
Int. J. Mol. Sci. 2010, 11, 880-895; doi:10.3390/ijms11030880 

 
International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 
Article 

QSAR Studies on Andrographolide Derivatives as α-Glucosidase 
Inhibitors 

Jun Xu 1, Sichao Huang 1, Haibin Luo 2, Guoji Li 1, Jiaolin Bao 1, Shaohui Cai 1.* and Yuqiang 

Wang 1,* 

1 Pharmacy College, Jinan University, Guangzhou, 510632, China;  

E-Mails: goldstar_8209@163.com (J.X.); sichaohuang.cn@gmail.com (S.H.); 

1027559485@qq.com (G.L.); 23854695@qq.com (J.B.) 
2 School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510275, China;  

E-Mail: luohb77@mail.sysu.edu.cn (H.L.) 

* Authors to whom correspondence should be addressed; E-Mail: csh5689@sina.com (S.C.)；

yuqiangwang2001@yahoo.com (Y.W.). 

Received: 22 January 2010; in revised form: 2 February 2010 / Accepted: 3 February 2010 / 

Published: 2 March 2010 

 

Abstract: Andrographolide derivatives were shown to inhibit α-glucosidase. To 

investigate the relationship between activities and structures of andrographolide 

derivatives, a training set was chosen from 25 andrographolide derivatives by the principal 

component analysis (PCA) method, and a quantitative structure-activity relationship 

(QSAR) was established by 2D and 3D QSAR methods. The cross-validation r2 (0.731) 

and standard error (0.225) illustrated that the 2D-QSAR model was able to identify the 

important molecular fragments and the cross-validation r2 (0.794) and standard error 

(0.127) demonstrated that the 3D-QSAR model was capable of exploring the spatial 

distribution of important fragments. The obtained results suggested that proposed 

combination of 2D and 3D QSAR models could be useful in predicting the α-glucosidase 

inhibiting activity of andrographolide derivatives. 
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1. Introduction 

 

Andrographis paniculate is a plant widely used as a traditional Chinese medicine in China, India, 

and other Asian countries [1,2]. Extracts and constituents of Andrographis paniculate exhibit broad 

pharmacological activities, such as anti-bacterial, ant-malarial, anti-inflammatory, anti-tumor, 

immunological regulation, and hepatoprotective effects [3–12]. Lately, some andrographolide 

derivatives were reported to decrease blood glucose level by inhibiting α-glucosidase [13,14]. It has 

been well known that α-glucosidase is a key enzyme in the absorption of sugar in the small intestine 

mucous membrane, and its activity is closely related to blood glucose levels. Studies also indicated 

that α-glucosidase might be involved in diabetes [15–20]. Accordingly, α-glucosidase is considered an 

important target for the design of antidiabetic drugs. Recently, efforts had been made in modification 

and synthesis of novel andrographolide derivatives to find more potent and safer α-glucosidase 

inhibitors. Knowledge about the relationships between structures of andrographolide derivatives and 

their inhibitory activities on α-glucosidase could greatly facilitate the drug discovery process. 

QSAR [21] has been widely used for years to provide quantitative analysis of structure and activity 

relationships of compounds. Statistical methods are applied in QSAR modeling to establish 

correlations between chemical structures and their biological activities. Once validated, the findings 

can be used to predict activities of untested compounds. Recently, computer-assisted drug design 

based on QSAR has been successfully employed to develop new drugs for the treatment of cancer, 

AIDS, SARS, and other diseases [22–29]. With the availability of large commercial databases and 

highly efficient programs including Sybyl, Discovery studio, MOE and so on, it is estimated that 

QSAR modeling as a tool could remarkably reduces the cost of drug discovery [30].  

In this study, 2D QSAR models were constructed to describe the important fragments in 

andrographolide derivatives and 3D QSAR models were established to explore the spatial distribution 

of important groups. The combination of 2D and 3D QSAR models could better summarize the QSAR 

of andrographolide derivatives in inhibiting α-glucosidase. 

 

2. Computational Methods 

 

2.1. Database and Software 

 

The structures and inhibitory activities (IC50) of 25 andrographolide derivatives (Figure 1) were 

collected from the literature, and served as the database to build QSAR models [13,14,31]. PLogIC50 

was used as the dependent variable of QSAR model. PCA, HQSAR, CoMFA, CoMSIA were 

performed by Sybyl7.03 (Tripos Co., LTD) program. 
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Figure 1. Formulae of the studied andrographolide derivatives. 
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Figure 1. Cont. 
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2.2. Training Set Selection  

 

Principle Component Analysis (PCA), employed to select the training set, could be applied to 

explain the differences among the 25 andrographolide derivatives through diversities of the structures’ 

parameters and to exhibit their distribution on a 2D plot [32]. Furthermore, the most descriptive 

compounds (MDC) or the largest minimum distance (LMD) methods were applied to select the 

training set according to the distribution of these compounds. 

 

2.3. Generation and Validation of the 2D QSAR Model 

 

Hologram QSAR (HQSAR) offers the ability to rapidly generate QSAR models of high statistical 

quality and predicted value by SYBYL line notation (SLN), cyclic redundancy check (CRC) and 
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partial least squares (PLS) [33–35]. The premise of HQSAR is that since the structure of a molecule is 

encoded within its 2D fingerprint and that structure is the key determinant of all molecular properties 

(including biological activity), it should be possible to predict the activity of a molecule from its 

fingerprint. 

The training set was used to establish 2D-QSAR model by HQSAR, and the best 2D-QSAR model 

was applied by the criterion of cross-validation R2. The test set’s biological activity was predicted by 

the best 2D-QSAR model, whose predictability was validated by correlation coefficient between the 

predicted and experimental values. The most common structure (MCS) could be calculated by 

HQSAR. Based on the MCS of andrographolide derivatives, the contributions of molecules’ fragments 

to biological activity should be analyzed for describing the QSAR of andrographolide derivatives as  

α-glucosidase inhibitors. 

 

2.4. Generation and Validation of the 3D QSAR Model 

 

The three-D QSAR model applies PLS to explore the relationships between the physicochemical 

variables and biological activity. Cross-validation is used to estimate the QSAR model’s predictability. 

In general, a LOO cross-validated coefficient Q2 (higher than 0.5) can be considered as statistically 

high predictive ability [36]. CoMFA, which is widely utilized in 3D-QSAR research, claims that if a 

group of similar compounds are ligands of the same receptor, their bioactivities depend on the 

differences of the molecules’ fields surrounding them [37]. CoMFA can exhibit a contour map in a 3D 

graph, which makes it easier to distinguish differences between compounds with strong and weak 

activities. CoMSIA is another 3D-QSAR method that adopts a Gaussian function instead of traditional 

Coulomb and Lennard-Jones’ function used in CoMFA [38]. Therefore, CoMSIA efficiently avoids 

the shortcomings of CoMFA in which only the steric and electrostatic fields are used. The leave-one-

out (LOO) method is employed to validate the predictability of the models and Y-Randomization test 

is used to validate the robustness of the models [39].  

In this study, CoMFA and CoMSIA were both utilized to generate 3D-QSAR models, and then the 

relative higher predictive 3D-QSAR models were selected by comparison. Subsequently, the selected 

models were further optimized by the Focusing method [40]. This method describes the different 

contributions of different grids in CoMFA and CoMSIA to the bioactivities of the compounds by 

weighting, which was expected to selectively enhance or impair the contributions of different grids and 

improve the resolution. Moreover, the biological activities of test set were predicted by the optimized 

QSAR model. The best QSAR model was determined by comparing the parameters of the model and 

correlation between the predicted and experimental values of the test sets. 

 

3. Result and Discussion 

 

3.1. Training Set Selection 

 

The selection of the training set is one of the most important steps in QSAR modeling, since the 

establishment and optimization of a QSAR model are based on this training set. Predictability and 

applicability of a QSAR model also depend on the training set selection [41,42]. Usually, the 
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compounds serving as the training set should have three characteristics: (1) maximum structural 

diversity; (2) maximum activity diversity; (3) similarity of interactions [43]. Besides, both molecular 

structures and biological activities of the test set should be covered by the ranges of the training set. In 

this research, PCA was applied to select a training set from among 25 andrographolide derivatives. 

PCA is a statistical technique useful for summarizing all the information encoded in the structures of 

compounds. It is also very helpful for understanding the distribution of the compounds.  

The distribution pattern of the 25 andrographolide derivatives is shown in Figure 2. There were 

different population densities in the Figure. Eighteen compounds (1, 3–8, 11, 13, 16–21 and 23–25) 

were selected as the raining set by the MDC method. The rest of them (compounds 2, 9, 10, 14, 15 and 

22) were used as the test set whose biological activities were covered by the training set. 

Figure 2. PCA plot for studied compounds 1–25. 

 
 

3.2. Establishment and Validation of 2D-QSAR Model 

 

The best cross-validation r2 (0.731) and standard error (0.225) illustrated that the 2D-QSAR model 

could be applied to predict the biological activity of andrographolide derivatives as α-glucosidase 

inhibitors. The predicted and experimental biological activities of andrographolide derivatives are 

shown in Table 1. The results of the correlation coefficient R2, standard error of the training set (0.840, 
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0.174) and test set (0.949, 0.104) suggested that the 2D-QSAR model could be used to explain the 

QSAR of andrographolide derivatives as α-glucosidase inhibitors. 

Table 1. Comparison of the predicted PLogIC50 of database with the experimental values 

by using 2D-QSAR Model. 

Compound ACTa  PREb |∆|c Compound ACT  PRE  |∆| 

1 4.000 3.933 0.067 2 4.000 3.995 0.05 
3 3.959 3.876 0.109 4 3.959 4.054 0.095 

5 - - -d 6 4.237 4.139 0.098 
7 4.237 4.159 0.078 8 4.076 4.087 0.011 
9 4.155 4.061 0.094 10 4.000 4.099 0.099 
11 4.000 4.089 0.089 12 - - -d 
13 3.959 4.176 0.217 14 4.000 3.946 0.054 
15 3.983 3.924 0.059 16 3.921 3.961 0.040 
17 3.996 3.954 0.042 18 3.971 3.902 0.069 
19 4.553 4.686 0.133 20 4.796 4.813 0.017 
21 5.222 4.806 0.416 22 4.854 4.798 0.056 
23 4.602 4.715 0.113 24 4.444 4.745 0.301 
25 4.959 4.698 0.261     

a: Experimental data (PLogIC50) 

b: Predicted data (PLogIC50) 

c: |a-b| 

d: Outline compounds. 

 

Furthermore, three key fragments (Figure 3) were selected according to PLS coefficient. The 
predicted activity =  

i
ii bCC )(0  where C0 = the offset, Ci = the PLS coefficient associated with 

bin I in the hologram, bi = the number of fragments hashed into bin i. 

Figure 3. Key fragments of 2D-QSAR Model. 
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The PLS coefficient was the standardization for judging which fragment was the key fragment. The 

larger the PLS coefficient, the more important the fragment was for andrographolide derivatives’ 

biological activity. According to the criterion, C (=C©C)C=C or C[1]:C:C:C(:C:C:@1)C=C attached 

to C3 of andrographolide (Figure 4) and C[1]:N:C:C(:C:C:@1)C(=C)O attached to C17 of 

andrographolide were suggested as the key fragments. 

Figure 4. Structure of andrographolide. 

 
 

3.3. Establishment and Validation of the 3D-QSAR Model 

 

The 18 compounds were energy minimized, added charges and aligned (Figure 5). CoMFA and 

CoMSIA were used to develop a number of QSAR models based on the properties of compounds 

belonging to different fields (steric, electrostatic, hydrophobic, H-donor and acceptor, Table 2). Since 

the QSAR model was employed to predict unknown compounds’ activity, the model’s predictability 

was the criterion to judge which QSAR model was the best. Predictability of a QSAR model was not 

only expressed by cross-validation (q2) but also by validation of the test set. The results illustrated that 

four models (4, 8, 10 and 11) had the top four predictabilities, so the Focus method was then applied to 

optimize these models, and further improved predictability for model 4, 10 and 11, but not for model 8. 

Among these models (model 8, 13, 15 and16), model 16 exhibited the best predictability as indicated 

by the highest Q2 value. Predictability of these models (8, 13, 15 and 16) was further evaluated using a 

test set. Model 16 also provided the best prediction with a correlation coefficient R2 (0.941) (Table 3). 

Overall, this model represented the best QSAR model (q2 = 0.794, R2
cv = 0.915, SEcv = 0.127,  

R2
test set = 0.941, SEtest set = 0.104). Y-Randomization test (q2 = 0.199) suggested that the model also 

had a good robustness. Table 4 showed Comparison between predicted PLogIC50 of database and 

experimental values by using Model 16. 
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Figure 5. Alignment of the database. 

 

Table 2. Comparison of different 3D-QSAR models. 

No. Method Fielda OCb (q2)c SEd (R2)e F 

1 CoMFA S+E 1 0.741 0.178 0.819 67.905 
2  

 
 
 
 
 
CoMSIA 
 
 

S 2 0.748 0.159 0.866 45.280 
3 E 1 0.710 0.187 0.802 60.592 
4 H 2 0.771 0.132 0.907 68.505 
5 D 1 0.313 0.297 0.498 14.876 
6 A 1 0.724 0.184 0.807 62.902 
7 S+E 1 0.732 0.182 0.812 64.778 
8 S+H 1 0.774 0.148 0.875 105.050 
9 S+A 2 0.738 0.159 0.866 45.251 
10 S+E+H 1 0.755 0.169 0.838 77.788 
11 S+H+A 2 0.759 0.130 0.910 70.509 
12 S+E+H+A 1 0.747 0.174 0.829 72.588 
13f H(Focus) 1 0.776 0.144 0.882 112.028 
14f S+H(Focus) 2 0.772 0.1.43 0.891 57.188 
15f S+E+H(Focus) 2 0.763 0.148 0.884 53.422 
16f S+H+A(Focus) 2 0.794 0.127 0.915 75.093 
 Y-Random S+H+A(Focus) 1 0.199 - - - 

a: S: Steric field, E: Electrostatic field, H: Hydrophobic field. 

D: H-donor field, A: H-acceptor field. 

b: Optimum of component. 

c: The models’ cross-validation r2. 

d: Standard Error. 

e: Correlation coefficient between predicted and experimental PLogIC50 of 18 compounds. 

f: The model was optimized by Focus Method. 
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Table 3. Correlation coefficient between predicted and experimental PLogIC50 of the test 

set by model 13, 8, 15, and 16. 

No. Models R2 Slope SE 
13 H(Focus) 0.906 1.007 0.143 
8 S+H 0.927 0.974 0.121 
15 S+E+H(Focus) 0.895 0.937 0.142 
16 S+H+A(Focus) 0.941 0.933 0.104 

Table 4. Comparison between predicted PLogIC50 of database and experimental values by 

using Model 16. 

Compound ACTa  PREb |∆|c Compound ACT  PRE  |∆| 

1 3.996 3.960 0.04 2 4.000 3.960 0.04 
3 3.959 3.970 0.011 4 3.959 3.999 0.04 

5 - - -d 6 4.237 4.238 0.001 
7 4.237 4.204 0.033 8 4.076 4.016 0.06 
9 4.155 4.179 0.029 10 4.000 4.119 0.119 
11 4.000 3.935 0.065 12 - - - 
13 3.959 4.111 0.152 14 4.000 4.150 0.150 
15 3.983 4.112 0.129 16 3.921 4.075 0.154 
17 3.996 3.916 0.08 18 3.971 3.903 0.068 
19 4.553 4.621 0.068 20 4.796 4.863 0.068 
21 5.222 5.067 0.155 22 4.854 4.886 0.032 
23 4.602 4.831 0.229 24 4.444 4.481 0.037 
25 4.959 4.698 0.261     

a: Experimental data (PLogIC50) 

b: Predicted data (PLogIC50) 

c: |a−b| 

d: Outline compounds 

 

Model 16 used steric field, hydrophobic field and H-acceptor field together to describe the 

relationship between activities and structures of andrographolide derivatives. H-bond receptive atoms 

and groups in the region marked by blue lines (Figure 6) were favorable for the activities of the 

compounds, while the atoms and groups in the region marked by yellow lines impaired the activities. 

Hydrophobic groups were desirable in the region marked with blue lines but not the region marked by 

dark lines (Figure 7). In addition, the activities of the andrographolide derivatives were enhanced by 

the presence of steric groups in the region marked by purple lines instead of the region marked by 

green lines (Figure 8). The compounds with structures fitting well into the 3D contour maps derived 

from the model 16 usually exhibited potent inhibitory activity (e.g., compounds 20, 21, 22 and 23). In 

contrast, weak inhibitors such as compounds 3, 4, 13 and 16 did not have a good fit to the 3D  

contour maps.  
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Figure 6. Compound 21 placed in the H-accept contour map. 

 

Figure 7. Compound 21 placed in the hydrophobic contour map. 

 

Figure 8. Compound 21 was placed in the steric contour map. 

 



Int. J. Mol. Sci. 2010, 11             

 

 

892

Compound 21 (potent α-glucosidase inhibitor PLogIC50 = 5.222) was layed in the 3D contour maps 

of model 16 to illustrate the key groups (marked by red dashed lines in Figures 5, 6, and 7) correlating 

with biological activity. C[1]:N:C:C(:C:C:@1)C(=C)O was a key group in all the 3D contour maps 

(steric, H-accept, hydrophobic) and C[1]:C:C:C(:C:C:@1)C=C was a key group in both steric and 

hydrophobic 3D contour maps. Both the groups were also calculated as key groups in HQSAR. 

Combining the results of HQSAR and CoMSIA, the two groups were considered as the key groups 

associated with biological activity and the result can also be used to screen potent α-glucosidase 

inhibitors from various databases by virtual screening. 

4. Conclusions  

In our research, 2D QSAR and 3D QSAR models have been successfully established to 

quantitatively describe the relationship between structures and activities of andrographolide 

derivatives as α-glucosidase inhibitors. The 2D QSAR model was based on the atomic connection of 

molecules and suggested that there might be three key groups associated with biological activity. 

Furthermore, the 3D QSAR model was based on molecular properties belonging to steric, hydrophobic 

and H-acceptor fields and indicated that compounds with structures fitting better into the 3D contour 

maps of model 16 had more potent activities. Combining 2D and 3D QSAR models, the key fragments 

and their spatial distribution could be efficiently identified. The convinced predictability of the model 

was demonstrated not only by internal validation but also by external validation using a test set. 

Overall, these results suggested that the developed QSAR model could be used to predict the 

inhibitory activities of unknown andrographolide derivatives on α-glucosidase. Application of this 

model would greatly facilitate the discovery of better α-glucosidase inhibitors. 
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