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Abstract: By employing the combined Bohmian quantum formalism with the U(1) and 

SU(2) gauge transformations of the non-relativistic wave-function and the relativistic 

spinor, within the Schrödinger and Dirac quantum pictures of electron motions, the 

existence of the chemical field is revealed along the associate bondon particle B  

characterized by its mass ( Bm ), velocity ( Bv ), charge ( Be ), and life-time ( Bt ). This is 

quantized either in ground or excited states of the chemical bond in terms of reduced 

Planck constant ħ, the bond energy Ebond and length Xbond, respectively. The mass-velocity-

charge-time quaternion properties of bondons‘ particles were used in discussing various 

paradigmatic types of chemical bond towards assessing their covalent, multiple bonding, 

metallic and ionic features. The bondonic picture was completed by discussing the 

relativistic charge and life-time (the actual zitterbewegung) problem, i.e., showing that the 

bondon equals the benchmark electronic charge through moving with almost light velocity. 

It carries negligible, although non-zero, mass in special bonding conditions and towards 

observable femtosecond life-time as the bonding length increases in the nanosystems and 

bonding energy decreases according with the bonding length-energy relationship 

182019][]/[
0

 AXmolkcalE bondbond , providing this way the predictive framework in 

which the B particle may be observed. Finally, its role in establishing the virtual states in 

Raman scattering was also established.  

Keywords: de Broglie-Bohm theory; Schrödinger equation; Dirac equation; chemical 

field; gauge/phase symmetry transformation; bondonic properties; Raman scattering 
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1. Introduction 

One of the first attempts to systematically use the electron structure as the basis of the chemical 

bond is due to the discoverer of the electron itself, J.J. Thomson, who published in 1921 an interesting 

model for describing one of the most puzzling molecules of chemistry, the benzene, by the aid of C–C 

portioned bonds, each with three electrons [1] that were further separated into 2() + 1() lower and 

higher energy electrons, respectively, in the light of Hückel - and of subsequent quantum theories 

[2,3]. On the other side, the electronic theory of the valence developed by Lewis in 1916 [4] and 

expanded by Langmuir in 1919 [5] had mainly treated the electronic behavior like a point-particle that 

nevertheless embodies considerable chemical information, due to the the semiclassical behavior of the 

electrons on the valence shells of atoms and molecules. Nevertheless, the consistent quantum theory of 

the chemical bond was advocated and implemented by the works of Pauling [6–8] and Heitler and 

London [9], which gave rise to the wave-function characterization of bonding through the fashioned 

molecular wave-functions (orbitals)–mainly coming from the superposition principle applied on the 

atomic wave-functions involved. The success of this approach, especially reported by spectroscopic 

studies, encouraged further generalization toward treating more and more complex chemical systems 

by the self-consistent wave-function algorithms developed by Slater [10,11], Hartree-Fock [12], 

Lowdin [13–15], Roothann [16], Pariser, Parr and Pople (in PPP theory) [17–19], until the turn 

towards the density functional theory of Kohn [20,21] and Pople [22,23] in the second half of the XX 

century, which marked the subtle feed-back to the earlier electronic point-like view by means of the 

electronic density functionals and localization functions [24,25]. The compromised picture of the 

chemical bond may be widely comprised by the emerging Bader‘s atoms-in-molecule theory [26–28], 

the fuzzy theory of Mezey [29–31], along with the chemical reactivity principles [32–43] as 

originating in the Sanderson‘s electronegativity [34] and Pearson‘s chemical hardness [38] concepts, 

and their recent density functionals [44–46] that eventually characterizes it.  

Within this modern quantum chemistry picture, its seems that the Dirac dream [47] in 

characterizing the chemical bond (in particular) and the chemistry (in general) by means of the 

chemical field related with the Schrödinger wave-function [48] or the Dirac spinor [49] was somehow 

avoided by collapsing the undulatory quantum concepts into the (observable) electronic density. Here 

is the paradoxical point: the dispersion of the wave function was replaced by the delocalization of 

density and the chemical bonding information is still beyond a decisive quantum clarification. 

Moreover, the quantum theory itself was challenged as to its reliability by the Einstein-Podolski-

Rosen(-Bohr) entanglement formulation of quantum phenomena [50,51], qualitatively explained by the 

Bohm reformulation [52,53] of the de Broglie wave packet [54,55] through the combined de Broglie-

Bohm wave-function [56,57]  













),(
exp),(),(0

xtS
ixtRxt  (1) 

with the R-amplitude and S-phase action factors given, respectively, as 

)(),(),( 2/12

0 xxtxtR   (2) 
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EtpxxtS ),(  (3) 

in terms of electronic density  , momentum p, total energy E, and time-space (t, x) coordinates, 

without spin. 

On the other side, although many of the relativistic effects were explored by considering them in the 

self-consistent equation of atomic and molecular structure computation [58–62], the recent reloaded 

thesis of Einstein‘s special relativity [63,64] into the algebraic formulation of  

chemistry [65–67], widely asks for a further reformation of the chemical bonding quantum-relativistic 

vision [68].  

In this respect, the present work advocates making these required steps toward assessing the 

quantum particle of the chemical bond as based on the derived chemical field released at its turn by the 

fundamental electronic equations of motion either within Bohmian non-relativistic (Schrödinger) or 

relativistic (Dirac) pictures and to explore the first consequences. If successful, the present endeavor 

will contribute to celebrate the dream in unifying the quantum and relativistic features of electron at 

the chemical level, while unveiling the true particle-wave nature of the chemical bond.  

2. Method: Identification of Bondons ( B ) 

The search for the bondons follows the algorithm: 

i. Considering the de Broglie-Bohm electronic wave-function/spinor Ψ0 formulation of the 

associated quantum Schrödinger/Dirac equation of motion. 

ii. Checking for recovering the charge current conservation law 

0



j

t


 (4) 

that assures for the circulation nature of the electronic fields under study.  

iii. Recognizing the quantum potential quaV and its equation, if it eventually appears. 

iv. Reloading the electronic wave-function/spinor under the augmented U(1) or SU(2) group form 









 ),(exp),(),( 0 xt

c

ei
xtxtG


 (5) 

with the standard abbreviation 0

2

0 4/ ee   in terms of the chemical field   considered as the inverse 

of the fine-structure order: 








 
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Coulomb

meterJoule

e

c
03599976.137~0


 (6) 

since upper bounded, in principle, by the atomic number of the ultimate chemical stable element  

(Z = 137). Although apparently small enough to be neglected in the quantum range, the quantity (6) 

plays a crucial role for chemical bonding where the energies involved are around the order of 10
–19

 

Joules (electron-volts)! Nevertheless, for establishing the physical significance of such chemical 

bonding quanta, one can proceed with the chain equivalences 
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 (7) 

revealing that the chemical bonding field caries bondons with unit quanta ec /  along the distance of 

bonding within the potential gap of stability or by tunneling the potential barrier of encountered 

bonding attractors. 

v. Rewriting the quantum wave-function/spinor equation with the group object ΨG, while 

separating the terms containing the real and imaginary   chemical field contributions. 

vi. Identifying the chemical field charge current and term within the actual group transformation 

context. 

vii. Establishing the global/local gauge transformations that resemble the de Broglie-Bohm  

wave-function/spinor ansatz Ψ0 of steps (i)–(iii). 

viii. Imposing invariant conditions for ΨG wave function on pattern quantum equation respecting the 

Ψ0 wave-function/spinor action of steps (i)–(iii). 

ix. Establishing the chemical field   specific equations. 

x. Solving the system of chemical field   equations.  

xi. Assessing the stationary chemical field       

0



t

t
 (8) 

that is the case in chemical bonds at equilibrium (ground state condition) to simplify the quest for the 

solution of chemical field  . 

xii. The manifested bondonic chemical field bondon  is eventually identified along the bonding 

distance (or space).  

xiii. Checking the eventual charge flux condition of Bader within the vanishing chemical bonding 

field [26] 

 0B 0  (9) 

xiv. Employing the Heisenberg time-energy relaxation-saturation relationship through the kinetic 

energy of electrons in bonding  

tmm

T
v

2
~

2
  (10) 

xv. Equate the bondonic chemical bond field with the chemical field quanta (6) to get the bondons‘ 

mass 

  0 BB m  (11) 

This algorithm will be next unfolded both for non-relativistic as well as for relativistic electronic 

motion to quest upon the bondonic existence, eventually emphasizing their difference in bondons‘ 

manifestations. 
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3. Type of Bondons 

3.1. Non-Relativistic Bondons 

For the non-relativistic quantum motion, we will treat the above steps (i)–(iii) at once. As such, 

when considering the de Broglie-Bohm electronic wavefunction into the Schrödinger Equation [48] 

00

2
2

0
2

 V
m

i t


  (12) 

it separates into the real and imaginary components as [52,53,68] 

0
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m

R
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
 (13b) 

While recognizing into the first Equation (13a), the charge current conservation law with Equation (2) 

along the identification 

S
m

R
jS 

2
 (14) 

the second equation helps in detecting the quantum (or Bohm) potential 

R

R

m
Vqua

22

2


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 (15) 

contributing to the total energy 

quaVVTE   (16) 

once the momentum-energy correspondences  
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m
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 (17a) 

ESt   (17b) 

are engaged. 

Next, when employing the associate U(1) gauge wavefunction of Equation (5) type, its partial 

derivative terms look like 
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Now the Schrödinger Equation (12) for ΨG in the form of (5) is decomposed into imaginary and real 

parts  
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that can be rearranged 
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to reveal some interesting features of chemical bonding. 

Firstly, through comparing the Equation (20a) with the charge conserved current equation form (4) 

from the general chemical field algorithm–the step (ii), the conserving charge current takes now the 

expanded expression: 
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j S)U(

 2

1  (21) 

suggesting that the additional current is responsible for the chemical field to be activated, namely  



2R
mc

e
j


 (22) 

which vanishes when the global gauge condition is considered  

0  (23) 

Therefore, in order that the chemical bonding is created, the local gauge transformation should be 

used that exists under the condition 

0  (24) 

In this framework, the chemical field current j


 carries specific bonding particles that can be 

appropriately called bondons, closely related with electrons, in fact with those electrons involved in 

bonding, either as single, lone pair or delocalized, and having an oriented direction of movement, with 

an action depending on the chemical field itself  . 

Nevertheless, another important idea abstracted from the above results is that in the search for the 

chemical field   no global gauge condition is required. It is also worth noting that the presence of the 
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chemical field does not change the Bohm quantum potential that is recovered untouched in (20b), thus 

preserving the entanglement character of interaction.  

With these observations, it follows that in order for the de Broglie-Bohm-Schrödinger formalism to 

be invariant under the U(1) transformation (5), a couple of gauge conditions have to be fulfilled by the 

chemical field in Equations (20a) and (20b), namely 

  02 
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Next, the chemical field   is to be expressed through combining its spatial-temporal information 

contained in Equations (25). From the first condition (25a) one finds that 
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where the vectorial feature of the chemical field gradient was emphasized on the direction of its 

associated charge current fixed by the versor 


 (i.e., by the unitary vector associate with the 

propagation direction, 12 


). We will apply such writing whenever necessary for avoiding scalar to 

vector ratios and preserving the physical sense of the whole construction as well. Replacing the 

gradient of the chemical field (26) into its temporal Equation (25b) one gets the unified chemical field 

motion description 
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that can be further rewritten as 
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The (quadratic undulatory) chemical field Equation (28) can be firstly solved for the Laplacian 

general solutions 
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that give special propagation equations for the chemical field since linking the spatial Laplacian with 

temporal evolution of the chemical field   2/1
 t ; however, they may be considerably simplified when 

assuming the stationary chemical field condition (8), the step (xi) in the bondons‘ algorithm, providing 

the working equation for the stationary bondonic field  


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

22  (31) 

Equation (31) may be further integrated between two bonding attractors, say XA,XB, to  

primarily give 
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from where the generic bondonic chemical field is manifested with the form  
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The expression (33) has two important consequences. Firstly, it recovers the Bader zero flux 

condition for defining the basins of bonding [26] that in the present case is represented by the zero 

chemical boning fields, namely 

 0B 0 


 (34) 

Secondly, it furnishes the bondonic (chemical field) analytical expression 
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within the natural framework in which 
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i.e., when one has  
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 (36c) 

The step (xiv) of the bondonic algorithm may be now immediately implemented through inserting 

the Equation (10) into Equation (35) yielding the simple chemical field form 

bondB X
t

m

e

c



 2
  (37) 

Finally, through applying the expression (11) of the bondonic algorithm–the step (xv) upon the 

result (37) with quanta (6) the mass of bondons carried by the chemical field on a given distance is 

obtained 
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2
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Note that the bondons‘ mass (38) directly depends on the time the chemical information ―travels‖ 

from one bonding attractor to the other involved in bonding, while fast decreasing as the bonding 

distance increases. This phenomenological behavior has to be in the sequel cross-checked by 

considering the generalized relativistic version of electronic motion by means of the Dirac equation, 

Further quantitative consideration will be discussed afterwards.  

3.2. Relativistic Bondons 

In treating the quantum relativistic electronic behavior, the consecrated starting point stays the 

Dirac equation for the scalar real valued potential w  that can be seen as a general function of  xtc


,  

dependency [49] 
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with the spatial coordinate derivative notation kk x /  and the special operators assuming the 

Dirac 4D representation 
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in terms of bi-dimensional Pauli and unitary matrices 
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Written within the de Broglie-Bohm framework, the spinor solution of Equation (39) looks like 

   
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that from the beginning satisfies the necessary electronic density condition 

 RR*

0

*

0


 (42) 

Going on, aiming for the separation of the Dirac Equation (39) into its real/imaginary spinorial 

contributions, one firstly calculates the terms 
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
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to be then combined in (39) producing the actual de Broglie-Bohm-Dirac spinorial Equation  
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When equating the imaginary parts of (44) one yields the system 
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that has non-trivial spinorial solutions only by canceling the associate determinant, i.e., by forming the 

Equation 

    222
ˆ 

k kkt RcR   (46) 

of which the minus sign of the squared root corresponds with the electronic conservation charge, while 

the positive sign is specific to the relativistic treatment of the positron motion. For proofing this, the 

specific relationship for the electronic charge conservation (4) may be unfolded by adapting it to the 

present Bohmian spinorial case by the chain equivalences 
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  
k kkt R

c
RR 2

1

2

1

2 )(ˆ
2

2    

  
k kkt RRcRR ̂22  (47a) 

The result 

  
k kkt RcR ̂  (47b) 

indeed corresponds with the squaring root of (46) with the minus sign, certifying, therefore, the 

validity of the present approach, i.e., being in accordance with the step (ii) in bondonic algorithm of 

Section 2. 

Next, let us see what information is conveyed by the real part of Bohmian decomposed spinors of 

Dirac Equation (44); the system (48) is obtained 
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
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wmcSSc

ScwmcS

tk kk

k kkt

 (48) 

that, as was previously the case with the imaginary counterpart (45), has no trivial spinors solutions 

only if the associate determinant vanishes, which gives the Equation 

    2222 ˆ wmcSSc tk kk    (49) 

Now, considering the Bohmian momentum-energy (17) equivalences, the Equation (49) further 

becomes 

   2222 ˆ wmcEpc
k kk     

   22
2

2 ˆ wmcEpc  


  

 2222 wmcEpc   (50) 

from where, while retaining the minus sign through the square rooting (as prescribed above by the 

imaginary spinorial treatment in relation with charge conservation), one recovers the relativistic 

electronic energy-momentum conservation relationship 

wmccpE  2
 (51) 

thus confirming in full the reliability of the Bohmian approach over the relativistic spinors.  

Moreover, the present Bohmian treatment of the relativistic motion is remarkable in that, except in 

the non-relativistic case, it does not produces the additional quantum (Bohm) potential (15)–

responsible for entangled phenomena or hidden variables. This may be justified because within the 

Dirac treatment of the electron the entanglement phenomenology is somehow included throughout the 

Dirac Sea and the positron existence. Another important difference with respect to the Schrödinger 

picture is that the spinor equations that underlie the total charge and energy conservation do not mix 

the amplitude (2) with the phase (3) of the de Broglie-Bohm wave-function, whereas they govern now, 

in an independent manner, the flux and the energy of electronic motion. For these reasons, it seems 
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that the relativistic Bohmian picture offers the natural environment in which the chemical field and 

associate bondons particles may be treated without involving additional physics.  

Let us see, therefore, whether the Dirac-Bohmian framework will reveal (or not) new insight in the 

bondon (Schrödinger) reality. This will be done by reconsidering the working Bohmian spinor (41) as 

transformed by the internal gauge symmetry SU(2) driven by the chemical field   related phase–in 

accordance with Equation (5) of the step (iv) of bondonic algorithm  
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Here it is immediate that expression (52) still preserves the electronic density formulation (2) as 

was previously the case with the gaugeless field (41)  

 RRGG
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

 (53) 

However, when employed for the Dirac equation terms, the field (52) modifies the previous 

expressions (43a)–(43c) as follows 
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while producing the gauge spinorial Equation 
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Now it is clear that since the imaginary part in (55) was not at all changed with respect to  

Equation (44) by the chemical field presence, the total charge conservation (4) is naturally preserved; 

instead the real part is modified, respecting the case (44), in the presence of the chemical field (by 



Int. J. Mol. Sci. 2010, 11             

 

 

4239 

internal gauge symmetry). Nevertheless, in order that chemical field rotation does not produce 

modification in the total energy conservation, it imposes that the gauge spinorial system of the 

chemical field must be as 
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
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tGk kkG

k kkGtG

c

c




 (56) 

According to the already custom procedure, for the system (56) having no trivial gauge spinorial 

solution, the associated vanishing determinant is necessary, which brings to light the chemical field 

Equation 

    2
22 ˆ  tk kkc   (57a) 

equivalently rewritten as     

   2
2

2 ˆ  tc 


 (57b) 

that simply reduces to 

   222  tc  (57c) 

through considering the Pauling matrices (40b) unitary feature upon squaring.  

At this point, one has to decide upon the sign of the square root of (57c); this was previously 

clarified to be minus for electronic and plus for positronic motions. Therefore, the electronic chemical 

bond is modeled by the resulting chemical field equation projected on the bonding length direction 

tcX bond 






 1
 (58) 

The Equation (58) is of undulatory kind with the chemical field solution having the general plane 

wave form 

  tkXi
e

c
bondB  exp


 (59) 

that agrees with both the general definition of the chemical field (6) as well as with the relativistic 

―traveling‖ of the bonding information. In fact, this is the paradox of the Dirac approach of the 

chemical bond: it aims to deal with electrons in bonding while they have to transmit the chemical 

bonding information—as waves—propagating with the light velocity between the bonding attractors. 

This is another argument for the need of bondons reality as a specific existence of electrons in 

chemical bond is compulsory so that such a paradox can be solved.  

Note that within the Dirac approach, the Bader flux condition (9) is no more related to the chemical 

field, being included in the total conservation of charge; this is again natural, since in the relativistic 

case the chemical field is explicitly propagating with a percentage of light velocity (see the Discussion 

in Section 4 below) so that it cannot drive the (stationary) electronic frontiers of bonding. 

Further on, when rewriting the chemical field of bonding (59) within the de Broglie and Planck 

consecrated corpuscular-undulatory quantifications 
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
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it may be further combined with the unitary quanta form (6) in the Equation (11) of the step (xv) in the 

bondonic algorithm to produce the phase condition 
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i
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
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that implies the quantification 

nEtpXbond 2 , Nn  (62) 

By the subsequent employment of the Heisenberg time-energy saturated indeterminacy at the level 

of kinetic energy abstracted from the total energy (to focus on the motion of the bondonic plane waves) 

t
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m
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the bondon Equation (62) becomes  
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X bond   (64) 

that when solved for the bondonic mass yields the expression 
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2
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2
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t
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B 


, n = 0,1,2… (65) 

which appears to correct the previous non-relativistic expression (38) with the full quantification.  

However, the Schrödinger bondon mass of Equation (38) is recovered from the Dirac bondonic 

mass (65) in the ground state, i.e., by setting n = 0. Therefore, the Dirac picture assures the complete 

characterization of the chemical bond through revealing the bondonic existence by the internal 

chemical field symmetry with the quantification of mass either in ground or in excited states  

( 0n , Nn ). 

Moreover, as always happens when dealing with the Dirac equation, the positronic bondonic mass 

may be immediately derived as well, for the case of the chemical bonding is considered also in the 

anti-particle world; it emerges from reloading the square root of the Dirac chemical field  

Equation (57c) with a plus sign that will be propagated in all the subsequent considerations, e.g., with 

the positronic incoming plane wave replacing the departed electronic one of (59), until delivering the 

positronic bondonic mass 

 2

2
12

1

2

~  n
X

t
m

bond

B 


, n = 0,1,2… (66) 

It nevertheless differs from the electronic bondonic mass (65) only in the excited spectrum, while both 

collapse in the non-relativistic bondonic mass (38) for the ground state of the chemical bond.  
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Remarkably, for both the electronic and positronic cases, the associated bondons in the excited 

states display heavier mass than those specific to the ground state, a behavior once more confirming 

that the bondons encompass all the bonding information, i.e., have the excitation energy converted in 

the mass-added-value in full agreement with the mass-energy relativistic custom Einstein  

equivalence [64]. 

4. Discussion 

Let us analyze the consequences of the bondon‘s existence, starting from its mass (38) formulation 

on the ground state of the chemical bond.  

At one extreme, when considering atomic parameters in bonding, i.e., when assuming the bonding 

distance of the Bohr radius size SIma ][1052917.0 10

0

  the corresponding binding time would be 

given as SIsvatt ][1041889.2/ 17

000

  while the involved bondonic mass will be half of the 

electronic one 2/0m , to assure fast bonding information. Of course, this is not a realistic binding 

situation; for that, let us check the hypothetical case in which the electronic 0m  mass is combined, 

within the bondonic formulation (38), into the bond distance 02/ mtXbond   resulting in it 

completing the binding phenomenon in the femtosecond time SIbonding st ][10~ 12
 for the custom 

nanometric distance of bonding SIbond mX ][10~ 9 . Still, when both the femtosecond and nanometer 

time-space scale of bonding is assumed in (38), the bondonic mass is provided in the range of 

electronic mass SIB kgm ][10~ 31  although not necessarily with the exact value for electron mass nor 

having the same value for each bonding case considered. Further insight into the time existence of the 

bondons will be reloaded for molecular systems below after discussing related specific properties as 

the bondonic velocity and charge.  

For enlightenment on the last perspective, let us rewrite the bondonic mass (65) within the spatial-

energetic frame of bonding, i.e., through replacing the time with the associated Heisenberg 

energy, bondbonding Et / , thus delivering another working expression for the bondonic mass 
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that is more practical than the traditional characterization of bonding types in terms of length and 

energy of bonding; it may further assume the numerical ground state ratio form 
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(68) 

when the available bonding energy and length are considered (as is the custom for chemical 

information) in kcal/mol and Angstrom, respectively. Note that having the bondon‘s mass in terms of 

bond energy implies the inclusion of the electronic pairing effect in the bondonic existence, without 

the constraint that the bonding pair may accumulate in the internuclear region [69].  

Moreover, since the bondonic mass general formulation (65) resulted within the relativistic 

treatment of electron, it is considering also the companion velocity of the bondonic mass that is 
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reached in propagating the bonding information between the bonding attractors. As such, when the 

Einstein type relationship [70] 

h
mv


2

2

 (69) 

is employed for the relativistic bondonic velocity-mass relationship [63,64] 

2

2

1
c

v

m
m

B

B



  
(70) 

and for the frequency of the associate bond wave  

bond

B

X

v
  (71) 

it provides the quantified searched bondon to light velocity ratio 
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(72) 

or numerically in the bonding ground state as 
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(73) 

Next, dealing with a new matter particle, one will be interested also on its charge, respecting the 

benchmarking charge of an electron. To this end, one re-employs the step (xv) of bondonic algorithm, 

Equation (11), in the form emphasizing the bondonic charge appearance, namely  

  0 BB e  (74) 

Next, when considering for the left-hand side of (74), the form provided by Equation (35), and for the 

right-hand side of (74), the fundamental hyperfine value of Equation (6), one gets the working 

Equation  








 


Coulomb

meterJoule
X

e

vm
c bond

B

BB 036.137  (75) 

from where the bondonic charge appears immediately, once the associate expressions for mass and 

velocity are considered from Equations (67) and (72), respectively, yielding the quantified form  
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(76) 
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However, even for the ground state, and more so for the excited states, one may see that when forming 

the practical ratio respecting the unitary electric charge from (76), it actually approaches a referential 

value, namely 

 

 
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


 4

121027817.3
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AXmolkcalE
e

e

bondbond

B
e  

(77) 

for, in principle, any common energy and length of chemical bonding. On the other side, for the 

bondons to have different masses and velocities (kinetic energy) as associated with specific bonding 

energy but an invariant (universal) charge seems a bit paradoxical. Moreover, it appears that with 

Equation (77) the predicted charge of a bonding, even in small molecules such as H2, considerably 

surpasses the available charge in the system, although this may be eventually explained by the 

continuous matter-antimatter balance in the Dirac Sea to which the present approach belongs. 

However, to circumvent such problems, one may further use the result (77) and map it into the Poisson 

type charge field Equation 

eeB  4   42V  (78) 

from where the bondonic charge may be reshaped by appropriate dimensional scaling in terms of the 

bounding parameters (Ebond and Xbond) successively as  
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Now, Equation (79) may be employed towards the working ratio between the bondonic and electronic 

charges in the ground state of bonding 
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With Equation (80) the situation is reversed compared with the previous paradoxical situation, in 

the sense that now, for most chemical bonds (of Table 1, for instance), the resulted bondonic charge is 

small enough to be not yet observed or considered as belonging to the bonding wave spreading among 

the binding electrons.  

Instead, aiming to explore the specific information of bonding reflected by the bondonic mass and 

velocity, the associated ratios of Equations (68) and (73) for some typical chemical bonds [71,72] are 

computed in Table 1. They may be eventually accompanied by the predicted life-time of corresponding 

bondons, obtained from the bondonic mass and velocity working expressions (68) and (73), 

respectively, throughout the basic time-energy Heisenberg relationship—here restrained at the level of 

kinetic energy only for the bondonic particle; this way one yields the successive analytical forms 
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and the specific values for various bonding types that are displayed in Table 1. Note that defining the 

bondonic life-time by Equation (81) is the most adequate, since it involves the basic bondonic 

(particle!) information, mass and velocity; instead, when directly evaluating the bondonic  

life-time by only the bonding energy one deals with the working formula 

SI

bondbond

bond s
molkcalEE

t ][10
]/[

51787.1 14


 (82) 

that usually produces at least one order lower values than those reported in Table 1 upon employing 

the more complex Equation (81). This is nevertheless reasonable, because in the last case no particle 

information was considered, so that the Equation (82) gives the time of the associate wave 

representation of bonding; this departs by the case when the time is computed by Equation (81) where 

the information of bonding is contained within the particle (bondonic) mass and velocity, thus 

predicting longer life-times, and consequently a more susceptible timescale in allowing the bondonic 

observation. Therefore, as far as the chemical bonding is modeled by associate bondonic particle, the 

specific time of Equation (81) rather than that of Equation (82) should be considered.  

While analyzing the values in Table 1, it is generally observed that as the bondonic mass is large as 

its velocity and the electric charge lower in their ratios, respecting the light velocity and electronic 

benchmark charge, respectively, however with some irregularities that allows further discrimination in 

the sub-bonding types. Yet, the life-time tendency records further irregularities, due to its complex and 

reversed bondonic mass-velocity dependency of Equation (81), and will be given a special role in 

bondonic observation—see the Table 2 discussion below. Nevertheless, in all cases, the bondonic 

velocity is a considerable (non-negligible) percent of the photonic velocity, confirming therefore its 

combined quantum-relativistic nature. This explains why the bondonic reality appears even in the  

non-relativistic case of the Schrödinger equation when augmented with Bohmian entangled motion 

through the hidden quantum interaction.  

Going now to particular cases of chemical bonding in Table 1, the hydrogen molecule maintains its 

special behavior through providing the bondonic mass as slightly more than double of the only two 

electrons contained in the whole system. This is not a paradox, but a confirmation of the fact the 

bondonic reality is not just the sum or partition of the available valence atomic electrons in molecular 

bonds, but a distinct (although related) existence that fully involves the undulatory nature of the 

electronic and nuclear motions in producing the chemical field. Remember the chemical field was 

associated either in Schrödinger as well in Dirac pictures with the internal rotations of the (Bohmian) 

wave function or spinors, being thus merely a phase property—thus inherently of undulatory nature. It 

is therefore natural that the risen bondons in bonding preserve the wave nature of the chemical field 

traveling the bond length distance with a significant percent of light.  

Moreover, the bondonic mass value may determine the kind of chemical bond created, in this line 

the H2 being the most covalent binding considered in Table 1 since it is most closely situated to the 

electronic pairing at the mass level. The excess in H2 bond mass with respect to the two electrons in 

isolated H atoms comes from the nuclear motion energy converted (relativistic) and added to the two-

sided electronic masses, while the heavier resulted mass of the bondon is responsible for the 

stabilization of the formed molecule respecting the separated atoms. The H2 bondon seems to be also 

among the less circulated ones (along the bondon of the F2 molecule) in bonding traveled information 
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due to the low velocity and charge record—offering therefore another criterion of covalency, i.e., 

associated with better localization of the bonding space.  

Table 1. Ratios for the bondon-to-electronic mass and charge and for the bondon-to-light 

velocity, along the associated bondonic life-time for typical chemical bonds in terms of 

their basic characteristics such as the bond length and energy [71,72] through employing 

the basic formulas (68), (73), (80) and (81) for the ground states, respectively.  

Bond Type 
bondX  

(Å) 

bondE  

(kcal/mol) 0m

mB
m   [%]

c

v
B

v
  ]10[ 3

e

eB
e  ]10[ 15Bt  

(seconds) 

H–H 0.60 104.2 2.34219 3.451 0.3435 9.236 

C–C 1.54 81.2 0.45624 6.890 0.687 11.894 

C–C (in diamond) 1.54 170.9 0.21678 14.385 1.446 5.743 

C=C 1.34 147 0.33286 10.816 1.082 6.616 

CC 1.20 194 0.31451 12.753 1.279 5.037 

NN 1.10 225 0.32272 13.544 1.36 4.352 

O=O 1.10 118.4 0.61327 7.175 0.716 8.160 

F–F 1.28 37.6 1.42621 2.657 0.264 25.582 

Cl–Cl 1.98 58 0.3864 6.330 0.631 16.639 

I–I 2.66 36.1 0.3440 5.296 0.528 26.701 

C–H 1.09 99.2 0.7455 5.961 0.594 9.724 

N–H 1.02 93.4 0.9042 5.254 0.523 10.32 

O–H 0.96 110.6 0.8620 5.854 0.583 8.721 

C–O 1.42 82 0.5314 6.418 0.64 11.771 

C=O (in CH2O) 1.21 166 0.3615 11.026 1.104 5.862 

C=O (in O=C=O) 1.15 191.6 0.3467 12.081 1.211 5.091 

C–Cl 1.76 78 0.3636 7.560 0.754 12.394 

C–Br 1.91 68 0.3542 7.155 0.714 14.208 

C–I 2.10 51 0.3906 5.905 0.588 18.9131 

 

The same happens with the C–C bonding, which is predicted to be more covalent for its simple 

(single) bondon that moves with the smallest velocity (
v

 <<) or fraction of the light velocity from all 

C–C types of bonding; in this case also the bondonic highest mass ( m
 >>), smallest charge (

e
 <<), 

and highest (observed) life-time ( B
t >>) criteria seem to work well. Other bonds with high covalent 

character, according with the bondonic velocity criterion only, are present in NN and the C=O 

bonding types and less in the O=O and C–O ones. Instead, one may establish the criteria for multiple 

(double and triple) bonds as having the series of current bondonic properties as: 

},,,{ 
Bevm

t .  

However, the diamond C–C bondon, although with the smallest recorded mass ( m
 <<), is 

characterized by the highest velocity ( v
 >) and charge ( e

 >) in the CC series (and also among all 

cases of Table 1). This is an indication that the bond is very much delocalized, thus recognizing the 

solid state or metallic crystallized structure for this kind of bond in which the electronic pairings (the 

bondons) are distributed over all atomic centers in the unit cell. It is, therefore, a special case of 

bonding that widely informs us on the existence of conduction bands in a solid; therefore the metallic 
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character generally associated with the bondonic series of properties },,,{ 
Bevm

t , thus 

having similar trends with the corresponding properties of multiple bonds, with the only particularity 

in the lower mass behavior displayed—due to the higher delocalization behavior for the  

associate bondons.  

Very interestingly, the series of C–H, N–H, and O–H bonds behave similarly among them since 

displaying a shrink and medium range of mass (moderate high), velocity, charge and life-time 

(moderate high) variations for their bondons, }~~,~,,~{ 
Bevm

t ; this may explain why these 

bonds are the most preferred ones in DNA and genomic construction of proteins, being however 

situated towards the ionic character of chemical bond by the lower bondonic velocities computed; they 

have also the most close bondonic mass to unity; this feature being due to the manifested polarizability 

and inter-molecular effects that allows the 3D proteomic and specific interactions taking place.  

Instead, along the series of halogen molecules F2, Cl2, and I2, only the observed life-time of 

bondons show high and somehow similar values, while from the point of view of velocity and charge 

realms only the last two bonding types display compatible properties, both with drastic difference for 

their bondonic mass respecting the F–F bond—probably due the most negative character of the 

fluorine atoms. Nevertheless, judging upon the higher life-time with respect to the other types of 

bonding, the classification may be decided in the favor of covalent behavior. At this point, one notes 

traces of covalent bonding nature also in the case of the rest of halogen-carbon binding (C–Cl, C–Br, 

and C–I in Table 1) from the bondonic life-time perspective, while displaying also the ionic 

manifestation through the velocity and charge criteria ~}~,{ ev   and even a bit of metal character by 

the aid of small bondonic mass (
m

 <). All these mixed features may be because of the joint existence 

of both inner electronic shells that participate by electronic induction in bonding as well as 

electronegativity difference potential.  

Remarkably, the present results are in accordance with the recent signalized new binding class 

between the electronic pairs, somehow different from the ionic and covalent traditional ones in the 

sense that it is seen as a kind of resonance, as it appears in the molecular systems like F2, O2, N2 (with 

impact in environmental chemistry) or in polar compounds like C–F (specific to ecotoxicology) or in 

the reactions that imply a competition between the exchange in the hydrogen or halogen (e.g., HF). 

The valence explanation relied on the possibility of higher orders of orbitals‘ existing when additional 

shells of atomic orbitals are involved such as <f> orbitals reaching this way the charge-shift bonding 

concept [73]; the present bondonic treatment of chemical bonds overcomes the charge shift paradoxes 

by the relativistic nature of the bondon particles of bonding that have as inherent nature the time-space 

or the energy-space spanning towards electronic pairing stabilization between centers of bonding or 

atomic adducts in molecules. 

However, we can also made predictions regarding the values of bonding energy and length required 

for a bondon to acquire either the unity of electronic charge or its mass (with the consequence in its 

velocity fraction from the light velocity) on the ground state, by setting Equations (68) and (80) to 

unity, respectively. These predictions are summarized in Table 2. 

From Table 2, one note is that the situation of the bondon having the same charge as the electron is 

quite improbable, at least for the common chemical bonds, since in such a case it will feature almost 

the light velocity (and almost no mass–that is, however, continuously decreasing as the bonding energy 
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decreases and the bonding length increases). This is natural since a longer distance has to be spanned 

by lower binding energy yet carrying the same unit charge of electron while it is transmitted with the 

same relativistic velocity! Such behavior may be regarded as the present zitterbewegung (trembling in 

motion) phenomena, here at the bondonic level. However one records the systematic increasing of 

bondonic life-time towards being observable in the femtosecond regime for increasing bond length and 

decreasing the bonding energy–under the condition the chemical bonding itself still exists for certain  

{ bondX , bondE } combinations. 

Table 2. Predicted basic values for bonding energy and length, along the associated 

bondonic life-time and velocity fraction from the light velocity for a system featuring unity 

ratios of bondonic mass and charge, respecting the electron values, through employing the 

basic formulas (81), (73), (68), and (80), respectively.  

bondX  

][
0

A  
bondE  

]/[ molkcal  

]10[ 15Bt  

(seconds) 

[%]
c

vB
v   

0m

mB
m   

e

eB
e   

1 87.86 10.966 4.84691 1 0.4827 × 10
 –3

 

1 182019 53.376 99.9951 4.82699 × 10
 –4 

1 

10 18201.9 533.76 99.9951 4.82699 × 10
 –5 

1 

100 1820.19 5337.56 99.9951 4.82699 × 10
 –6 

1 

 

On the other side, the situation in which the bondon will weigh as much as one electron is a current 

one (see the Table 1); nevertheless, it is accompanied by quite reasonable chemical bonding length and 

energy information that it can carried at a low fraction of the light velocity, however with very low 

charge as well. Nevertheless, the discovered bonding energy-length relationship from Table 2, based 

on Equation (80), namely  

182019][]/[
0

 AXmolkcalE bondbond  (83) 

should be used in setting appropriate experimental conditions in which the bondon particle B  may be 

observed as carrying the unit electronic charge yet with almost zero mass. In this way, the bondon is 

affirmed as a special particle of Nature, that when behaving like an electron in charge it is behaving 

like a photon in velocity and like neutrino in mass, while having an observable (at least as 

femtosecond) lifetime for nanosystems having chemical bonding in the range of hundred of Angstroms 

and thousands of kcal/mol! Such a peculiar nature of a bondon as the quantum particle of chemical 

bonding, the central theme of Chemistry, is not as surprising when noting that Chemistry seems to 

need both a particle view (such as offered by relativity) and a wave view (such as quantum mechanics 

offers), although nowadays these two physics theories are not yet fully compatible with each other, or 

even each fully coherent internally. Maybe the concept of ‗bondons‘ will help to improve the situation 

for all concerned by its further conceptual applications. 

Finally, just to give a conceptual glimpse of how the present bondonic approach may be employed, 

the scattering phenomena are considered within its Raman realization, viewed as a sort of generalized 

Compton scattering process, i.e., extracting the structural information from various systems (atoms, 

molecules, crystals, etc.) by modeling the inelastic interaction between an incident IR photon and a 

quantum system (here the bondons of chemical bonds in molecules), leaving a scattered wave with 
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different frequency and the resulting system in its final state [74]. Quantitatively, one firstly considers 

the interaction Hamiltonian as being composed by two parts,  

  
j

jjB

B

B trAp
m

e
H ),()1( 

 (84) 


j

j

B

B trA
m

e
H ),(

2

2

)2( 
2

 (85) 

accounting for the linear and quadratic dependence of the light field potential vector ),( trA
j


 acting on 

the bondons ―j‖, carrying the kinetic moment 
BBjB

vmp  , charge 
Be  and mass 

Bm . 

Then, noting that, while considering the quantified incident ( 00 ,q


) and scattered ( ,q


) light 

beams, the interactions driven by H
(1)

 and H
(2)

 model the changing in one- and two- occupation 

numbers of photonic trains, respectively. In this context, the transition probability between the initial 

iB  and final 
fB  bondonic states writes by squaring the sum of all scattering quantum probabilities 

that include absorption (A, with nA number of photons) and emission (E, with nE number of photons) of 

scattered light on bondons, see Figure 1.  

Figure 1. The Feynman diagrammatical sum of interactions entering the Raman effect by 

connecting the single and double photonic particles‘ events in absorption (incident wave 

light 00 ,q


) and emission (scattered wave light ,q


) induced by the quantum first H
(1)

 and 

second H
(2) 

order interaction Hamiltonians of Equations (84) and (85) through the 

initial iB , final 
fB , and virtual vB  bondonic states. The first term accounts for 

absorption (A)-emission (E) at once, the second term sums over the virtual states 

connecting the absorption followed by emission, while the third terms sums over virtual 

states connecting the absorption following the emission events.  

 

  

Analytically, one has the initial-to-final total transition probability [75]dependence here given as  
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At this point, the conceptual challenge appears to explore the existence of the Raman process itself 

from the bondonic description of the chemical bond that turns the incoming IR photon into the 

(induced, stimulated, or spontaneous) structural frequencies 

h

EE
vi BB

iv





  (87) 

As such, the problem may be reshaped in expressing the virtual state energy 
vB

E  in terms of bonding 

energy associated with the initial state  

bondB
EE

i
  (88) 

that can be eventually measured or computationally predicted by other means. However, this further 

implies the necessity of expressing the incident IR photon with the aid of bondonic quantification; to 

this end the Einstein relation (69) is appropriately reloaded in the form 
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where the bondonic mass (67) was firstly implemented. Next, in terms of representing the turn of the 

incoming IR photon into the structural wave-frequency related with the bonding energy of initial state, 

see Equation (88); the time of wave-bond (82) is here considered to further transform Equation (89) to 

the yield 

   2

2

2
2

2

222

12
4

1
12

4

1


 v

bond

B

bondv

bondbond

bondbondB

iv
n

v

v
En

XE

tEv
h   (90) 

where also the corresponding wave-bond velocity was introduced 
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It is worth noting that, as previously was the case with the dichotomy between bonding and bondonic 

times, sees Equations (81) vs. (82), respectively, the bonding velocity of Equation (91) clearly differs 

by the bondonic velocity of Equation (72) since the actual working expression 

  [%]1019758.2][]/[ 3
0
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
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

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 AXmolkcalE

c

v
bondbond

bond  (92) 

provides considerably lower values than those listed in Table 1–again, due to missing the inclusion of 

the particle mass‘ information, unlike is the case for the bondonic velocity. 

Returning to the bondonic description of the Raman scattering, one replaces the virtual photonic 

frequency of Equation (90) together with Equation (88) back in the Bohr-type Equation (87) to yield 

the searched quantified form of virtual bondonic energies in Equation (86) and Figure 1, analytically  
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or numerically 
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Remarkably, the bondonic quantification (94) of the virtual states of Raman scattering varies from 

negative to positive energies as one moves from the ground state to more and more excited states of 

initial bonding state approached by the incident IR towards virtual ones, as may be easily verified by 

considering particular bonding data of Table 1. In this way, more space is given for future 

considerations upon the inverse or stimulated Raman processes, proving therefore the direct 

involvement of the bondonic reality in combined scattering of light on chemical structures.  

Overall, the bondonic characterization of the chemical bond is fully justified by quantum and 

relativistic considerations, to be advanced as a useful tool in characterizing chemical reactivity, times 

of reactions, i.e., when tunneling or entangled effects may be rationalized in an analytical manner.  

Note that further correction of this bondonic model may be realized when the present point-like 

approximation of nuclear systems is abolished and replaced by the bare-nuclear assumption in which 

additional dependence on the bonding distance is involved. This is left for future communications.  

5. Conclusion  

The chemical bond, perhaps the greatest challenge in theoretical chemistry, has generated many 

inspiring theses over the years, although none definitive. Few of the most preeminent regard the 

orbitalic based explanation of electronic pairing, in valence shells of atoms and molecules, rooted in 
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the hybridization concept [8] then extended to the valence-shell electron-pair repulsion (VSEPR) [76]. 

Alternatively, when electronic density is considered, the atoms-in-molecule paradigms were 

formulated through the geometrical partition of forces by Berlin [69], or in terms of core, bonding, and 

lone-pair lodges by Daudel [77], or by the zero local flux in the gradient field of the density   by 

Bader [26], until the most recent employment of the chemical action functional in bonding [78,79].  

Yet, all these approaches do not depart significantly from the undulatory nature of electronic motion 

in bonding, either by direct wave-function consideration or through its probability information in 

electronic density manifestation (for that is still considered as a condensed—observable version—of 

the undulatory manifestation of electron).  

In other words, while passing from the Lewis point-like ansatz to the undulatory modeling of 

electrons in bonding, the reverse passage was still missing in an analytical formulation. Only recently 

the first attempt was formulated, based on the broken-symmetry approach of the Schrödinger 

Lagrangean with the electronegativity-chemical hardness parabolic energy dependency, showing that a 

systematical quest for the creation of particles from the chemical bonding fields is possible [80].  

Following this line, the present work makes a step forward and considers the gauge transformation 

of the electronic wave-function and spinor over the de Broglie-Bohm augmented non-relativistic and 

relativistic quantum pictures of the Schrödinger and Dirac electronic (chemical) fields, respectively. 

As a consequence, the reality of the chemical field in bonding was proved in either framework, while 

providing the corresponding bondonic particle with the associate mass and velocity in a full 

quantization form, see Equations (67) and (72). In fact, the Dirac bondon (65) was found to be a 

natural generalization of the Schrödinger one (38), while supplementing it with its anti-bondon particle 

(66) for the positron existence in the Dirac Sea.  

The bondon is the quantum particle corresponding to the superimposed electronic pairing effects or 

distribution in chemical bond; accordingly, through the values of its mass and velocity it may be 

possible to indicate the type of bonding (in particular) and the characterization of electronic behavior 

in bonding (in general). 

However, one of the most important consequences of bondonic existence is that the chemical 

bonding may be described in a more complex manner than relaying only on the electrons, but 

eventually employing the fermionic (electronic)-bosonic (bondonic) mixture: the first preeminent 

application is currently on progress, that is, exploring the effect that the Bose-Einstein condensation 

has on chemical bonding modeling [81,82]. Yet, such possibility arises due to the fact that whether the 

Pauli principle is an independent axiom of quantum mechanics or whether it depends on other quantum 

description of matter is still under question [83], as is the actual case of involving hidden variables and 

the entanglement or non-localization phenomenology that may be eventually mapped onto the 

delocalization and fractional charge provided by quantum chemistry over and on atomic centers of a 

molecular complex/chemical bond, respectively.  

As an illustration of the bondonic concept and of its properties such as the mass, velocity, charge, 

and life-time, the fundamental Raman scattering process was described by analytically deriving the 

involved virtual energy states of scattering sample (chemical bond) in terms of the bondonic properties 

above—proving its necessary existence and, consequently, of the associate Raman effect itself, while 

leaving space for further applied analysis based on spectroscopic data on hand.  
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On the other side, the mass, velocity, charge, and life-time properties of the bondons were 

employed for analyzing some typical chemical bonds (see Table 1), this way revealing a sort of fuzzy 

classification of chemical bonding types in terms of the bondonic-to-electronic mass and charge ratios 

m and e , and of the bondonic-to-light velocity percent ratio v , along the bondonic observable life-

time, 
Bt respectively–here summarized in Table 3.  

Table 3. Phenomenological classification of the chemical bonding types by bondonic 

(mass, velocity, charge and life-time) properties abstracted from Table 1; the used symbols 

are: > and >> for ‗high‘ and ‗very high‘ values; < and << for ‗low‘ and ‗very low‘ values; 

~ and ~> for ‗moderate‘ and ‗moderate high and almost equal‘ values in their class of 

bonding.  

Property 

Chemical bond 
m

  v  e  Bt  

Covalence >> << << >> 

Multiple bonds < > > < 

Metallic << > > < 

Ionic ~> ~ ~ ~> 

 

These rules are expected to be further refined through considering the new paradigms of special 

relativity in computing the bondons‘ velocities, especially within the modern algebraic chemistry [84]. 

Yet, since the bondonic masses of chemical bonding ground states seem untouched by the Dirac 

relativistic considerations over the Schrödinger picture, it is expected that their analytical values may 

make a difference among the various types of compounds, while their experimental detection is hoped 

to be some day completed. 
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