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Abstract: Caveolin-1 (Cav-1) expression deficiency and autophagy in tumor stromal 

fibroblasts (hereafter fibroblasts) are involved in tumor proliferation and progression, 

particularly in breast and prostate cancer. The aim of this study was to detect the 

expression of fibroblastic Cav-1 and LC3B, markers of autophagy, in gastric cancer (GC) 

and to analyze their clinical significances. Furthermore, because Epstein-Barr virus  

(EBV)-associated GC (EBVaGC) is a unique subtype of GC; we compared the differential 

expression of fibroblastic Cav-1 and LC3B in EBVaGC and non-EBVaGC. Quantum dots 
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(QDs)-based immunofluorescence histochemistry was used to examine the expression of 

fibroblastic Cav-1 and LC3B in 118 cases of GC with adequate stroma. QDs-based double 

immunofluorescence labeling was performed to detect the coexpression of Cav-1 and 

LC3B proteins. EBV-encoded small RNA was detected by QDs-based fluorescence in situ 

hybridization to identify EBVaGC. Multivariate analysis indicated that low fibroblastic 

Cav-1 level was an independent prognosticator (p = 0.029) that predicted poorer survival of 

GC patients. Positive fibroblastic LC3B was correlated with lower invasion (p = 0.032) and 

was positively associated with Cav-1 expression (r = 0.432, p < 0.001). EBV infection did 

not affect fibroblastic Cav-1 and LC3B expression. In conclusion, positive fibroblastic 

LC3B correlates with lower invasion, and low expression of fibroblastic Cav-1 is a novel 

predictor of poor GC prognosis.  

Keywords: autophagy; cancer-associated fibroblast; caveolin-1; gastric cancer;  

light chain 3B; quantum dots; tumor microenvironment 

 

1. Introduction 

Tumor stroma is increasingly recognized as an active participant in tumor progression, metastasis 

and drug resistance [1,2]. Although the complex mechanisms of these processes need to be further 

dissected, the altered expression of stromal proteins have been manifested as novel biomarkers in 

various types of human cancers, including breast [3–8], prostate [9], nasopharynx [10], basal cell 

cancers [11] and melanoma [12]. Gastric cancer (GC) is the fourth most commonly occurring cancer 

and the third most lethal cancer worldwide [13], it is more prevalent in men than women in China [14]. 

However, the clinical significance of GC stromal proteins has been largely unexplored. Therefore, it is 

worthwhile to elucidate the clinical significance of specific stromal proteins that are involved in  

GC progression.  

Caveolin-1 (Cav-1) is a multifunctional scaffolding protein with multiple binding partners that are 

associated with cell surface caveolae and the regulation of lipid raft domains. It is well known that 

Cav-1 regulates multiple cancer-associated processes in cancer cells, including cell proliferation, 

migration and metastasis, cell death and survival, and multidrug resistance [15]. Cav-1 influences 

tumor progression not only in cancer cells but also in tumor stroma [1]. Studies of breast cancer have 

revealed that the loss of Cav-1 in cancer-associated fibroblast cells (CAFs) promotes breast cancer 

proliferation and progression by remodeling the tumor microenvironment, protecting cancer cells from 

apoptosis and other mechanisms [1,16,17]. Survival analysis indicates that the absence of fibroblastic 

Cav-1 expression is a powerful independent predictor of early disease recurrence, metastasis and 

adverse outcome in breast cancer [3,4,6], confirming its tumor-promoting role.  

Autophagy is a cellular homeostatic mechanism that involves protein and organelle degradation and 

has a number of connections to either tumor promotion or inhibition. In vitro studies using a  

coculture system of the breast cancer cell line MCF7 and fibroblasts have demonstrated that activated 

autophagy in fibroblasts is the primary cause of fibroblastic Cav-1 degradation [1,16,18]. Furthermore, 

autophagy also promotes tumor development synergistically with Cav-1 degradation through the 
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metabolic/catabolic reprogramming of CAFs to fuel the growth of adjacent tumor cells [1,16,19–21]. 

Microtubule-associated protein light chain 3B (LC3B) localizes to the autophagosome membrane and 

is therefore widely used as a marker of autophagy [22]. Hence, LC3B expression in GC fibroblasts was 

also evaluated in our investigation.  

Fluorescent semiconductor nanocrystal quantum dots (QDs) are a novel class of multifunctional 

inorganic fluorophores that have promising utility in biological imaging [23–26]. The beneficial 

properties of QDs compared to organic fluorophores are narrow emission band peaks, broad absorption 

spectra, intense signals and remarkable resistance to photobleaching [26]. Moreover, the optical 

properties of QDs, in particular the wavelength of their fluorescence, depend strongly on their  

sizes [27]. Different QD colors can be simultaneously excited by a single light source with minimal 

spectral overlapping. These properties make QDs extremely useful for multiplexed molecular 

immunofluorescent imaging, which is an advanced technique for studying the clinicopathological 

characteristics of molecular subtypes and tumor prognosis.  

Based on the above information, we hypothesized that low fibroblastic Cav-1 levels and high 

autophagy levels may promote GC development. Using the established QDs-based 

immunofluorescence histochemistry (QDs-IHC) and QDs-based double immunofluorescent labelling 

methods, we focused on the expression of fibroblastic Cav-1 and LC3B in GC, followed by analysis of 

the correlation with GC prognosis. Because Epstein-Barr virus (EBV)-associated gastric cancer 

(EBVaGC) is a unique subtype of GC and has features as the monoclonal proliferation of  

EBV-infected epithelial cells [28,29], we also detected EBV-encoded small RNA (EBER) via  

QDs-based fluorescence in situ hybridization (QDs-FISH) to investigate the influence of EBV 

infection on fibroblastic Cav-1 and LC3B expression.  

2. Results and Discussion 

2.1. Expression of Cav-1 and LC3B in GC 

We detected Cav-1 and LC3B protein expression in epithelial and stromal compartments via  

QDs-IHC. One set of tissue microarrays (TMAs) was used for hematoxylin and eosin (H and E) 

staining to identify and ensure the differential detection and evaluation of the tumor cells and 

fibroblasts (Figure 1A,B). Serial sections were used for H and E staining and QDs-IHC. The different 

staining intensities of fibroblastic Cav-1 and LC3B are illustrated in Figure 1. In the epithelial region, 

Cav-1 and LC3B immunoreactivity was predominately located at the tumor cell membrane  

(Figure 2A,E). Representative expression patterns of Cav-1 and LC3B in fibroblasts from serial 

sections are shown in Figure 2. 
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Figure 1. Identification of fibroblasts by H and E staining and detection of Cav-1 and 

LC3B proteins by QDs-IHC. A, B: arrows indicate tumor cells and triangles indicate 

fibroblasts. C–E: fibroblastic LC3B staining intensity was scored as 0 (negative, C),  

1 (weak, D), or 2 (strong, E). F–H: fibroblastic Cav-1 staining intensity was scored as  

0 (negative, F), 1 (weak, G), or 2 (strong, H). The enlarged region of F showed endothelial 

cells in the blood vessel used as a positive internal control (A, B: 100× magnification;  

C–H: 200× magnification; boxed region in A and F are enlarged in the upper right corner 

of panels A and F). 

 

Figure 2. QDs-IHC-based localization of Cav-1 and LC3B in tumor cells and staining 

patterns. A, E: Cav-1 and LC3B located at the tumor cell membrane. B, F: Cav-1 and 

LC3B-positive fibroblasts; C, G: Cav-1-positive and LC3B-negative fibroblasts;  

D, H: Cav-1- and LC3B-negative fibroblasts. (White arrows indicates stroma;  

A–D: Cav-1 staining; E–H: LC3B staining; A, E: 400× magnification; B–D and  

F–H: 200× magnification; B and F, C and G, D and H: serial sections).  

 

2.2. Clinical Significance and Prognostic Value of Fibroblastic Cav-1 and LC3B  

To investigate the effect of fibroblastic Cav-1 and LC3B expression on tumor aggressiveness, we 

examined the relationship between fibroblastic Cav-1 and LC3B expression and clinicopathological 
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features including age, gender and differentiation grade. However, as shown in Table 1, we did not 

find any significant association between fibroblastic Cav-1 levels and the various clinicopathological 

features. Additionally, fibroblastic LC3B was not significantly associated with any clinicopathological 

features except the depth of invasion (p = 0.032, Table 1).  

Table 1. Correlations between fibroblastic Cav-1/LC3B expression and clinicopathologic 

features of gastric cancer. 

Features n 
Fibroblastic Cav-1  

p n 
Fibroblastic LC3B 

p 
Low (%) High (%) Negative (%) Positive (%) 

Age    0.724    0.287 

<58 55 28 (50.9) 27 (40.1)  50 39 (78.0) 11 (22.0)  

≥58 63 30 (47.6) 33 (52.4)  51 35 (68.6) 16 (31.4)  

Gender    0.186    0.384 

Male 85 45 (52.9) 40 (47.1)  72 51 (70.8) 21 (29.2)  

Female 33 13 (39.4) 20 (60.6)  29 23 (79.3) 6 (20.7)  

Depth of invasion #    0.903    0.032 

T1 + T2 36 18 (50.0) 18 (50.0)  32 19 (59.4) 13 (40.6)  

T3 + T4 82 40 (48.8) 42 (51.2)  69 55 (79.7) 14 (20.3)  

Lymph node status #    0.474    0.992 

N0 39 21 (53.8) 18 (46.2)  30 22 (73.3) 8 (26.7)  

N1 + N2 79 37 (46.8) 42 (53.2)  71 52 (73.2) 19 (26.8)  

TNM stage #    0.725    0.914 

0+ a+ b+Ⅰ Ⅰ Ⅱ 53 27 (50.9) 26 (49.1)  44 32 (72.7) 12 (27.3)  

Ⅲ a+ Ⅲ b+ Ⅳ 65 31 (47.7) 34 (52.3)  57 42 (73.7) 15 (26.3)  

Grade of AC    0.792    0.065 

Well and moderately 43 20 (46.5) 23 (53.5)  34 20 (58.8) 14 (41.2)  

Poorly 59 29 (49.2) 30 (50.8)  53 41 (77.4) 12 (22.6)  

Lauren classification    0.316    0.142 

Intestinal-type 65 28 (43.1) 37 (56.9)  51 31 (60.8) 20 (39.2)  

Diffuse-type 45 26 (57.8) 19 (42.2)  42 36 (85.7) 6 (14.3)  

Mixed-type 8 4 (50.0) 4 (50.0)  8 7 (87.5) 1 (12.5)  

HER-2    0.967    0.628 

Positive 23 11 (47.8) 12 (52.2)  23 16 (69.6) 7 (30.4)  

Negative 89 43 (48.3) 46 (51.7)  75 56 (74.7) 19 (25.3)  

Tumor cell type    0.565    0.189 

AC 102 49 (48.0) 53 (52.0)  87 61 (70.1) 26 (29.9)  

MAC 11 7 (63.6) 4 (36.4)  10 9 (90.0) 1 (10.0)  

UC 5 2 (40.0) 3 (60.0)  4 4 (100.0) 0 (0)  

Fibroblastic Cav-1        0.000 

Low     45 42 (93.3) 3 (6.7)  

High     51 28 (54.9) 23 (45.1)  

AC, Adenocarcinoma; MAC, Mucinous adenocarcinoma; UC, undifferentiated carcinoma; # TNM classification of 

malignant tumors (7th edition). p value in bold indicates p < 0.05. 

To explore the prognostic values of fibroblastic Cav-1 and LC3B, we used the Kaplan-Meier 

method to estimate the survival curve of overall survival and the log-rank test to assess the difference 
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in survival between the fibroblastic Cav-1 and LC3B expression subgroups. The cumulative five-year 

survival rate of patients whose tumors exhibited high fibroblastic Cav-1 expression was 72.2%  

(95% CI: 60.2%–84.2%), whereas it was only 56.2% (95% CI: 42.1%–70.3%) in the low fibroblastic 

Cav-1 group. The median overall duration of survival of the low fibroblastic Cav-1 expression group 

was 73.0 months (95% CI: 53.725–92.275). After a full follow-up period, the high stromal Cav-1 

expression group had a calculated survival rate of approximately 75% (Figure 3A). As shown in the 

survival curve, the high fibroblastic Cav-1 expression group had a better survival rate and the 

difference between the fibroblastic Cav-1 subgroups was statistically significant (p = 0.026, Figure 

3A). Although the high fibroblastic LC3B expression group had a better survival rate, no significant 

difference in overall survival was found between the fibroblastic LC3B levels (p = 0.074, Figure 3B). 

When we combined the expression status of fibroblastic Cav-1 and LC3B, the difference of overall 

survival between Cav-1(−)/LC3B(−) and Cav-1(+)/LC3B(+) was significant (p = 0.033, Figure 3C). 

Figure 3. Cumulative survival curves of GC patients and Receiver Operating 

Characteristic analysis. A: The low fibroblastic Cav-1 group was correlated with poorer 

survival of GC patients. B: Although the high fibroblastic LC3B group showed a better 

survival trend, it was not statistically significant. C: The combined features of fibroblastic 

Cav-1 and LC3B also significantly predicted prognosis. D: The combined fibroblastic  

Cav-1 and LC3B status had the largest area under the curve compared with the fibroblastic 

Cav-1 level and LC3B level.  
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In addition, we used the COX proportional hazard regression model to investigate the independent 

predictors of GC. In univariate analyses, the classic clinicopathological features such as TNM stage, T 

classification and lymph node, were found to be significantly associated with the overall survival of 

GC patients (p = 0.003, 0.001 and 0.034, respectively, Table 2). The fibroblastic Cav-1 level and 

LC3B level was also associated with overall survival. Compared to low/negative fibroblastic  

Cav-1/LC3B expression, high/positive Cav-1/LC3B expression significantly diminished the risk of 

death in GC patients (p = 0.021, 0.041, respectively, Table 2). The factors that were significant 

according to univariate analysis were subjected to multivariate analysis. Multivariate analysis revealed 

that only fibroblastic Cav-1 and TNM stage were independent prognosticators (p = 0.029 and 0.001, 

respectively); fibroblastic LC3B and other clinicopathological features failed to independently predict 

GC prognosis (Table 2).  

Table 2. COX proportional hazard models of the overall survival of GC patients. 

Factors 
Univariate analysis Multivariate analysis 

p value HR (95%CI) p value HR (95%CI) 

Sex     

Men vs. women 0.732 1.098 (0.638, 1.890)   

Age      

<56 vs. ≥56 0.199 0.728 (0.445, 1.193)   

TNM stage     

I-II vs. III-IV 0.003 0.543 (0.256, 0.803) 0.001 4.344 (1.895, 9.958) 

T classification     

T1-T2 vs. T3-T4 0.001 0.317 (0.137, 0.732) 0.483  

Lymph node      

No vs. Yes 0.034 0.528 (0.275, 0.987) 0.663  

Lauren classification     

Intestinal-type vs. Diffuse-type 0.882 0.965 (0.603, 1.543)   

Grade of AC     

Well and moderately vs. poorly 0.638 0.873 (0.493, 1.546)   

Fibroblastic Cav-1     

High vs. Low 0.021 0.556 (0.332, 0.929) 0.029 0.474 (0.242, 0.928) 

Fibroblastic LC3B     

Positive vs. Negative  0.041 0.498 (0.235, 1.055) 0.180  

EBV infection     

Yes vs. No  0.347 0.725 (0.355, 1.481)   

p value in bold indicates p < 0.05. 

The fibroblastic Cav-1 and LC3B levels and their combined status were further studied by receiver 

operating characteristic (ROC) analysis to assess their predictive value for death. As showed in  

Figure 3D, the combined status of fibroblastic Cav-1 and LC3B predicted death with good 

performance (p < 0.05); the area under the curve was 0.622 (95% CI: 0.509–0.735). However, the 

fibroblastic Cav-1 and LC3B levels failed to predict death, with areas under the curve of 0.614  

(95% CI: 0.497–0.731) and 0.606 (95% CI: 0.492–0.719), respectively (both p > 0.05) (Figure 3D).  
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2.3. The Correlation between Fibroblastic Cav-1 and LC3B 

The results of QDs-IHC were used to investigate the correlation between fibroblastic Cav-1 and 

LC3B. As shown in Table 1, among the 45 cases with low fibroblastic Cav-1expression, 42 (93.3%) 

cases showed negative expression of LC3B, and among the 51 cases with high fibroblastic  

Cav-1 expression, 23 (45.1%) cases were LC3B-positive and manifested a positive correlation  

(r = 0.432, p = 0.000). To visualize the relationship between the expression of fibroblastic Cav-1 and 

LC3B, QDs-based double immunofluorescence labeling was conducted. As shown in Figure 4, we 

used a multispectral microscopy imaging system to assay the different spectra of QDs. The positive 

signal of Cav-1 was bright red and the LC3B signal was green. The coexpression of Cav-1 and LC3B 

proteins can be observed in Figure 4D.  

Figure 4. Coexpression of Cav-1 and LC3B proteins detected by QDs-based double 

immunofluorescent labeling in GC tissue and analyzed by a multispectral imaging system. 

A: Emission spectra of QDs (545 nm-green; 605 nm-red) and tissue autofluorescence 

(black); B: Bright red, Cav-1-positive signal; C: Green, LC3B-positive signal; D: Distinct 

coexpression of Cav-1 and LC3B proteins; fibroblasts are positive (white arrow), tubular 

adenocarcinoma is negative. (B–D: 200× magnification). 

 

2.4. EBV Infection Affected Expression of Fibroblastic Cav-1 and LC3B  

The EBER signal was detected by QDs-FISH with biotin-labeled RNA probes. In GC tissue, the 

EBER-positive signal was located in the nuclei of tumor cells (Figure 5B,C). Figure 5A shows  

EBV-negative GC tissue. QDs-FISH reactions for EBER were positive in 17.79% (21/118) of the GC 

tissues. In addition, we matched the results of EBER, fibroblastic Cav-1 and LC3B; however, no 
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significant correlation among EBV infection, fibroblastic Cav-1 and LC3B was demonstrated  

(Table 3).  

Table 3. The relationship among EBV infection, fibroblastic Cav-1 and LC3B in GC tissues. 

Variables 
Fibroblastic Cav-1 Fibroblastic LC3B 

Low (%) High (%) r p Negative (%) Positive (%) r p 

EBV Infection 
Negative 48 (49.5) 49 (50.0) 

0.092 0.877 
60(74.1) 21 (25.9) 

0.037 0.712 
Positive 10 (47.6) 11 (52.4) 14(70.0) 6 (30.0) 

Figure 5. Detection of EBER by QDs-FISH in GC tissues. A: Negative EBER signal  

in GC tissue; B, C: Positive EBER signal in GC tissue. (A, B: 100× magnification;  

C: 200× magnification). 

 

2.5. Discussion 

In our study, the novel fluorescent semiconductor nanocrystals QDs successfully detected the 

expression and clinical significance of Cav-1 and LC3B in the fibroblasts of GC tissue. Additionally, 

we developed a method for the simultaneous imaging of Cav-1 and LC3B from which distinct positive 

signals for each protein were obtained. The coexpression of Cav-1 and LC3B in fibroblasts was also 

accurately demonstrated with high resolution. Compared with conventional immunohistological 

staining, QDs-based multiplexed molecular imaging provides a holistic approach to vividly observing 

the heterogeneous expression of proteins in different cells.  

In recent years, the prognostic value of fibroblastic Cav-1 has been widely confirmed in breast 

cancer [3,4,6], and the tumor-promoting role of low fibroblastic Cav-1 expression has been manifested. 

On one hand, Cav-1 interacts with the activin receptor-like kinase (ALK) 1, a type I TGF-β receptor 

(TβR I), and suppresses the TGF-β-mediated phosphorylation of Smad-2 and subsequent downstream 

events [30,31]. In tumor stroma, loss of fibroblastic Cav-1 induces the aberrant activation of the TGF-β 

pathway, consequently transforming the fibroblasts to activated CAFs, which play important roles in 

fibrosis and extracellular matrix remodeling [1,7,8,16,32]. On the other hand, the loss of fibroblastic 

Cav-1 promotes tumor progression by promoting the metabolic/catabolic reprogramming of CAFs 

synergistically with autophagy to fuel the growth of adjacent tumor cells [1,7,16–18]. In our study, we 

assessed the clinical significance of fibroblastic Cav-1 in GC and found that the fibroblastic Cav-1 

level showed no correlation with classic clinicopathological features (Table 1) but predicted a short 

survival of GC patients (p = 0.026). Our multivariate analysis further identified fibroblastic Cav-1 as a 

new independent prognostic marker for GC (p = 0.029). Clearly, our data were consistent with our 
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hypothesis that low expression of fibroblastic Cav-1 can predict poor survival in GC, as previously 

demonstrated in breast cancer [3,4,6].  

ROC curve analysis enabled the determination of the parameters that have predictive values of 

death. We have conducted ROC curve analysis of the fibroblastic Cav-1 level, LC3B level and their 

combined status. We found that the fibroblastic Cav-1 level and LC3B level could not predict death 

individually, but the combined detection of fibroblastic Cav-1 and LC3B showed significant predictive 

value, which suggests that they may be regarded as correlative predictive factors of death for GC 

patients. Combining the results of Kaplan-Meier analysis, log-rank test and multivariate analysis, we 

can conclude that fibroblastic Cav-1 is an independent prognostic factor of the overall survival and risk 

of death; moreover, fibroblastic Cav-1 combined with LC3B predicts the death of GC patients with 

improved accuracy. Although stromal Cav-1 status can be used as a prognostic predictor, when the 

correlation between stromal Cav-1 levels and the classic clinicopathological parameters of GC was 

analyzed, no significant association was found. In fact, all studies in breast cancer indicate that the loss 

of stromal Cav-1 correlates with poor survival but not always with adverse clinicopathological 

parameters [3,4,6,7,33–36]. Nevertheless, the loss of stromal Cav-1 has great predictive value in ER(+), 

PR(+), HER2(+) and triple-negative patients (ER(−)/PR(−)/HER2(−)). Moreover, endocrine therapy, 

such as tamoxifen in ER(+) patients, does not influence its predictive value. This makes stromal Cav-1 

a new “universal” or “widely applicable” breast cancer prognostic marker [33]; however, a study in 

GC with larger sample size is needed to further confirm the correlation between stromal Cav-1 and 

clinicopathological parameters. Additionally, prospective clinical trials need be conducted to validate 

the prognostic value of stromal Cav-1 in breast cancer and GC to determine whether stromal Cav-1 

status can be used as an independent classification system for cancer therapy and whether it merits 

further study.  

Currently, the main role of autophagy is to act as an adaptation to metabolic stress, such as 

starvation, hypoxia and oxidative stress. In some situations, autophagy is also regarded as a form of 

“autophagic programmed cell death” [16,37,38]. With continuous growth of tumors, the tumor 

microenvironment becomes sensitive to autophagy. Autophagy occurs in tumor cells and stromal cells, 

in which autophagy leads to Cav-1 degradation [1,16,19,39]. Therefore, we also assessed the clinical 

significance of LC3B in the fibroblasts of GC tissue and the correlation between LC3B and Cav-1 

level in fibroblasts via QDs-based double immunofluorescence labeling. Our data demonstrated that 

high levels of fibroblastic LC3B correlate with lower invasion and possibly longer survival. 

Furthermore, fibroblastic Cav-1 and LC3B showed a significant positive correlation. Because LC3B is 

the essential component of the autophagosome membrane, a hallmark of autophagy, it is possible that 

autophagic degradation may not be responsible for the suppressed Cav-1 expression. However, these 

data are not consistent with the results in breast cancer, in which Lisanti and colleagues found that high 

oxidative stress is the root cause of autophagy in fibroblasts, leading to the autophagic degradation of 

Cav-1 [1,16,19,39]. Thus, a new puzzling question is raised: is the relationship between Cav-1 

expression and autophagy in GC cooperative or antagonistic if Cav-1 is not degraded by autophagy? 

We found that low fibroblastic Cav-1 and negative LC3B expression represent trends of poor survival 

(p = 0.026 and 0.074, respectively), suggesting that Cav-1 and autophagy may act cooperatively in  

GC development. Indeed, identifying the role of autophagy in fibroblastic Cav-1 degradation or 
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investigating the mechanisms that lead to Cav-1 degradation is a multistep task that involves more than 

analyzing its expression in tissues. More investigations are required to achieve these goals.  

EBVaGC is defined by the presence of EBV in gastric cancer cells by EBER in situ hybridization 

and it constitutes approximately 8.7% of all GC cases, ranging from 2% to 18% [28,29]. In the current 

study, 17.79% (21/118) of GC cases were EBVaGC. This result is similar to the results published by 

others [28,29]. Because EBVaGC is a unique subtype of GC and it has features that are similar to the 

monoclonal proliferation of EBV-infected epithelial cells, it has several clinicopathological and 

molecular features, such as male predominance, low frequencies of intestinal phenotype mucins and 

low p53 expression [28,29]. Therefore, we tried to investigate whether EBV infection could impact the 

expression of stromal proteins in this study. Our result demonstrated that no difference in fibroblastic 

Cav-1 and LC3B expression was observed between EBVaGC and non-EBVaGC. Certainly, more 

work is needed to determine the influence of EBV infection on the tumor microenvironment, which 

may open a new avenue to treat EBVaGC patients.  

Although the novel QDs-based multiplexed molecular imaging has been used in pathology-based 

research [40–42], it is not generally used in quantitative and semiquantitative studies. In our study, to 

ensure that our results were comparable with those of the other labs, we examined the status of Cav-1 

and LC3B using the developed QDs-IHC method that was well-established and widely used in 

quantitative and semiquantitative studies [23,43–45] rather than using the developing QDs-based 

multiplexed molecular imaging technology. Furthermore, results from Yan Li and colleagues [40] and 

the current study showed that QDs-based multiplexed molecular imaging is highly suitable for 

observing the heterogeneity of cancer cells and stromal cells. However, the clinical uses of QDs-based 

multiplexed molecular imaging still need to be evaluated. Thus, conducting more studies to investigate 

the clinical significance of evaluating the heterogeneity of cancer or stromal cells via QDs-based 

multiplexed molecular imaging is recommended.  

3. Experimental Section  

3.1. Patients and Tissue Samples 

A total of 123 formalin-fixed, paraffin-embedded (FFPE) GC specimens that were diagnosed from 

2005 to 2008 were collected from the archives of the Department of Pathology, Zhongnan Hospital of 

Wuhan University, China. After the specimens were arrayed in TMAs, 118 (95.9%) cases contained 

adequate stroma were selected for further analysis. Among the 118 patients, 33 were female and 85 

were male, with ages ranging from 24 to 82 years and an average age of 58 years. Based on the World 

Health Organization (WHO) histological criteria for GC, the specimen included 5 undifferentiated 

adenocarcinomas (ACs), 102 ACs and 11 mucinous ACs. For Lauren classification, 65 cases were 

intestinal-type, 8 were mixed-type and 45 were diffused-type GCs. According to the Union for 

International Cancer Control (UICC) TNM histology classification (2009), 24 were stage I, 29 were 

stage II, 62 were stage III and 3 were stage IV. Seventy-nine cases were lymph node  

metastasis-positive. The characteristics of the patient cohort are in agreement with the epidemiology 

and pathology of GC [14,46]. Two experienced pathologists (Yang, G.F. and Fan, L.F.) reconfirmed 

the histopathologic features of these samples. One hundred and seven patients were followed from the 

date of surgery until July 2012. The median follow-up time point was 62 months (range: 1–85). 
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Overall survival was defined as the interval from the date of surgery to death. Patients who died of 

other diseases or due to unexpected events were excluded from this study. Written informed consent 

was signed by the patients, and approval for this study was obtained from the local Institutional 

Research Ethics Committee.  

3.2. Tissue Microarray Construction 

The H and E-stained sections of all specimens were reviewed, and the most representative tumor 

stromal areas were carefully selected for the construction of TMAs. The TMAs were constructed using 

a tissue-arraying instrument (Beecher Instruments, Silver Spring, MD, USA) as described in our 

previous study [44]. Briefly, two cores (diameter 1.5 mm) were punched from the selected area of each 

donor FFPE specimen and precisely arrayed in a recipient paraffin block. These blocks were 

consecutively cut into sections (4 μm thick) for making TMAs. Five sets of TMAs were constructed 

for Cav-1 and LC3B staining, Cav-1/LC3B double labelling, EBV detection and H and E staining.  

3.3. QDs-Based Immunofluorescence Histochemistry 

Cav-1 and LC3B expression was detected by QDs-IHC in two sets of TMAs. TMAs were 

deparaffinized in xylene and rehydrated in a graded ethanol series. Every step of QDs-IHC strictly 

followed the manufacturer’s instructions (Wuhan Jiayuan Quantum Dot Co., Ltd., Wuhan, China). 

Antigen retrieval was performed in citric acid (10 mM, pH 6.0) at 95 °C for 10 min, followed by 

cooling for 30 min. TMAs were first incubated in 2% BSA buffer at 37 °C for 30 min, and then at  

4 °C overnight in rabbit anti-Cav-1 polyclonal antibody (diluted 1:300; Santa Cruz Biotechnology, 

Santa Cruz, CA, USA) and murine anti-LC3B monoclonal antibody (diluted 1:150; Cell Signaling 

Technology, Danvers, MA, USA) respectively, to permit antibody binding. TMAs were then washed 

three times with TBS-T (0.5% Tween, 0.1 M Tris-base, 0.9% NaCl, pH 7.6) for 5 min each time and 

incubated in biotinylated goat anti-rabbit or anti-murine IgG (1:100 dilution, Jackson ImmunoResearch, 

West Grove, PA, USA) at 37 °C for 30 min. For QD conjugation, antibody-binding TMAs were 

incubated in 2% BSA buffer again at 37 °C for 10 min, incubated in QDs (605 nm) and conjugated to 

streptavidin (QDs-SA) (1:200 dilution in 2% BSA, Wuhan Jiayuan Quantum Dot Co., Ltd., Wuhan, 

China) at 37 °C for 30 min, rinsed three times with TBS-T for 5 min each, and finally sealed with 90% 

glycerin (Sigma, St. Louis, MO, USA). The TMAs were observed under an Olympus BX51 

fluorescence microscope equipped with an Olympus Micro DP 72 camera. The positive signal was 

bright red, target-specific and photo stable, and the background autofluorescence was green. Because 

Cav-1 is generally expressed in blood vessel endothelial cells, it was used as a positive internal control. 

Negative controls of Cav-1 and LC3B were carried out by replacing the primary antibodies with TBS.  

The images of each specimen were independently evaluated by two experienced pathologists  

(Yang, G.F. and Fan, L.F.) who were blinded to the clinical features. H and E staining was conducted 

to identify the components of tumor tissue. The irregular ordered flat or fusiform cells with  

orbicular-ovate nucleolus in stroma compartment are termed fibroblasts in H and E staining. The 

sections were initially scanned at low power to select the most representative stromal areas for 

calculating. The samples containing no or only a few fibroblasts were eliminated from the analysis. We 

then counted the Cav-1- or LC3B-stained fibroblasts in five representative fields of each specimen at 
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high magnification (200×) and estimated the positive area (PA) that was determined independently by 

the pathologists. The strong intensity dot-like or doughnut-shaped positive signal of Cav-1 in the 

tumor stroma was the internal control of endothelial expression. Scores of the two pathologists were 

compared and any discrepant scores were trained through reevaluating the staining by both pathologists 

to achieve a consensus score. PA was graded as follows: 0 (PA ≤ 20%), 1 (PA 21%–40%),  

2 (PA 41%–60%) and 3 (PA > 60%). Then the intensity of staining (IS) was evaluated in hot spots at 

high-power magnification and was scored as: 0 (negative), 1 (weak) and 2 (strong). The stromal Cav-1 

and LC3-B intensity distribution (ID) scores for each case were calculated by the following equation: 

ID = PA × IS, where ID ≤ 2 represented negative (−) or low and ID > 2 represented positive (+) or 

high. This standard was applied for Cav-1 and LC3B.  

3.4. QDs-Based Double Immunofluorescence Labeling 

We also detected the coexpression of Cav-1 and LC3B in GC tissue by QDs-based double 

immunofluorescence labeling. Every step followed the manufacturer’s instructions (Wuhan Jiayuan 

Quantum Dots Co., Ltd., Wuhan, China) and was the same as indicated in our previous study [45] with 

the following major steps: deparaffinizing→antigen retrieval→blocking→primary antibodies for  

Cav-1 and LC3B→washing→biotinylated goat anti-rabbit IgG (for Cav-1)→washing and 

blocking→605-QD-SA washing and QDs (545 nm) conjugated to goat anti-murine IgG (1:100, Wuhan 

Jiayuan Quantum Dots Co., Ltd, Wuhan China)→washing→mounting and observation. The QD 

fluorescent signal was analyzed using the Caliper multispectral microscopy imaging system  

(Caliper Life Sciences, Hopkinton, MA, USA). The Cav-1 positive signal was bright red and the  

LC3-B-positive signal was green. Negative controls were carried out in parallel, but the primary 

antibody was replaced with TBS, which had green autofluorescence. The double labeled serial sections 

were not formally scored but were used to visualize the relationship between fibroblastic  

Cav-1 and LC3B and to highlight the heterogeneity of tumor stroma.  

3.5. QDs-Based Fluorescence in situ Hybridization 

QDs-FISH was applied to detect the presence of EBER. The QDs-FISH kit, biotin-labeled EBER 

RNA probes (PanPath, B.V.: Amsterdam, The Netherlands), other reagents and routine steps were 

identical to our previous study in which a QDs-FISH imaging method of detecting EBV in GC was 

developed [47]. Briefly, TMAs were deparaffinized and hydrated, hybridized using biotin-labeled 

EBER RNA probes and incubated with QD-conjugated streptavidin. After rinsing, TMAs were 

detected using an Olympus BX51 fluorescence microscope equipped with an Olympus Micro DP 72 

camera. The positive signal was red and the background autofluorescence was green.  

3.6. Statistical Analysis 

All data were analyzed by SPSS 17.0 software (SPSS Inc.: Chicago, IL, USA, 2008). Chi-square 

and Fisher’s exact tests were used to compare different rates. Correlations were calculated by the 

Spearman’s rank correlation test. The Kaplan-Meier method was used to evaluate the difference in 

overall survival. Univariate and multivariate analyses were conducted by the Log-rank test and Cox 

proportional hazard regression model. ROC curve analysis was used to determine the death predictive 
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value of the parameters. Overall survival was defined as the interval from the date of surgery to  

GC-related death. Two-tailed p-values less than 0.05 were considered statistically significant. 

4. Conclusions  

This study revealed that low levels of fibroblastic Cav-1 can predict shorter survival time in GC, 

and high levels of fibroblastic LC3B correlate with less invasiveness and possibly a longer predicted 

period of survival. A combined Cav-1 and LC3B feature had a significant predictive value of death. 

Using the advanced QDs-based immunofluorescent imaging technology, we evaluated the 

coexpression of fibroblastic Cav-1 and LC3B in fibroblasts, making the positive correlation of Cav-1 

and LC3B more vivid and easily comprehensible. As a unique subtype of GC, EBVaGC may not 

influence the fibroblastic Cav-1 and LC3B expression. Our results indicate the clinical importance of 

the stromal molecular expression of Cav-1 and LC3B and will potentially attract more attention to the 

exploration of the complicate tumor microenvironment.  
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