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Abstract: An attractive approach for the preparation of spirocyclic benzofuran–furocoumarins has
been developed through iodine-catalyzed cascade annulation of 4-hydroxycoumarins with aurones.
The reaction involves Michael addition, iodination, and intramolecular nucleophilic substitution in
a one-step process, and offers an efficient method for easy access to a series of valuable spirocyclic
benzofuran–furocoumarins in good yields (up to 99%) with excellent stereoselectivity. Moreover,
this unprecedented protocol provides several advantages, including readily available materials, an
environmentally benign catalyst, a broad substrate scope, and a simple procedure.
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1. Introduction

Spiro-heterocycles are very important structural motifs in various natural products
and pharmaceutical molecules, with a broad range of biological and pharmacological activ-
ities [1–4]. Considering the biological importance of spiro-heterocycles, a sufficiently large
number of methods for the preparation of spiro-heterocycles have been developed, includ-
ing the multicomponent tandem reaction [5], ring-expansion method [6], N-heterocyclic
carbene (NHC)-catalyzed tandem annulation [7,8], palladium-catalyzed [3+2] cycload-
dition [9] or 1,3-dipolar cycloaddition [10]. Recently, more eco-friendly electrochemical
strategies have been used for the preparation of spiro-heterocycles. For example, Zhu
et al. [11] developed an electrochemical method for the highly diastereoselective synthesis
of spirocyclic indolines with significant anti-tumor activity.

In recent years, combining two rings to generate novel spiro-heterocycles has be-
come an important approach to drug design [12,13]. The design and synthesis of bio-
logically active spiro-heterocycles have attracted the attention of many pharmacologists
and chemists [14,15]. In particular, the spiro-heterocycles that contain benzofuran have
become one of the most interesting classes of molecules due to their notable biological activ-
ities [16–18]. For example, griseofulvin A is one of the earliest spirocyclic drugs to exhibit
antifungal activity [19], while spiro-benzofuran B, with isobenzofuranone and benzofura-
none motifs, has been found to be a core chemical skeleton for antivirals against influenza
viruses [20]. (−)-Spiro-ganodermaine G, which is isolated from the Ganoderma species, dis-
played suppressive activity on the expression of TGF-β1-induced fibronectin and α-SMA,
with a potential role in treating renal fibrosis (Figure 1) [21]. Moreover, furocoumarins
demonstrate a wide range of biological activities [22,23] as anticancer [24], antioxidant [25],
antifungal [26] and antiproliferative [27]. Therefore, there is great interest in exploring novel
spiro-heterocycles between spiro-benzofurans and furocoumarins. Recently, Cui et al. [28]
reported a novel procedure for spirocyclic benzofuran–furocoumarin synthesis, by Lewis
acid-catalyzed [3+2]-cyclization of iodonium ylides with azadienes, in moderate yields with
excellent stereoselectivity (Scheme 1a). Meanwhile, Yavari et al. [29] developed an electro-
chemical approach for accessibility to spirocyclic benzofuran–furocoumarin (Scheme 1b).
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Molecular iodine, as a very simple and efficient reagent, has drawn considerable at-
tention from synthetic chemists, and has been widely used in various organic transfor-
mations [30,31]. It is widely available, inexpensive, nontoxic, eco-friendly, and moisture 
resistant, and employed as a catalyst, resulting in the formation of new C–C [32,33], C–N 
[34,35], C–O [36], and C–S [37,38] bonds. In addition, molecular iodine has been recog-
nized as a powerful tool for constructing the pharmacologically important heterocyclic 
rings [39–41]. Currently, several approaches have also been disclosed for the synthesis of 
spiro-heterocycles through iodine-mediated cascade reactions [42–44].  

Based on the above discussion and our interest in exploring novel synthetic strategies 
for the construction of spiro-heterocycles, we developed an iodine-catalyzed cascade re-
action of 4-hydroxycoumarins with aurones to afford spirocyclic benzofuran–furocouma-
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Molecular iodine, as a very simple and efficient reagent, has drawn considerable
attention from synthetic chemists, and has been widely used in various organic trans-
formations [30,31]. It is widely available, inexpensive, nontoxic, eco-friendly, and mois-
ture resistant, and employed as a catalyst, resulting in the formation of new C–C [32,33],
C–N [34,35], C–O [36], and C–S [37,38] bonds. In addition, molecular iodine has been rec-
ognized as a powerful tool for constructing the pharmacologically important heterocyclic
rings [39–41]. Currently, several approaches have also been disclosed for the synthesis of
spiro-heterocycles through iodine-mediated cascade reactions [42–44].

Based on the above discussion and our interest in exploring novel synthetic strategies
for the construction of spiro-heterocycles, we developed an iodine-catalyzed cascade reac-
tion of 4-hydroxycoumarins with aurones to afford spirocyclic benzofuran–furocoumarins
with high stereoselectivity. This transformation displayed favorable compatibility for the
preparation of various spirocyclic benzofuran–furocoumarins using I2 as the efficient and
green catalyst.
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2. Result and Discussion

Initially, the reaction of 4-hydroxycoumarin 1a and aurone 2a was investigated to
optimize the reaction conditions. The experimental results are summarized in Table 1.
Fortunately, the desired spirocyclic benzofuran–furocoumarin 3a obtained a 54% yield
from the reaction with 20 mol % of I2 at 80 ◦C (Table 1, entry 1). The structure of 3a was
determined based on their NMR spectroscopic similarities compared with the observed
results [28,29]. In order to improve the efficacy of the reaction, different temperatures were
evaluated for the reaction, and it was found that the yield of 3a could be improved to 58%
at 100 ◦C (Table 1, entry 2). Increasing the amount of I2 did not yield better results (Table 1,
entry 4). Subsequently, the effect of an additive was investigated, such as L-proline, TBAI,
and TEBAC. It was found that TEBAC afforded the desired product 3a in better yields
(Table 1, entries 5–7). Furthermore, increasing the amount of TEBAC loading to 40 mol %
gave a higher yield of 3a at 68% (Table 1, entry 9). Notably, changing the ratio of 2a/1a from
1:1.3 to 1:1.5 (Table 1, entries 10–12) improved the yield of 3a to 82% within 16 h (Table 1,
entry 12). Therefore, the optimized reaction conditions for 3a were 20 mol % of iodine as
the catalyst, and 40 mol % of TEBAC as the additive, in DMSO at 100 ◦C for 16 h (Table 1,
entry 12).

Table 1. Optimization of the reaction conditions a.
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1 20% 1:1.2 - 80 54% >20:1
2 20% 1:1.2 - 100 58% >20:1
3 20% 1:1.2 - 120 52% >20:1
4 30% 1:1.2 - 100 57% >20:1
5 20% 1:1.2 L-proline (10%) 100 56% >20:1
6 20% 1:1.2 TBAI (10%) 100 59% >20:1
7 20% 1:1.2 TEBAC (10%) 100 63% >20:1
8 20% 1:1.2 TEBAC (20%) 100 64% >20:1
9 20% 1:1.2 TEBAC (40%) 100 68% >20:1
10 20% 1:1.3 TEBAC (40%) 100 70% >20:1
11 20% 1:1.4 TEBAC (40%) 100 71% >20:1
12 20% 1:1.5 TEBAC (40%) 100 82% >20:1

a Reaction conditions: aurone 2a (0.25 mmol), 4-hydroxycoumarin 1a, I2 and additive in DMSO (0.5 mL)
under air conditions for 16 h; b Isolated yields based on 2a; c Based on final product 1H NMR spectra;
TEBAC = benzyltriethylammonium chloride; TBAI = tetrabutylammonium iodide.

With the optimal reaction conditions in hand, the substrate scope of 4-hydroxycoumarins
and aurones were explored under standard reaction conditions. And the results are depicted
in Scheme 2. The 4-hydroxycoumarins bearing electron withdrawing (F, Cl, Br, NO2) or
electron donating groups (OMe, Me) on Ar1 reacted smoothly, providing good yields of the
corresponding spirocyclic benzofuran–furocoumarins, 3ab–3ah and 3bl. The reaction of
4-hydroxy-2H-benzo[h]chromen-2-one also proceeded smoothly and afforded an 86% yield
of the spiro products 3ae. For the aurones, both the electron withdrawing (F, Cl, Br) and
electron donating groups (OMe, OEt, Me) on Ar2 of the benzofuranone moieties reacted
with 4-hydroxycoumarin efficiently to afford 64−96% yields of the corresponding spiro
products 3ai–3ao. However, when the substrate bore a NO2 group on Ar2, the yield of
the desired product 3bk decreased to 62%. Subsequently, the effects of the substituents on
the phenyl ring of Ar3 were evaluated. As the results reveal, the electron donating and
electron withdrawing substituents of the phenyl ring on Ar3 have a substantial impact on
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the efficacy of the reaction. Generally, an electron donating group displayed respectable
suitability with good to excellent yields. The weak electron donating groups (CH3) gave an
80% yield of 3ap. Notably, substrates bearing a strong electron donating group (OMe, tBu)
on Ar3 showed excellent reactivity. The -o-OCH3, -p-OCH3, and -p-tBu groups produced
yields of 93%, 88%, and 94% for 3ar, 3as and 3aq, respectively, while the substrates bearing
three substituent groups of OCH3 gave the best results 3at with a 99% yield. Adversely,
some electron withdrawing groups decreased in reaction efficiency to afford the desired
spiro products. For the substrates bearing the strong electron withdrawing groups (-p-NO2,
-o-F), no desired spiro products were detected due to the competitive elimination pathway
affording the coupled products 4au and 4ax with yields of 78% and 77%, respectively.
While the COOMe and CN groups were tolerated, they only gave diminished yields of
3az (51%) and 3ba (56%), and a slight amount of the coupled products 4az and 4ba were
observed. Interestingly, electron withdrawing groups, such as -m-NO2, -m-F, -p-F, Cl, Br, I,
-p-CF3 and Ph, restored the activity and achieved good to excellent yields. Encouragingly,
the heterocyclic furan and thiophene groups of Ar3 are also compatible and effectively
furnished 3bi and 3bj with yields of 69% and 84%. A naphthyl group of Ar3 was also
tolerated, and the desired spiro product 3bh was isolated with an 89% yield.

Just as Table 2 has shown, this approach for the synthesis of spirocyclic
benzofuran–furocoumarins offers two advantages in terms of broad substrate scope and
higher yields compared to reported methods. However, it still suffers from two drawbacks,
including long reaction time and high temperature.

Table 2. Comparison between reported methods and this method.

Entry Products Yields Reaction Time Temperature dr

Cui’s work
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To improve the efficiency of this transformation, greener energy sources, including mi-
crowave and ultrasonic irradiation, were tested. As the results show, microwave irradiation
displays obvious influence, which can improve the yield of 3a from 7% to 30% com-
pared with traditional protocol. However, when ultrasonic irradiation with a frequency of
35 KHz was used in the reaction, a 9% yield of 3a was obtained, with a large amount of still
unreacted substrate (Table 3).
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Scheme 2. Substrate scope of 4-hydroxycoumarins and aurones for the synthesis of spirocyclic
benzofuran–furocoumarins. Reaction conditions: 4-hydroxycoumarins 1 (0.375 mmol), aurones 2
(0.25 mmol), I2 (20 mol %), and TEBAC (40 mol %) in DMSO (0.5 mL) at 100 ◦C for 16 h under air;
isolated yield of the product based on 2; dr based on final product 1H NMR spectra.
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Table 3. Comparison between green energy sources and traditional protocol a.
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a Reaction conditions: 4-hydroxycoumarins 1a (0.375 mmol), aurones 2a (0.25 mmol), I2 (20 mol %), and TEBAC
(40 mol %) in DMSO (2 mL) at 80 ◦C for 1 h; isolated yield of the product based on 2a.

Afterward, control experiments were conducted to investigate the mechanism of the
formation of spirocyclic benzofuran–furocoumarins. First, the reaction of 1a and 2a was
carried out without I2 under the optimum reaction conditions, and product 3a was not
detected (Scheme 3a). Subsequently, substrates 1a and 2a were subjected to TsOH in DMSO
at 100 ◦C, and no desired product was detected (Scheme 3b). Finally, replacement of the
solvent with MeCN allowed for trace amounts of the desired product 3a (Scheme 3c).
The above results indicate that the formation of 3 is based on the cooperative effect of I2
and DMSO.
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According to the experimental results above and the previous literature [45], a plausi-
ble pathway is proposed in Scheme 4. First, 4-hydroxycoumarin 1a and aurone 2a undergo
Michael addition in the presence of I2 to generate intermediate 5, which captures the proton
released from the 4-hydroxycoumarin, thus forming intermediate 6. In this process, TEBAC,
as an effective catalyst following the addition of 4-hydroxycoumarin, is used to improve the
efficiency of the Michael addition reaction [46]. Subsequently, intermediate 6 automerizes
into its enol-form—intermediate 7. Further electrophilic substitution between interme-
diate 7 and I2 is probably activated by DMSO and affords intermediate 8 immediately.
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Thereafter, an intramolecular nucleophilic substitution of intermediate 8 gives the expected
product—the spirocyclic benzofuran–furocoumarins 3a. During the iodination of 7 to 8 and
the cyclization of 8 into 3a, HI is both generated and then oxidized back into I2 by DMSO
to accomplish the catalytic cycle. However, when intermediate 8 bears strong electron
withdrawing groups, such as R1 = F or R2 = CN, NO2, COOMe, the competitive elimination
pathway will be promoted in order to generate product 4.
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3. Materials and Methods

Unless otherwise specified, the starting materials and reagents used in the reactions
were commercially available and used without further purification. Aurones 2 was pre-
pared by the published procedures [47,48]. 1H (400 MHz), 13C (100 MHz), DEPT 135
(100 MHz) and DEPT 90 (100 MHz). NMR spectra were recorded on a Bruker Avance
400 spectrometer in CDCl3 or DMSO-d6. HRMS were performed with an AB QSTAR
Pulsar mass spectrometer. Melting points were tested on an XT-4A melting-point appa-
ratus without correction. The reactions were monitored by thin-layer chromatography
(TLC) using silica gel GF254. For column chromatography, silica gel (200–300 mesh) was
also employed.

The 1H NMR and 13C NMR spectral of the products are given in Supplementary Materials.

General Procedure

A mixture of 4-hydroxycoumarins 1 (0.375 mmol), aurones 2 (0.25 mmol), TEBAC
(40 mol %), and I2 (20 mol %) was stirred in DMSO (0.5 mL) at 100 ◦C for 16 h; thereafter,
saturated Na2S2O3 solution (8 mL) was added to quench the reaction. The product was then
extracted with CH2Cl2 (3 × 8 mL). The combined organic layers were dried over anhydrous
Na2SO4 and concentrated under reduced pressure. The crude product was subjected to
flash column chromatography on silica gel (petroleum ether/ethyl acetate/CH2Cl2 = 10:1:5)
to give 51–99% yields of the pure products 3aa–3bl.

3′-Phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione (3aa). Yield
82%; White solid; Mp 243–244 ◦C; 1H NMR (400 MHz, DMSO-d6): δ 7.85 (d, J = 7.6 Hz, 1H),
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7.81–7.75 (m, 3H), 7.59 (d, J = 8.8 Hz, 1H), 7.47–7.43 (m, 1H), 7.31–7.28 (m, 4H), 7.25–7.21
(m, 2H), 7.06 (m, 1H), 5.14 (s, 1H); 13C NMR (100 MHz, DMSO-d6): δ 194.13 (C), 170.13 (C),
164.76 (C), 157.99 (C), 155.19 (C), 141.21 (CH), 134.30 (CH), 132.61 (C), 129.45 (CH), 128.73
(CH), 128.47 (CH), 125.95 (CH), 125.27 (CH), 124.85 (CH), 123.31 (CH), 118.10, 117.39 (CH),
113.55 (CH), 111.38 (C), 111.14 (C), 104.50 (C), 50.88 (CH); HRMS (ESI-TOF): m/z calcd for
C24H14O5Na [M+Na]+: 405.0739, found: 405.0742.

8′-Methyl-3′-phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3ab). Yield 79%; White solid; Mp 263–264 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.66 (d,
J = 7.6 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.42 (s, 1H), 7.36 (dd, J = 8.4, 1.6 Hz, 1H), 7.26
(d, J = 8.4 Hz, 1H), 7.18–7.17 (m, 3H), 7.09–7.06 (m, 3H), 6.74 (d, J = 8.4 Hz, 1H), 5.02 (s,
1H), 2.33 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 194.36 (C), 170.46 (C), 165.38 (C), 158.76
(C), 153.56 (C), 139.84 (CH), 134.36 (CH), 134.22 (C), 131.49 (C), 128.88 (CH), 128.44 (CH),
128.21 (CH), 125.34 (CH), 123.68 (CH), 122.62 (CH), 118.46 (C), 116.86 (CH), 113.10 (CH),
111.37 (C), 110.94 (C), 103.77 (C), 52.06 (CH), 20.86 (CH3); HRMS (ESI-TOF): m/z calcd for
C25H16O5Na [M+Na]+: 419.0895, found: 419.0896.

7′-Methyl-3′-phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3ac). Yield 87%; Yellow solid; Mp 277–278 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.67 (dd,
J = 8.0, 0.8 Hz, 1H), 7.53–7.48 (m, 2H), 7.20–7.17 (m, 4H), 7.10–7.06 (m, 4H), 6.74 (d, J = 8.4 Hz,
1H), 5.01 (s, 1H), 2.42 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 194.42 (C), 170.45 (C), 165.61
(C), 158.79 (C), 155.54 (C), 144.79 (C), 139.83 (CH), 131.56 (C), 128.86 (CH), 128.43 (CH),
128.19 (CH), 125.58 (CH), 125.34 (CH), 123.65 (CH), 122.66 (CH), 118.51 (C), 117.25 (CH),
113.09 (CH), 110.96 (C), 109.18 (C), 102.79 (C), 52.06 (CH), 22.12 (CH3); HRMS (ESI-TOF):
m/z calcd for C25H16O5Na [M+Na]+: 419.0895, found: 419.0897.

7′-Methoxy-3′-phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3ad). Yield 81%; Yellow solid; Mp 285–286 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.67 (d,
J = 8.0 Hz, 1H), 7.51 (t, J = 8.4 Hz, 2H), 7.19–7.17 (m, 3H), 7.09–7.06 (m, 3H), 6.85 (d,
J = 1.6 Hz, 1H), 6.84–6.81 (m, 1H), 6.74 (d, J = 8.4 Hz, 1H), 5.00 (s, 1H), 3.83 (s, 3H); 13C
NMR (100 MHz, CDCl3): δ 194.45 (C), 170.45 (C), 165.78 (C), 164.01 (C), 158.92 (C), 157.43
(C), 139.82 (CH), 131.68 (C), 128.86 (CH), 128.41 (CH), 128.15 (CH), 125.33 (CH), 124.02
(CH), 123.63 (CH), 118.53 (C), 113.08 (CH), 112.90 (CH), 110.97 (C), 104.90 (C), 100.90 (CH),
100.72 (C), 55.91 (CH), 51.96 (CH); HRMS (ESI-TOF): m/z calcd for C25H16O6Na [M+Na]+:
435.0845, found: 435.0846.

1′-Phenyl-1′H,3H,11′H-spiro[benzofuran-2,2′-benzo[h]furo[3,2-c]chromene]-3,11′-dione
(3ae). Yield 86%; Yellow solid; Mp 268–269 ◦C; 1H NMR (400 MHz, CDCl3): δ 8.54 (dd,
J = 6.4, 3.2 Hz, 1H), 7.84–7.82 (m, 1H), 7.68 (d, J = 7.6 Hz, 1H), 7.66–7.56 (m, 4H), 7.54–7.49
(m, 1H), 7.22–7.18 (m, 3H), 7.13–7.07 (m, 3H), 6.76 (d, J = 8.0 Hz, 1H), 5.10 (s, 1H); 13C NMR
(100 MHz, CDCl3): δ 194.41 (C), 170.49 (C), 166.45 (C), 158.52 (C), 153.43 (C), 139.87 (CH),
135.51 (C), 131.48 (C), 129.35 (CH), 128.90 (CH), 128.48 (CH), 128.24 (CH), 128.10 (C), 127.52
(CH), 125.37 (CH), 124.55 (CH), 123.69 (CH), 123.10 (CH), 122.99 (C), 118.53 (C), 118.09
(CH), 113.11 (CH), 111.08 (C), 106.92 (C), 103.14 (C), 52.06 (CH); HRMS (ESI-TOF): m/z
calcd for C28H16O5Na [M+Na]+: 455.0895, found: 455.0893.

8′-Fluoro-3′-phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3af). Yield 77%; White solid; Mp 245–246 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.67–7.65 (m,
1H), 7.53–7.49 (m, 1H), 7.37–7.34 (m, 1H), 7.31–7.25 (m, 2H), 7.20–7.17 (m, 3H), 7.10–7.06 (m,
3H), 6.75 (d, J = 8.4 Hz, 1H), 5.03 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 194.05 (C), 170.43
(C), 164.57 (d, J = 3.0 Hz, C), 158.54 (d, J = 244.0 Hz, C), 158.11 (C), 151.50 (d, J = 2.0 Hz, C),
139.96 (CH), 131.11 (C), 128.89 (CH), 128.52 (CH), 128.36 (CH), 125.42 (CH), 123.84 (CH),
120.92 (d, J = 25.0 Hz, CH), 118.91 (d, J = 9.0 Hz, CH), 118.33 (C), 113.12 (CH), 112.39 (d,
J = 10.0 Hz, C), 110.90 (C), 108.71 (d, J = 26.0 Hz, CH), 104.91 (C), 52.01 (CH); HRMS
(ESI-TOF): m/z calcd for C24H13FO5Na [M+Na]+: 423.0645, found: 423.0644.

8′-Chloro-3′-phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3ag). Yield 86%; White solid; Mp 278–279 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.68–7.66
(m, 1H), 7.61 (d, J = 2.4 Hz, 1H), 7.54–7.49 (m, 2H), 7.32 (d, J = 8.8 Hz, 1H), 7.21–7.18 (m,
3H), 7.11–7.06 (m, 3H), 6.76 (d, J = 8.4 Hz, 1H), 5.03 (s, 1H); 13C NMR (100 MHz, CDCl3): δ
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194.01 (C), 170.43 (C), 164.23 (C), 157.93 (C), 153.64 (C), 139.97 (CH), 133.28 (CH), 131.06 (C),
129.88 (C), 128.89 (CH), 128.53 (CH), 128.38 (CH), 125.44 (CH), 123.86 (CH), 122.53 (CH),
118.61 (CH), 118.30 (C), 113.13 (CH), 112.75 (C), 110.90 (C), 104.92 (C), 51.93 (CH); HRMS
(ESI-TOF): m/z calcd for C24H13ClO5Na [M+Na]+: 439.0349, found: 439.0352.

8′-Bromo-3′-phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3ah). Yield 65%; Yellow solid; Mp 286–287 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.77 (d,
J = 2.4 Hz, 1H), 7.68–7.63 (m, 2H), 7.52 (t, J = 7.6 Hz, 1H), 7.26 (d, J = 8.8 Hz, 1H), 7.21–7.19
(m, 3H), 7.11–7.06 (m, 3H), 6.77 (d, J = 8.4 Hz, 1H), 5.03 (s, 1H); 13C NMR (100 MHz, CDCl3):
δ 193.98 (C), 170.43 (C), 164.09 (C), 157.85 (C), 154.10 (C), 139.95 (CH), 136.06 (CH), 131.06
(C), 128.89 (CH), 128.53 (CH), 128.37 (CH), 125.55 (CH), 125.43 (CH), 123.85 (CH), 118.85
(CH), 118.31 (C), 117.08 (C), 113.22 (C), 113.12 (CH), 110.90 (C), 104.92 (C), 51.91 (CH);
HRMS (ESI-TOF): m/z calcd for C24H13BrO5Na [M+Na]+: 482.9844, found: 482.9848.

5-Methyl-3′-phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3ai). Yield 80%; White solid; Mp 289–290 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.62 (dd,
J = 7.6, 1.2 Hz, 1H), 7.58–7.54 (m, 1H), 7.44 (s, 1H), 7.37 (d, J = 8.4 Hz, 1H), 7.32 (dd, J = 8.4,
1.6 Hz, 1H), 7.25 (t, J = 7.6 Hz, 1H), 7.21–7.17 (m, 3H), 7.08–7.06 (m, 2H), 6.65 (d, J = 8.4 Hz,
1H), 5.01 (s, 1H), 2.28 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 194.40 (C), 168.94 (C), 165.43
(C), 158.58 (C), 155.33 (C), 141.05 (CH), 133.57 (C), 133.23 (CH), 131.50 (C), 128.87 (CH),
128.44 (CH), 128.19 (CH), 124.77 (CH), 124.30 (CH), 123.05 (CH), 118.33 (C), 117.12 (CH),
112.69 (CH), 111.73 (C), 111.24 (C), 103.91 (C), 52.01 (CH), 20.69 (CH3); HRMS (ESI-TOF):
m/z calcd for C25H16O5Na [M+Na]+: 419.0895, found: 419.0900.

5-Methoxy-3′-phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3aj). Yield 87%; White solid; Mp 269–270 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.63 (d,
J = 8.0 Hz, 1H), 7.58–7.54 (m, 1H), 7.37 (d, J = 8.4 Hz, 1H), 7.26 (t, J = 7.6 Hz, 1H), 7.20–7.18
(m, 3H), 7.13–7.04 (m, 4H), 6.67 (d, J = 9.2 Hz, 1H), 5.01 (s, 1H), 3.73 (s, 3H); 13C NMR
(100 MHz, CDCl3): δ 194.64 (C), 165.79 (C), 165.43 (C), 158.56 (C), 156.04 (C), 155.32 (C),
133.25 (CH), 131.46 (C), 129.42 (CH), 128.85 (CH), 128.44 (CH), 128.23 (CH), 124.31 (CH),
123.04 (CH), 118.46 (C), 117.13 (CH), 114.03 (CH), 111.71 (C), 111.67 (C), 105.20 (CH),
103.93 (C), 56.01 (CH3), 52.13 (CH); HRMS (ESI-TOF): m/z calcd for C25H16O6Na [M+Na]+:
435.0845, found: 435.0848.

7-Methoxy-3′-phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3ak). Yield 96% White solid; Mp 257–258 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.62 (dd,
J = 8.0, 1.6 Hz, 1H), 7.57–7.53 (m, 1H), 7.36 (d, J = 8.4 Hz, 1H), 7.26–7.23 (m, 2H), 7.19–7.17 (m,
3H), 7.12–7.10 (m, 2H), 7.04–6.97 (m, 2H), 5.04 (s, 1H), 3.57 (s, 3H); 13C NMR
(100 MHz, CDCl3): δ 194.45 (C), 165.57 (C), 160.31 (C), 158.53 (C), 155.30 (C), 145.80 (C),
133.27 (CH), 131.23 (C), 128.93 (CH), 128.47 (CH), 128.24 (CH), 124.33 (CH), 124.17 (CH),
123.05 (CH), 122.70 (CH), 119.85 (C), 117.09 (CH), 116.60 (CH), 111.70 (C), 111.08 (C),
103.78 (C), 56.95 (CH3), 52.53 (CH); HRMS (ESI-TOF): m/z calcd for C25H16O6Na [M+Na]+:
435.0845, found: 435.0847.

6-Ethoxy-3′-phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3al). Yield 64%; White solid; Mp 246–247 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.76–7.72 (m,
1H), 7.69–7.63 (m, 2H), 7.50–7.45 (m, 1H), 7.39–7.28 (m, 4H), 7.21–7.17 (m, 2H), 6.72–6.67
(m, 1H), 6.24 (d, J = 9.6 Hz, 1H), 5.14 (d, J = 11.6 Hz, 1H), 4.07–4.00 (m, 2H), 1.45–1.39 (m,
3H); 13C NMR (100 MHz, CDCl3): δ 191.43 (C), 173.07 (C), 169.19 (C), 165.49 (C), 158.62
(C), 155.35 (C), 133.21 (CH), 131.64 (C), 128.90 (CH), 128.45 (CH), 128.15 (CH), 126.57 (CH),
124.30 (CH), 123.07 (CH), 117.11 (CH), 113.32 (CH), 112.02 (C), 111.77 (C), 111.11 (C), 103.92
(C), 96.69 (CH), 64.78 (CH2), 51.92 (CH), 14.40 (CH3); HRMS (ESI-TOF): m/z calcd for
C26H18O6Na [M+Na]+: 449.1001, found: 449.1005.

6-Fluoro-3′-phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3am). Yield 75%; White solid; Mp 224–225 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.62 (dd,
J = 7.6, 1.2 Hz, 1H), 7.59–7.54 (m, 1H), 7.37 (d, J = 8.4 Hz, 1H), 7.32–7.30 (m, 1H), 7.28–7.26
(m, 1H), 7.25–7.23 (m, 1H), 7.21–7.17 (m, 3H), 7.08–7.05 (m, 2H), 6.73–6.70 (m, 1H), 5.02 (s,
1H); 13C NMR (100 MHz, CDCl3): δ 193.99 (d, J = 2.0 Hz, C), 166.57 (C), 165.30 (C), 158.51
(d, J = 244.0 Hz, C), 158.42 (C), 155.34 (C), 133.37 (CH), 131.15 (C), 128.85 (CH), 128.52 (CH),
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128.37 (CH), 127.37 (d, J = 26.0 Hz, CH), 124.39 (CH), 122.99 (CH), 119.05 (d, J = 8.0 Hz),
117.16 (CH), 114.39 (d, J = 8.0 Hz, CH), 111.67 (d, J = 14.0 Hz, C), 110.59 (d, J = 24.0 Hz, CH),
103.85 (C), 52.32 (CH); HRMS (ESI-TOF): m/z calcd for C24H13FO5Na [M+Na]+: 423.0645,
found: 423.0646.

6-Chloro-3′-phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3an). Yield 77%; White solid; Mp 265–266 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.62–7.55
(m, 3H), 7.38 (d, J = 8.4 Hz, 1H), 7.26 (t, J = 7.2 Hz, 1H), 7.22–7.19 (m, 3H), 7.08–7.05 (m,
3H), 6.78 (s, 1H), 5.03 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 192.75 (C), 170.55 (C), 165.25
(C), 158.40 (C), 155.36 (C), 146.25 (C), 133.37 (CH), 131.05 (C), 128.85 (CH), 128.58 (CH),
128.44 (CH), 126.08 (CH), 124.74 (CH), 124.39 (CH), 122.97 (CH), 117.17 (CH), 117.03 (C),
113.73 (CH), 111.58 (C), 111.43 (C), 103.85 (C), 52.22 (CH); HRMS (ESI-TOF): m/z calcd for
C24H13ClO5Na [M+Na]+: 439.0349, found: 439.0350.

5-Bromo-3′-phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3ao). Yield 88%; White solid; Mp 250–251 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.77 (d,
J = 2.0 Hz, 1H), 7.62 (dd, J = 8.0, 1.6 Hz, 1H), 7.59–7.55 (m, 2H), 7.37 (d, J = 8.4 Hz, 1H),
7.26 (t, J = 7.6 Hz, 1H), 7.20–7.18 (m, 3H), 7.07–7.05 (m, 2H), 6.66 (d, J = 8.4 Hz, 1H), 5.02
(s, 1H); 13C NMR (100 MHz, CDCl3): δ 193.04 (C), 169.13 (C), 165.27 (C), 158.38 (C), 155.35
(C), 142.32 (CH), 133.39 (CH), 131.03 (C), 128.84 (CH), 128.56 (CH), 128.41 (CH), 127.79
(CH), 124.40 (CH), 122.98 (CH), 120.15 (C), 117.17 (CH), 116.28 (C), 114.86 (CH), 111.57 (C),
111.29 (C), 103.81 (C), 52.35 (CH); HRMS (ESI-TOF): m/z calcd for C24H13BrO5Na [M+Na]+:
482.9844, found: 482.9849.

3′-(p-Tolyl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione (3ap).
Yield 80%; White solid; Mp 232-233 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.76 (dd, J = 7.6,
0.8 Hz, 1H), 7.72 (dd, J = 8.0, 1.6 Hz, 1H), 7.67–7.59 (m, 2H), 7.47 (d, J = 8.4 Hz, 1H), 7.37–7.33
(m, 1H), 7.18 (t, J = 7.6 Hz, 1H), 7.11–7.06 (m, 4H), 6.88 (d, J = 8.4 Hz, 1H), 5.10 (s, 1H),
2.31 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 194.46 (C), 170.53 (C), 165.23 (C), 158.58 (C),
155.30 (C), 139.84 (CH), 137.92 (C), 133.21 (CH), 129.23 (CH), 128.77 (CH), 128.27 (C), 125.35
(CH), 124.30 (CH), 123.68 (CH), 123.01 (C), 118.44 (C), 117.12 (CH), 113.20 (CH), 111.73 (C),
110.93 (C), 104.15 (C), 51.69 (CH), 21.25 (CH3); HRMS (ESI-TOF): m/z calcd for C25H16O5Na
[M+Na]+: 419.0895, found: 419.0899.

3′-(4-(tert-Butyl)phenyl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-
dione (3aq). Yield 94%; Yellow oil; 1H NMR (400 MHz, CDCl3): δ 7.66 (d, J = 8.0 Hz, 1H),
7.62 (dd, J = 7.6, 1.2 Hz, 1H), 7.57–7.48 (m, 2H), 7.36 (dd, J = 8.4, 2.8 Hz, 1H), 7.26–7.22 (m,
1H), 7.20–7.18 (m, 2H), 7.10–7.05 (m, 1H), 6.99 (d, J = 8.4 Hz, 2H), 6.75 (dd, J = 8.4, 3.2 Hz,
1H), 5.00 (s, 1H), 1.18 (s, 9H); 13C NMR (100 MHz, CDCl3): δ 194.48 (C), 170.55 (C), 165.23
(C), 158.61 (C), 155.29 (C), 150.93 (C), 139.75 (CH), 133.20 (CH), 128.46 (CH), 128.27 (C),
125.39 (CH), 125.34 (C), 124.30 (CH), 123.66 (CH), 123.02 (CH), 118.48 (C), 117.10 (CH),
113.16 (CH), 111.73 (C), 111.05 (C), 104.15 (C), 51.56 (CH), 34.54 (C), 31.29 (CH3); HRMS
(ESI-TOF): m/z calcd for C28H22O5Na [M+Na]+: 461.1365, found: 461.1367.

3′-(2-Methoxyphenyl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3ar). Yield 93%; Yellow solid; Mp 257–258 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.74 (d,
J = 7.6 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.58–7.49 (m, 2H), 7.39 (d, J = 8.4 Hz, 1H), 7.24 (t,
J = 7.6 Hz, 1H), 7.20–7.18 (m, 1H), 7.15 (d, J = 4.8 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 6.90 (t,
J = 7.2 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 6.57 (d, J = 8.0 Hz, 1H), 5.26 (s, 1H), 3.09 (s, 3H); 13C
NMR (100 MHz, CDCl3): δ 194.36 (C), 170.26 (C), 165.70 (C), 159.12 (C), 156.51 (C), 155.33
(C), 138.90 (CH), 133.21 (CH), 129.13 (CH), 128.63 (CH), 125.02 (CH), 124.29 (CH), 123.36
(CH), 123.03 (CH), 121.02 (C), 120.62 (CH), 118.67 (C), 117.06 (CH), 112.76 (CH), 111.75 (C),
111.27 (C), 109.25 (CH), 102.31 (C), 53.93 (CH3), 46.66 (CH); HRMS (ESI-TOF): m/z calcd for
C25H16O6Na [M+Na]+: 435.0845, found: 435.0848.

3′-(4-Methoxyphenyl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3as). Yield 88%; Yellow solid; Mp 220–221 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.65 (dd,
J = 7.6, 0.8 Hz, 1H), 7.62 (dd, J = 8.0, 1.2 Hz, 1H), 7.57–7.49 (m, 2H), 7.36 (d, J = 8.4 Hz,
1H), 7.27–7.23 (m, 1H), 7.08 (t, J = 7.2 Hz, 1H), 7.03–6.99 (m, 2H), 6.78 (d, J = 8.4 Hz, 1H),
6.72 (d, J = 8.8 Hz, 2H), 4.98 (s, 1H), 3.67 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 194.50 (C),
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170.47 (C), 165.19 (C), 159.38 (C), 158.59 (C), 155.29 (C), 139.87 (CH), 133.23 (CH), 130.05
(CH), 125.32 (CH), 124.32 (CH), 123.68 (CH), 123.32 (C), 123.01 (CH), 118.47 (C), 117.11
(CH), 113.90 (CH), 113.19 (CH), 111.72 (C), 110.89 (C), 104.15 (C), 55.21 (CH), 51.47 (CH);
HRMS (ESI-TOF): m/z calcd for C25H16O6Na [M+Na]+: 435.0845, found: 435.0847.

3′-(3,4,5-Trimethoxyphenyl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-
dione (3at). Yield 99%; White solid; Mp 279–280 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.68
(dd, J = 7.6, 0.4 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.61–7.53 (m, 2H), 7.40 (d, J = 8.0 Hz, 1H),
7.30–7.26 (m, 1H), 7.13–7.09 (m, 1H), 6.79 (d, J = 8.4 Hz, 1H), 6.24 (s, 2H), 4.99 (s, 1H), 3.72 (s,
3H), 3.63 (s, 6H); 13C NMR (100 MHz, CDCl3): δ 194.40 (C), 170.61 (C), 165.66 (C), 158.62 (C),
155.35 (C), 153.10 (C), 140.04 (CH), 137.69 (C), 133.42 (CH), 126.80 (C), 125.26 (CH), 124.42
(CH), 123.74 (CH), 123.10 (CH), 118.52 (C), 117.16 (CH), 113.24 (CH), 111.68 (C), 110.87 (C),
105.85 (CH), 103.39 (C), 60.78 (CH3), 56.10 (CH3), 52.55 (CH); HRMS (ESI-TOF): m/z calcd
for C27H20O8Na [M+Na]+: 495.1056, found: 495.1060.

3′-(3-Nitrophenyl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3av). Yield 82%; White solid; Mp 239–240 ◦C; 1H NMR (400 MHz, CDCl3): δ 8.17 (d,
J = 8.0 Hz, 1H), 8.09 (s, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.74–7.67 (m, 2H), 7.63 (t, J = 8.0 Hz,
1H), 7.54 (d, J = 7.6 Hz, 1H), 7.49 (t, J = 7.2 Hz, 2H), 7.38 (t, J = 7.6 Hz, 1H), 7.21 (t, J = 7.2 Hz,
1H), 6.86 (d, J = 8.4 Hz, 1H), 5.20 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 193.44 (C), 170.13
(C), 165.93 (C), 158.39 (C), 155.45 (C), 148.26 (C), 140.23 (CH), 135.28 (CH), 133.94 (C), 133.79
(CH), 129.53 (CH), 125.68 (CH), 124.61 (CH), 124.23 (CH), 124.09 (CH), 123.52 (CH), 123.20
(CH), 118.19 (C), 117.30 (CH), 113.14 (CH), 111.44 (C), 110.34 (C), 103.01 (C), 51.25 (CH);
HRMS (ESI-TOF): m/z calcd for C24H13NO7Na [M+Na]+: 450.0590, found: 450.0588.

3′-(3-Fluorophenyl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3aw). Yield 85%; White solid; Mp 206–207 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.75 (d,
J = 7.6 Hz, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.68–7.60 (m, 2H), 7.46 (d, J = 8.4 Hz, 1H), 7.34 (t,
J = 7.6 Hz, 1H), 7.24–7.17 (m, 2H), 6.99–6.93 (m, 2H), 6.92–6.89 (m, 1H), 6.87 (d, J = 8.4 Hz,
1H), 5.09 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 193.98 (C), 170.41 (C), 165.61 (C), 162.71 (d,
J = 244.0 Hz), 158.45 (C), 155.37 (C), 140.05 (CH), 133.97 (d, J = 7.0 Hz), 133.50 (CH), 129.99
(d, J = 8.0 Hz, CH), 125.49 (CH), 124.71 (d, J = 3.0 Hz, CH), 124.45 (CH), 123.93 (CH), 123.10
(CH), 118.30 (C), 117.19 (CH), 116.01 (d, J = 52.0 Hz, CH), 115.41 (d, J = 20.0 Hz, CH), 113.15
(CH), 111.55 (C), 110.64 (C), 103.45 (C), 51.51 (d, J = 2.0 Hz, CH); HRMS (ESI-TOF): m/z
calcd for C24H13FO5Na [M+Na]+: 423.0645, found: 423.0644.

3′-(4-Fluorophenyl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3ay). Yield 97%; White solid; Mp 206–207 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.75 (d,
J = 7.2 Hz, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.67–7.60 (m, 2H), 7.46 (d, J = 8.4 Hz, 1H), 7.34 (t,
J = 7.6 Hz, 1H), 7.20–7.13 (m, 3H), 6.96 (t, J = 8.4 Hz, 2H), 6.86 (d, J = 8.4 Hz, 1H), 5.09 (s,
1H); 13C NMR (100 MHz, CDCl3): δ 194.13 (C), 170.34 (C), 165.46 (C), 162.57 (d, J = 246 Hz,
C), 158.53 (C), 155.34 (C), 140.04 (CH), 133.43 (CH), 130.60 (d, J = 9.0 Hz, CH), 127.20 (d,
J = 4.0 Hz, C), 125.42 (CH), 124.43 (CH), 123.86 (CH), 123.07 (CH), 118.40 (C), 117.17 (CH),
115.52 (d, J = 22.0 Hz, CH), 113.12 (CH), 111.61 (C), 110.68 (C), 103.69 (C), 51.36 (CH); HRMS
(ESI-TOF): m/z calcd for C24H13FO5Na [M+Na]+: 423.0645, found: 423.0647.

Methyl 4-(3,4′-dioxo-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromen]-3′-yl)benzoate
(3az). Yield 51%; White solid; Mp 228–229 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.87 (d,
J = 8.4 Hz, 2H), 7.68 (dd, J = 8.0, 0.8 Hz, 1H), 7.63 (dd, J = 7.6, 0.8 Hz, 1H), 7.60–7.56 (m, 1H),
7.54–7.50 (m, 1H), 7.38 (d, J = 8.4 Hz, 1H), 7.29–7.25 (m, 1H), 7.17 (d, J = 8.4 Hz, 2H), 7.10 (t,
J = 7.2 Hz, 1H), 6.74 (d, J = 8.4 Hz, 1H), 5.08 (s, 1H), 3.80 (s, 3H); 13C NMR (100 MHz, CDCl3):
δ 193.87 (C), 170.29 (C), 166.74 (C), 165.69 (C), 158.45 (C), 155.39 (C), 140.08 (CH), 136.69
(C), 133.51 (CH), 130.06 (C), 129.76 (CH), 129.02 (CH), 125.46 (CH), 124.46 (CH), 123.93
(CH), 123.10 (CH), 118.30 (C), 117.20 (CH), 113.12 (CH), 111.56 (C), 110.67 (C), 103.37 (C),
52.20 (CH3), 51.80 (CH); HRMS (ESI-TOF): m/z calcd for C26H16O7Na [M+Na]+: 463.0794,
found: 463.0792.

4-(3,4′-Dioxo-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromen]-3′-yl)benzonitrile
(3ba). Yield 56%; Yellow solid; Mp 217-218 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.69 (d,
J = 7.6 Hz, 1H), 7.65–7.60 (m, 2H), 7.59–7.55 (m, 1H), 7.52–7.50 (m, 2H), 7.39 (d, J = 8.4 Hz,
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1H), 7.29 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 8.0 Hz, 2H), 7.13 (t, J = 7.6 Hz, 1H), 6.78 (d,
J = 8.4 Hz, 1H), 5.06 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 193.48 (C), 170.17 (C), 165.94
(C), 158.41 (C), 155.42 (C), 140.27 (CH), 137.09 (C), 133.76 (CH), 132.31 (CH), 129.79 (CH),
125.60 (CH), 124.60 (CH), 124.17 (CH), 123.16 (CH), 118.54 (C), 118.21 (C), 117.27 (CH),
113.11 (CH), 112.25 (C), 111.43 (C), 110.45 (C), 102.86 (C), 51.68 (CH); HRMS (ESI-TOF): m/z
calcd for C25H13NO5Na [M+Na]+: 430.0691, found: 430.0689.

3′-(3-Chlorophenyl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3bb). Yield 88%; Yellow solid; Mp 241–242 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.70–7.67
(m, 1H), 7.64–7.61 (m, 1H), 7.60–7.53 (m, 2H), 7.38 (dd, J = 8.0, 3.6 Hz, 1H), 7.29–7.25 (m,
1H), 7.19–7.10 (m, 4H), 6.98 (d, J = 7.2 Hz, 1H), 6.81 (dd, J = 8.0, 3.2 Hz, 1H), 4.98 (s, 1H);
13C NMR (100 MHz, CDCl3): δ 193.92 (C), 170.37 (C), 165.57 (C), 158.40 (C), 155.37 (C),
140.04 (CH), 134.37 (C), 133.59 (C), 133.50 (CH), 129.71 (CH), 129.05 (CH), 128.60 (CH),
127.25 (CH), 125.52 (CH), 124.44 (CH), 123.95 (CH), 123.10 (CH), 118.29 (C), 117.21 (CH),
113.20 (CH), 111.55 (C), 110.62 (C), 103.47 (C), 51.42 (CH); HRMS (ESI-TOF): m/z calcd for
C24H13ClO5Na [M+Na]+: 439.0349, found: 439.0350.

3′-(3-Bromophenyl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3bc). Yield 72%; Yellow solid; Mp 260–261 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.68 (dd,
J = 8.0, 1.2 Hz, 1H), 7.64–7.60 (m, 1H), 7.58–7.53 (m, 2H), 7.38 (d, J = 8.4 Hz, 1H), 7.34–7.32
(m, 1H), 7.29–7.25 (m, 2H), 7.12 (t, J = 7.6 Hz, 1H), 7.08-7.02 (m, 2H), 6.81 (d, J = 8.4 Hz,
1H), 4.97 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 193.91 (C), 170.36 (C), 165.56 (C), 158.39
(C), 155.37 (C), 140.05 (CH), 133.85 (C), 133.50 (CH), 131.91 (CH), 131.51 (CH), 129.99 (CH),
127.72 (CH), 125.52 (CH), 124.44 (CH), 123.96 (CH), 123.10 (CH), 122.56 (C), 118.29 (C),
117.21 (C), 113.21 (CH), 111.55 (C), 110.63 (C), 103.47 (C), 51.37 (CH); HRMS (ESI-TOF): m/z
calcd for C24H13BrO5Na [M+Na]+: 482.9844, found: 482.9841.

3′-(4-Iodophenyl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3bd). Yield 84%; White solid; Mp 255–256 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.67 (dd,
J = 7.6, 0.8 Hz, 1H), 7.62 (dd, J = 7.6, 0.8 Hz, 1H), 7.58 (dd, J = 7.6, 1.6 Hz, 1H), 7.55–7.51
(m, 3H), 7.38 (d, J = 8.4 Hz, 1H), 7.26 (t, J = 7.6 Hz, 1H), 7.11 (t, J = 7.6 Hz, 1H), 6.85 (d,
J = 8.4 Hz, 2H), 6.81 (d, J = 8.4 Hz, 1H), 4.96 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 193.97
(C), 170.36 (C), 165.58 (C), 158.46 (C), 155.35 (C), 140.09 (CH), 137.61 (CH), 133.47 (CH),
131.24 (C), 130.83 (CH), 125.45 (CH), 124.44 (CH), 123.93 (CH), 123.08 (CH), 118.30 (C),
117.19 (CH), 113.25 (CH), 111.57 (C), 110.56 (C), 103.44 (C), 94.22 (C), 51.50 (CH); HRMS
(ESI-TOF): m/z calcd for C24H13IO5Na [M+Na]+: 530.9705, found: 530.9706.

3′-(2,4-Dichlorophenyl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3be). Yield 64%; Yellow solid; Mp 253–254 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.80 (d,
J = 7.6 Hz, 1H), 7.72–7.65 (m, 3H), 7.49 (d, J = 8.4 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.32–7.30
(m, 1H), 7.28 (d, J = 2.4 Hz, 1H), 7.25 (t, J = 5.6 Hz, 2H), 6.93 (d, J = 8.4 Hz, 1H), 5.51 (s,
1H); 13C NMR (100 MHz, CDCl3): δ 193.70 (C), 170.39 (C), 165.90 (C), 158.47 (C), 155.40
(C), 139.69 (CH), 135.06 (C), 134.70 (C), 133.65 (CH), 130.88 (CH), 129.18 (CH), 129.08 (C),
127.35 (CH), 125.62 (CH), 124.52 (CH), 124.08 (CH), 123.15 (CH), 118.15 (C), 117.22 (CH),
113.08 (CH), 111.46 (C), 110.40 (C), 102.28 (C), 47.76 (CH); HRMS (ESI-TOF): m/z calcd for
C24H12Cl2O5Na [M+Na]+: 472.9959, found: 472.9958.

3′-(4-(Trifluoromethyl)phenyl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-
3,4′-dione (3bf). Yield 90%; Yellow solid; Mp 220–221 ◦C; 1H NMR (400 MHz, CDCl3): δ
7.69 (dd, J = 7.6, 0.8 Hz, 1H), 7.64 (dd, J = 8.0, 1.6 Hz, 1H), 7.61–7.59 (m, 1H), 7.57–7.53 (m,
1H), 7.47 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 8.4 Hz, 1H), 7.30–7.26 (m, 1H), 7.22 (d, J = 8.0 Hz,
2H), 7.12 (t, J = 7.6 Hz, 1H), 6.78 (d, J = 8.0 Hz, 1H), 5.08 (s, 1H); 13C NMR (100 MHz,
CDCl3): δ 193.76 (C), 170.30 (C), 165.74 (C), 158.45 (C), 155.41 (C), 140.13 (CH), 135.65 (CH),
133.59 (C), 130.42 (q, J = 32.0 Hz, CF3), 129.35 (CH), 125.50 (q, J = 4.0 Hz, CH), 124.50 (CH),
124.02 (CH), 123.12 (CH), 118.26 (C), 117.23 (CH), 113.17 (CH), 111.53 (CH), 110.60 (CH),
103.25 (C), 51.52 (CH); HRMS (ESI-TOF): m/z calcd for C25H13F3O5Na [M+Na]+: 473.0613,
found: 473.0616.

3′-([1,1′-Biphenyl]-4-yl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3bg). Yield 88%; White solid; Mp 280–281 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.68 (dd,
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J = 8.0, 0.8 Hz, 1H), 7.63 (dd, J = 7.6, 1.2 Hz, 1H), 7.58–7.54 (m, 1H), 7.52–7.50 (m, 1H),
7.49–7.47 (m, 1H), 7.46 (s, 1H), 7.43–7.41 (m, 2H), 7.38 (d, J = 8.0 Hz, 1H), 7.34–7.30 (m, 2H),
7.28–7.22 (m, 2H), 7.15 (d, J = 8.4 Hz, 2H), 7.10–7.06 (m, 1H), 6.77 (d, J = 8.4 Hz, 1H), 5.07
(s, 1H); 13C NMR (100 MHz, CDCl3): δ 194.32 (C), 170.50 (C), 165.44 (C), 158.61 (C), 155.36
(C), 140.97 (C), 140.55 (C), 139.92 (CH), 133.33 (CH), 130.47 (C), 129.31 (CH), 128.76 (CH),
127.40 (CH), 127.19 (CH), 127.06 (CH), 125.40 (CH), 124.38 (CH), 123.77 (CH), 123.07 (CH),
118.45 (C), 117.17 (CH), 113.23 (CH), 111.71 (C), 110.96 (C), 103.93 (C), 51.73 (CH); HRMS
(ESI-TOF): m/z calcd for C30H18O5Na [M+Na]+: 481.1052, found: 481.1053.

3′-(Naphthalen-2-yl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3bh). Yield 89%; White solid; Mp 257–258 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.82–7.74
(m, 5H), 7.69 (s, 1H), 7.68–7.65 (m, 1H), 7.56–7.52 (m, 1H), 7.50–7.45 (m, 3H), 7.39–7.35 (m,
1H), 7.32 (dd, J = 8.4, 1.6 Hz, 1H), 7.15 (t, J = 7.6 Hz, 1H), 6.79 (d, J = 8.4 Hz, 1H), 5.32 (s,
1H); 13C NMR (100 MHz, CDCl3): δ 194.36 (C), 170.52 (C), 165.43 (C), 158.60 (C), 155.39
(C), 139.89 (CH), 133.35 (CH), 133.19 (C), 129.12 (C), 128.34 (CH), 128.21 (CH), 128.04 (CH),
127.67 (CH), 126.51 (CH), 126.21 (CH), 126.15 (CH), 125.40 (CH), 124.39 (CH), 123.77 (CH),
123.09 (CH), 118.31 (C), 117.18 (CH), 113.23 (CH), 111.73 (C), 111.03 (C), 104.07 (C), 52.05
(CH); HRMS (ESI-TOF): m/z calcd for C28H16O5Na [M+Na]+: 455.0895, found: 455.0895.

3′-(Furan-2-yl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione (3bi).
Yield 69%; Yellow solid; Mp 194–195 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.70 (d, J = 7.6 Hz,
1H), 7.62–7.54 (m, 3H), 7.37 (d, J = 8.4 Hz, 1H), 7.27–7.23 (m, 2H), 7.14 (t, J = 7.6 Hz, 1H),
6.91 (d, J = 8.4 Hz, 1H), 6.26–6.23 (m, 2H), 5.11 (s, 1H); 13C NMR (100 MHz, CDCl3): δ
193.87 (C), 170.74 (C), 165.33 (C), 158.37 (C), 155.27 (C), 145.52 (C), 143.07 (CH), 139.94 (CH),
133.46 (CH), 125.55 (CH), 124.39 (CH), 123.92 (CH), 123.09 (CH), 118.12 (C), 117.14 (CH),
113.21 (CH), 111.56 (C), 110.61 (CH), 110.34 (C), 110.04 (CH), 101.82 (C), 45.50 (CH); HRMS
(ESI-TOF): m/z calcd for C22H12O6Na [M+Na]+: 395.0532, found: 395.0537.

3′-(Thiophen-2-yl)-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3bj). Yield 84%; Yellow solid; Mp 194–195 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.68 (dd,
J = 7.6, 0.8 Hz, 1H), 7.62 (dd, J = 8.0, 1.6 Hz, 1H), 7.60–7.55 (m, 2H), 7.37 (d, J = 8.4 Hz, 1H),
7.28–7.24 (m, 1H), 7.20–7.18 (m, 1H), 7.14–7.10 (m, 1H), 6.89 (d, J = 8.4 Hz, 1H), 6.86–6.84 (m,
2H), 5.33 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 193.98 (C), 170.67 (C), 165.10 (C), 158.29
(C), 155.31 (C), 139.99 (CH), 133.68 (C), 133.47 (CH), 128.09 (CH), 126.72 (CH), 126.40 (CH),
125.46 (CH), 124.38 (CH), 123.87 (CH), 123.14 (CH), 118.39 (C), 117.17 (CH), 113.24 (CH),
111.57 (C), 110.14 (C), 103.89 (C), 47.15 (CH); HRMS (ESI-TOF): m/z calcd for C22H12O5SNa
[M+Na]+: 411.0303, found: 411.0305.

5-nitro-3′-phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3bk). Yield 62%; White solid; Mp 265–266 ◦C; 1H NMR (400 MHz, CDCl3): δ 8.57 (s,
1H), 8.41 (d, J = 9.2 Hz, 1H), 7.64-7.59 (m, 2H), 7.41 (d, J = 8.4 Hz, 1H), 7.30 (t, J = 7.6 Hz,
1H), 7.21-7.19 (m, 3H), 7.08 (s, 2H), 6.90 (d, J = 9.2 Hz, 1H), 5.10 (s, 1H); 13C NMR (100 MHz,
CDCl3): δ 192.51 (C), 172.82 (C), 165.17 (C), 158.19 (C), 155.41 (C), 143.90 (C), 134.57 (CH),
133.62 (CH), 130.41 (C), 128.79 (CH), 128.72 (CH), 124.54 (CH), 122.90 (CH), 121.84 (CH),
119.01 (C), 117.27 (CH), 113.93 (CH), 112.15 (C), 111.38 (C), 103.66 (C), 52.86 (CH); HRMS
(ESI-TOF): m/z calcd for C24H13NO7Na [M+Na]+: 450.0590, found: 450.0596.

8′-nitro-3′-phenyl-3H,3′H,4′H-spiro[benzofuran-2,2′-furo[3,2-c]chromene]-3,4′-dione
(3bl). Yield 81%; Yellow solid; Mp 315–317 ◦C; 1H NMR (400 MHz, CDCl3): δ 8.56 (d,
J = 2.4 Hz, 1H), 8.43 (dd, J = 9.2, 2.4 Hz, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.56 (t, J = 8.0 Hz,
1H), 7.51 (d, J = 9.2 Hz, 1H), 7.41-7.37 (m, 1H), 7.24-7.22 (m, 2H), 7.15-7.10 (m, 3H), 6.81 (d,
J = 8.0 Hz, 1H), 5.06 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 193.65 (C), 170.44 (C), 164.07
(C), 158.40 (C), 156.86 (C), 143.77 (C), 140.12 (CH), 130.62 (C), 128.89 (CH), 128.64 (CH),
128.58 (CH), 127.80 (CH), 125.56 (CH), 124.07 (CH), 119.51 (CH), 118.35 (CH), 118.15 (C),
113.17 (CH), 112.06 (C), 110.92 (C), 105.86 (C), 51.78 (CH); HRMS (ESI-TOF): m/z calcd for
C24H13NO7Na [M+Na]+: 450.0590, found: 450.0592.

4-Hydroxy-3-((4-nitrophenyl)(3-oxobenzofuran-2(3H)-ylidene)methyl)-2H-chromen-2-
one (4au). Yield 78%; Yellow solid; Mp 238–239 ◦C; 1H NMR (400 MHz, CDCl3): δ 11.46
(s, 1H), 8.21 (d, J = 8.8 Hz, 2H), 7.96 (dd, J = 7.6, 1.2 Hz, 1H), 7.84 (dd, J = 8.0, 1.6 Hz, 1H),
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7.67 (d, J = 8.8 Hz, 2H), 7.64–7.59 (m, 1H), 7.48–7.44 (m, 2H), 7.40 (t, J = 8.0 Hz, 1H), 6.98 (d,
J = 8.4 Hz, 1H), 6.83–6.79 (m, 1H); 13C NMR (100 MHz, CDCl3): δ 186.27 (C), 163.66 (C),
158.81 (C), 156.53 (C), 153.71 (C), 148.10 (C), 147.67 (C), 137.47 (CH), 135.04 (C), 133.12 (CH),
131.76 (CH), 131.38 (CH), 131.03 (C), 125.26 (CH), 123.33 (CH), 121.86 (CH), 119.33 (CH),
118.83 (CH), 118.56 (C), 117.71 (CH), 111.66 (C), 110.01 (C); HRMS (ESI-TOF): m/z calcd for
C24H13NO7Na [M+Na]+: 450.0590, found: 450.0589.

3-((2-Fluorophenyl)(3-oxobenzofuran-2(3H)-ylidene)methyl)-4-hydroxy-2H-chromen-
2-one (4ax). Yield 77%; White solid; Mp 196–197 ◦C; 1H NMR (400 MHz, CDCl3): δ 7.80 (dd,
J = 7.6, 0.8 Hz, 1H), 7.72–7.69 (m, 1H), 7.67–7.62 (m, 2H), 7.49 (d, J = 8.4 Hz, 1H), 7.38–7.34
(m, 1H), 7.32–7.26 (m, 2H), 7.24–7.20 (m, 1H), 7.16 (t, J = 7.2 Hz, 1H), 6.95 (t, J = 9.6 Hz, 1H),
6.89 (d, J = 8.4 Hz, 1H), 5.38 (s, 1H); 13C NMR (100 MHz, CDCl3): δ 193.80 (C), 170.39 (C),
158.67 (C), 155.34 (C), 139.67 (CH), 133.43 (CH), 130.01 (d, J = 8.0 Hz, CH), 125.58 (CH),
124.42 (CH), 124.25 (d, J = 3.0 Hz, CH), 123.90 (CH), 123.09 (CH), 119.38 (d, J = 14.0 Hz,
(C)), 118.16 (C), 117.15 (CH), 115.09 (d, J = 22.0 Hz, CH), 113.00 (CH), 111.61 (C), 110.59 (C);
HRMS (ESI-TOF): m/z calcd for C24H13FO5Na [M+Na]+: 423.0645, found: 423.0644.

Methyl-4-((4-hydroxy-2-oxo-2H-chromen-3-yl)(3-oxobenzofuran-2(3H)-ylidene)methyl)
benzoate (4az). Yield 16%; Yellow solid; Mp 214–215 ◦C; 1H NMR (400 MHz, CDCl3): δ
11.51 (s, 1H), 8.02–8.00 (m, 2H), 7.96 (dd, J = 7.6, 1.2 Hz, 1H), 7.73 (dd, J = 8.0, 1.6 Hz, 1H),
7.62–7.58 (m, 1H), 7.56–7.53 (m, 2H), 7.45–7.41 (m, 2H), 7.40–7.36 (m, 1H), 6.96 (dd, J = 8.4,
0.8 Hz, 1H), 6.75–6.71 (m, 1H), 3.86 (s, 3H); 13C NMR (100 MHz, CDCl3): δ 186.79 (C), 166.60
(C), 163.44 (C), 158.75 (C), 156.62 (C), 153.67 (C), 147.32 (C), 137.22 (CH), 132.87 (CH), 132.84
(C), 132.07 (C), 131.95 (CH), 130.68 (C), 130.36 (CH), 129.42 (CH), 125.08 (CH), 121.86 (CH),
119.16 (CH), 118.61 (CH), 117.62 (CH), 111.82 (C), 110.09 (C), 52.32 (CH3), 29.74 (C); HRMS
(ESI-TOF): m/z calcd for C26H16O7Na [M+Na]+: 463.0794, found: 463.0791.

4-((4-Hydroxy-2-oxo-2H-chromen-3-yl)(3-oxobenzofuran-2(3H)-ylidene)methyl)benzo
nitrile (4ba). Yield 26%; Yellow solid; Mp 259–260 ◦C; 1H NMR (400 MHz, CDCl3): δ 11.46
(s, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.78 (dd, J = 8.0, 0.8 Hz, 1H), 7.65–7.59 (m, 5H), 7.48–7.44 (m,
2H), 7.39 (t, J = 8.0 Hz, 1H), 6.99 (d, J = 8.8 Hz, 1H), 6.80–6.77 (m, 1H); 13C NMR (100 MHz,
CDCl3): δ 186.41 (C), 163.59 (C), 158.82 (C), 156.55 (C), 153.70 (C), 147.53 (C), 137.41 (CH),
133.08 (C), 133.05 (CH), 131.86 (CH), 131.78 (CH), 131.28 (C), 131.08 (CH), 125.21 (CH),
121.85 (CH), 119.26 (CH), 118.78 (CH), 118.55 (C), 118.50 (C), 117.69 (CH), 113.01 (C),
111.69 (C), 109.93 (C); HRMS (ESI-TOF): m/z calcd for C25H13NO5Na [M+Na]+: 430.0691,
found: 430.0691.

4. Conclusions

In summary, we developed a new approach to the synthesis of spirocyclic
benzofuran–furocoumarins. The simple method utilizes readily available 4-hydroxycoumarins
and aurones as materials and employs an iodine-catalyzed cascade annulation reaction to
obtain a series of spirocyclic benzofuran–furocoumarins in high yields (up to 99%) with
excellent stereoselectivity (up to >20:1 dr). Additionally, this operationally simple and
environmentally benign strategy shows great compatibility with different groups on the
4-hydroxycoumarins and aurones. Further research on the application of this strategy in
other reactions is underway in our laboratory.
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