ThMYC2 and ThMYC4 were generally down-regulated after NaCl stress 

treatment (Figure 2B). In leaves, the ThMYCs displayed similar expression profiles. They were highly 

induced by NaCl stress at 6 h, before being down-regulated at 9 h. At subsequent time points, ThMYC 

expression levels were relatively similar to the controls, except ThMYC8 that showed a down 

regulation at 24 h (Figure 2C). 

Figure 2. Time-course expression and hierarchical cluster analysis of ThMYCs in response 

to NaCl stress. Relative gene expression level was log2 transformed: >0, up-regulation;  

=0, no change in regulation; <0, down-regulation. (A–C): expression of ThMYCs in roots, 

stems and leaves, respectively. 
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Figure 2. Cont. 

 

2.5. Expression Patterns of ThMYCs in Response to PEG Stress  

In roots, as with NaCl stress, all of the ThMYC genes (except for ThMYC4) were highly induced by 

PEG stress at 3 and 24 h, and generally transcript levels peaked at 3 h. However, at the other time 

points tested, the expression of these genes in the roots did not differ notably from the controls  

(Figure 3A). In stems, ThMYC1 was significantly induced by PEG stress at 3, 6 and 9 h, but expression 

was not significantly different from the controls at later time points. The other ThMYCs generally 

showed similar expression patterns in which the expression peaked at 6 h of PEG stress before 

decreasing to their lowest levels at 24 h. In other words, the ThMYCs were down-regulated at 24 h. 

(Figure 3B). In leaves, ThMYC1 was significantly up-regulated by PEG treatment at 3, 6, 9 and 12 h, 

but expression did not differ significantly from the control at 24 h. The other ThMYCs genes were 

highly up-regulated by PEG at 6 h (typically peak expression levels), but at the other time points their 

expression did not differ significantly from the control or were even down-regulated (Figure 3C). 
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Figure 3. Time-course expression and hierarchical cluster analysis of ThMYCs in response 

to PEG stress. Relative gene expression level was log2 transformed: >0, up-regulation;  

=0, no change in regulation; <0, down-regulation. (A–C): expression of ThMYCs in roots, 

stems and leaves, respectively. 
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2.6. Expression Patterns of ThMYCs in Response to ABA Treatment 

Real-time RT-PCR results demonstrated that all the ThMYCs in the roots (except ThMYC4) were 

highly induced by ABA exposure at 3 and 24 h; indeed, peak expression levels generally occurred at  

3 h (except ThMYC1). Nevertheless, the expression of these genes was much lower at the other time 

points examined compared with 3 and 24 h (Figure 4A). In stems, ThMYC5, ThMYC6, ThMYC7, 

ThMYC8 and ThMYC9 showed similar expression patterns, and these genes were significantly induced 

6 h after ABA treatment, but were down-regulated or did not differ significantly from controls at the 

other time points investigated. While ThMYC1 and ThMYC2 were generally up-regulated by ABA 

treatment, the expression of ThMYC3 and ThMYC4 was significantly down-regulated or did not differ 

significantly from the controls (Figure 4B). In leaves, all of the ThMYCs were induced by ABA 

treatment and transcript levels peaked at 6 h. At the other time points, except for ThMYC1, the 

expression levels of all of the other genes were similar to the controls or were significantly  

down-regulated. Indeed, ThMYC1 was significantly up-regulated by ABA treatment at 3, 6, 9 and 24 h 

(Figure 4C). 

Figure 4. Time-course expression and hierarchical cluster analysis of ThMYCs in response 

to ABA treatment. Relative gene expression level was log2 transformed: >0, up-regulation; 

=0, no change in regulation; <0, down-regulation. (A–C): expression of ThMYCs in roots, 

stems and leaves, respectively.  
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Figure 4. Cont. 

 

3. Discussion  

MYCs are involved in stress responses and these transcription factors have been found to regulate 

the expression of ABA-responsive genes [22]. In the present study, we cloned nine MYC genes from  

T. hispida. To investigate the roles of these ThMYCs in stress responses, their expression patterns were 

analyzed in response to salt, osmotic and ABA stresses using real-time RT-PCR. Our data showed that 

all nine ThMYCs were expressed in leaves, stems and roots, but that they exhibited  

tissue-specific expression patterns in response to salt, osmotic and ABA stresses. These findings 

highlight the need to investigate the expression of ThMYCs in different plant organs in order to reveal 

their detailed roles in stress responses.  

The ThMYCs showed notable differences in abundances between leaf and stem tissues under normal 

growth conditions (Table 3). Except for ThMYC3, all of the ThMYCs were highly expressed in roots 

compared with the stems and leaves, especially ThMYC4 and ThMYC8, whose expression was mainly 

found in the roots (Table 3). In addition, ThMYCs were more highly induced in roots than in the stems 

and leaves in response to salt and osmotic stresses and ABA treatment. These results suggest that the 

ThMYCs play their roles in stress responses mainly in the roots rather than in stems and leaves. The 
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abundance of ThMYC3 was lower than the other ThMYC genes, but its transcript was most abundant in 

stem tissues than in the roots and leaves. Moreover, in response to the various stresses, ThMYC3 

transcripts were highly increased in the roots and leaves compared with the stems. These results 

indicate that ThMYC3 mainly functions in the roots and leaves under conditions of stress.  

In roots, all of the ThMYCs (except for ThMYC4) were highly induced by NaCl, PEG and ABA 

treatments. Interestingly, our results showed that in general the ThMYCs displayed similar expression 

patterns under salt, osmotic and ABA stress conditions, specifically that these genes were highly 

induced at 3 and 24 h compared with the other time points. Thus, the ThMYCs were highly activated at 

3 and 24 h, and these could be the times at which the ThMYCs may regulate their target genes to 

mediate stress tolerance. Furthermore, all of the ThMYCs (except for ThMYC4) displayed similar 

expression patterns under salt and osmotic stresses, which suggests that these ThMYCs may play 

similar roles in salt and osmotic stress responses. The expression of ThMYC4 differed notably from the 

other ThMYCs in the roots and this gene was not highly regulated by salt, osmotic and ABA stresses, 

which suggests that it may not play an important role in stress responses in root tissue.  

In stems, most of the ThMYCs were up-regulated by salt and osmotic stresses and ABA treatment 

after 6 h, and their expression peaked at this time point. Similarly, In the leaves, all of the ThMYCs 

were highly up-regulated by ABA exposure and salt and osmotic stresses after 6 h. These results 

suggest that the ThMYCs may regulate their target genes in stems and leaves for adaptation to stressful 

conditions 6 h after stress treatment. 

Interestingly, our results showed that all of the ThMYCs were highly induced by ABA exposure and 

salt and osmotic stresses in the roots at 3 h; however, in the stems and leaves, they were highly induced 

only after stress for 6 h. This is probably because the root is the first plant organ to perceive the stress 

signal, and it presumably takes time to transduce stress signals to the stems and leaves to trigger the 

expression of the ThMYCs in those tissues. Our results showed that the ThMYCs were highly induced 

at early stress period (stress for 3 or 6 h) and then were inhibited. Consistent with our results, some 

reports also showed that the transcriptional factors were highly induced at early stress period and then 

decreased [23–25]. This phenomenon may be due to the reason that plants perceive the stress 

environment and produced the stress signal to trig the expression of MYCs, and the induction of MYCs 

will regulate the expression of their targets genes related stress response to adapt stress environment; 

when the regulation of MYC target genes was completed, the expression of MYCs  

will be decreased.  

MYC proteins are synthesized only after endogenous levels of ABA accumulate, suggesting that 

these proteins play roles in the latter stages of stress responses [26]. The ThMYCs function as 

transcriptional activators in the ABA signal transduction pathway under stress conditions in plants [27]. 

Our results showed that all of the ThMYCs were up-regulated by ABA in the roots and leaves. 

Moreover, ThMYCs were highly up-regulated by salt and osmotic stresses. These results confirm that 

ThMYCs are stress responsive genes and that they belong to an ABA-dependent signaling pathway. 

Our results also showed that the ThMYCs were more highly induced in roots and leaves than in the 

stems, suggesting that they may play roles in stress responses mainly in roots and leaves rather than in 

the stems. Further, these findings may also imply that stress responses occur mainly in roots and 

leaves. That ThMYC3 and ThMYC4 were not up-regulated in response to ABA in the stems but were  
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up-regulated in leaves and roots indicates that there is tissue specificity with respect to ABA induction 

of ThMYC gene transcription.  

In general, our results showed that ThMYC5, ThMYC6, ThMYC7, ThMYC8 and ThMYC9 displayed 

similar expression in response to certain stress treatments, suggesting that these genes may be involved 

in the same gene expression regulatory networks in response to stress. Conversely, ThMYC1, ThMYC2, 

ThMYC3 and ThMYC4 displayed different expression patterns in response to stress, suggesting that 

these genes may be involved in distinct gene regulation pathways. 

4. Experimental Section  

4.1. Plant Culture Conditions and Treatments 

Seeds for propagation of the plant materials were harvested from T. hispida plants. The seeds were 

planted into pots containing a mixture of turf peat and sand (2:1, v/v) and these were well-watered and 

kept under controlled greenhouse conditions of 70–75% relative humidity, 14 h light/10 h dark, and an 

average temperature of 24 °C. Two-month-old seedlings were exposed to one of four different 

treatments for 3, 6, 9, 12 or 24 h: water (normal growth condition without stress; control), 0.4 M NaCl, 

20% polyethylene glycol (PEG)-6000 or 100 µM ABA. After each treatment, root, stem, and leaf 

tissues from at least five seedlings were harvested. The harvested roots, stems or leaves from each 

seedling were pooled, frozen immediately in liquid nitrogen for RNA preparation, and then analyzed 

by real-time reverse-transcriptase (RT)-PCR.  

4.2. Cloning and Analysis of MYC Family Genes from T. hispida 

Four transcriptomes were created from root tissues of T. hispida treated with NaHCO3 for 0, 12, 24 

and 48 h using Solexa technology. Totals of 66,300, 51,204, 51,634 and 56,355 tentative unigenes 

(TUGs) were generated from the 0, 12, 24 and 48 h libraries, respectively. These TUGs were 

assembled into 81344 non-redundant unigenes using TGI Clustering tools [28]. These non-redundant 

unigenes were subjected to BLASTX analysis against protein databases, NR and Swiss-Prot, to search for 

similarities. Unigenes with BLASTX E-values > 10−5 were discarded during functional annotation. MYC 

genes were identified during functional annotation of the non-redundant unigenes by BLASTX analysis.  

4.3. Phylogenetic Analysis of MYC Sequences  

The open reading frame (ORF) of each MYC was resolved using ORF Finder from NCBI [29]. 

MYCs with complete ORFs were subjected to further analysis. Phylogenetic reconstruction was 

carried out using ClustalX Version 1.81 and the neighbor-joining method [30]. Sequence identities 

between the MYCs were calculated using ClustalW2 [31]. Classification of the nine MYCs was 

performed according to the method of [32]. Molecular weight (MW) and isoelectric point (pI) 

predictions for each MYC was carried out using the Compute pI/Mw tool [33]. 
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4.4. MYC Gene Expression Profiles in Response to Abiotic Stresses 

Total RNA of each sample was extracted using the CTAB method [34], and then was treated with 

DNaseI (Promega) to remove any residual DNA. RNA concentration was measured using a 

BioPhotometer plus (Eppendorf, Germany). Approximately 1 μg of total RNA was reverse-transcribed 

to cDNA in a 10 μL volume using 1 μM of oligodeoxythymidine as primer, and the procedures of 

cDNA synthesis was following the PrimeScriptTM RT Reagent Kit protocol (TaKaRa Corp., Dalian, 

China). The synthesized cDNA was diluted to 100 μL with sterile water and used as template for  

real-time RT-PCR.  

Real-time RT-PCR was performed in an MJ OpticonTM2 machine (Bio-Rad, Hercules, CA, USA). 

The β-actin, α-tubulin and β-tubulin genes were selected as internal controls to normalize the quantity 

of total RNA present in each reaction. The primers used for real-time RT-PCR are shown in Table 1. 

The reaction mixture (20 μL) contained 10 μL of SYBR Green Realtime PCR Master Mix (Toyobo), 

0.5 μM each of forward and reverse primers, and 2 μL of cDNA template (equivalent to 100 ng of total 

RNA). For PCR amplification, all the primer pairs were used the same amplification procedure. The 

amplification was performed using the following cycling parameters: 94 °C for 30 s; 45 cycles of  

94 °C for 12 s, 60 °C for 30 s and 72 °C for 40 s; and 1 s at 82 °C for plate reading. A melting curve 

was generated for each sample at the end of each run to assess the purity of the amplified products. 

Real-time RT-PCR was carried out in triplicate (technical repeats) to ensure the reproducibility of the 

results. Three biological repeats were performed on each treatment. Expression levels were calculated 

from the threshold cycle according to the delta-delta CT method [34]. Relative gene expression level 

was calculated as the transcription level under stress treatment divided by the transcription level of the 

control (i.e., samples from plants grown under normal conditions and harvested at the same time). 

Relative gene expression levels were log2 transformed.  

5. Conclusions  

In conclusion, we have constructed expression profiles for nine ThMYC genes in different organs of 

T. hispida in response to salt and osmotic stresses and ABA treatment. It was shown that ThMYCs can 

be up-regulated by NaCl, PEG and ABA, indicating that ThMYCs are involved in salt and osmotic 

stress tolerance and are controlled by ABA. Also, these ThMYCs are more highly expressed and more 

highly induced by salt, PEG and ABA treatments in roots compared with stem and leaf tissues, 

suggesting that these genes may play roles in stress responses in the roots rather than in leaves and stems. 
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