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Abstract: Sugar industries generate substantial quantities of waste biomass after the extraction of
sugar water from sugarcane stems, while biomass-derived porous carbon has currently received
huge research attention for its sustainable application in energy storage systems. Hence, we have
investigated waste sugarcane bagasse (WSB) as a cheap and potential source of porous carbon
for supercapacitors. The electrochemical capacitive performance of WSB-derived carbon was fur-
ther enhanced through hybridization with silicon dioxide (SiO2) as a cost-effective pseudocapac-
itance material. Porous WSB-C/SiO2 nanocomposites were prepared via the in situ pyrolysis of
tetraethyl orthosilicate (TEOS)-modified WSB biomass. The morphological analysis confirms the
pyrolytic growth of SiO2 nanospheres on WSB-C. The electrochemical performance of WSB-C/SiO2

nanocomposites was optimized by varying the SiO2 content, using two different electrolytes. The
capacitance of activated WSB-C was remarkably enhanced upon hybridization with SiO2, while
the nanocomposite electrode demonstrated superior specific capacitance in 6 M KOH electrolyte
compared to neutral Na2SO4 electrolyte. A maximum specific capacitance of 362.3 F/g at 0.25 A/g
was achieved for the WSB-C/SiO2 105 nanocomposite. The capacitance retention was slightly lower
in nanocomposite electrodes (91.7–86.9%) than in pure WSB-C (97.4%) but still satisfactory. A sym-
metric WSB-C/SiO2 105//WSB-C/SiO2 105 supercapacitor was fabricated and achieved an energy
density of 50.3 Wh kg−1 at a power density of 250 W kg−1, which is substantially higher than the
WSB-C//WSB-C supercapacitor (22.1 Wh kg−1).

Keywords: waste sugarcane bagasse; activated carbon; SiO2 nanospheres; capacitance; supercapacitors

1. Introduction

Globally, fossil fuel consumption has led to an increase in energy demand and envi-
ronmental sustainability [1–3]. Over the last few decades, a number of factors including
population growth, fossil fuel exhaustion, and waste material production have contributed
to the increasing demand for limitless energy sources and storage devices [4,5]. There is
a growing demand for environmentally friendly, affordable, and renewable energy sys-
tems. To make these systems reliable, an efficient and cost-effective energy storage system
is necessary for securing power at low cost [6,7]. Research and commercial interest are
growing in the use of waste biomass to produce porous carbon-based electrode materials
for cost-effective and efficient energy storage systems, since biomass-derived carbon offers
low cost, sustainability, porosity, and excellent electrical conductivity [8]. This strategy can
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boost up the global economy as well as reduce the waste biomass-derived environmental
pollution [9]. Furthermore, it will help to reduce the environmental impact of burning
waste biomass for energy [10].

For supercapacitors, carbon is the most commonly used electrode material because it
offers excellent electrical conductivity, chemical resistance, and high thermal and mechani-
cal stability. Various carbon materials including carbon nanotubes, graphene, and activated
carbon have been widely investigated as electrode materials for supercapacitors [11]. For
supercapacitor manufacturers, low material costs are the most important issue, in addition
to different technical issues. Recently, biomass-derived carbon has become increasingly
popular for manufacturing supercapacitors, due to its low cost, abundance, and environ-
mental friendliness [12]. However, the capacitive performance of these carbon materials
is very much dependent on their physical properties such as surface area, mesoporosity,
electrical conductivity, and electrochemical stability [13–15]. Researchers have explored
various chemical and physical activation processes to manipulate the porosity and surface
area of biomass-derived carbon materials and thus enhance their electrochemical capacitive
performances [16]. However, the activation treatment can somewhat improve the specific
capacitance and charge–discharge capacity of biomass-derived carbon, but it requires fur-
ther improvement in the capacitance and energy density of biomass-derived carbon to meet
commercial demand [17,18].

Hybridization of biomass-derived carbon with redox-active materials can enhance
capacitance through the combined effects of electrical double-layer capacitance (EDLC)
and pseudocapacitance [19–21]. Numerous pseudocapacitance materials including tran-
sition metal oxides/sulfides [22–25], conducting polymers [26,27], and transition metal
MXenes [28–30] have been extensively investigated to enhance the electrochemical capaci-
tance of carbon materials via hybridization. Nonetheless, there have been limited attempts
to enhance the energy density of biomass-derived carbon by incorporating pseudocapaci-
tance materials. In two studies, Wu et al. [16] and Hu et al. [31], bamboo-derived carbon
was enhanced by hybridization with nickel hydroxide and copper oxide. Tang et al. [32]
achieved a specific capacitance of 234.2 F/g at 1 A/g and a rate capability of 71.4% at
20 A/g for bamboo shoot shell-derived carbon/SiC composites. Recently, the banana
peel-derived carbon/MnO2 composite demonstrated a specific capacitance of 139.6 F/g
at 300 mA/g with 92.3% capacitance retention after 1000 cycles [33]. Recently, agro-waste
biomass-derived carbon materials have gained increasing interest for supercapacitor appli-
cations because of their high surface area and tannable porosity [34–46]. Among various
agro-wastes, sugarcane bagasse (Sachharum officinarum) is a typical waste biomass gener-
ated in huge quantities in the sugar industries. Most of this waste sugarcane bagasse is
disposed of on land, causing serious environmental pollution. Hence, it is a great opportu-
nity to investigate these waste bagasse fibers as a possible precursor for producing porous
carbon and then to make use of this carbon as a supercapacitor electrode material. Earlier,
researchers studied the electrochemical capacitive performance of SB-derived carbon and
achieved low capacitance [47–50]. Recently, a few research groups tried to enhance the
capacitance of SB-derived carbon by the incorporation of pseudocapacitance materials like
metal oxides [51] and conducting polymers [52].

Indian sugar mills produce ~3 tons of waste sugarcane bagasse per annum, and
each mill discards this huge waste bagasse as residue or uses it as a source of heat to
meet the sugar mill’s heat demand. In the present investigation, we explored waste sug-
arcane bagasse as a cheap carbon source and SiO2 as an environmentally friendly and
cheap pseudocapacitance material to prepare WSB-C/SiO2 nanocomposites with enhanced
capacitive performance. The nanocomposites were prepared via the one-step pyrolytic
decomposition of TEOS-modified bagasse fibers. The effects of SiO2 concentrations on
the morphology and porosity of WSB-C/SiO2 nanocomposites were evaluated. The elec-
trochemical measurements of different formulated WSB-C/SiO2 nanocomposites were
studied on both alkaline and neutral electrolytes to compare their capacitive performance
and electrochemical stability.



Molecules 2024, 29, 1569 3 of 18

2. Results and Discussions

The functional groups generated in the different formulated waste SB-derived carbon
materials were identified by FTIR spectroscopic analysis. Figure 1a illustrates the FTIR
spectra of porous WSB-C and the different formulated WSB-C/SiO2 nanocomposites. Sev-
eral IR peaks appear in the FTIR spectrum of porous WSB-C (Figure 1a). In addition, a
strong peak at 1191 cm−1 and a weak peak at 907 cm−1 were observed for the stretching
and bending vibration of C-C bond conjugated to C=C bond, respectively, while a medium
IR band at 1643 cm−1 appeared for the stretching mode of C=C bonds [53]. The peak at
622 cm−1 raised in the spectra was perhaps due to the out-of-plane deformation of -OH
groups [54]. In contrast to C-SB, the WSB-C/SiO2 nanocomposites revealed many IR peaks
related to SiO2. The peaks at 1092 and 487 cm−1 can be attributed to the intrinsic vibration
of Si-O-Si and Si-O bonds [30], indicating the pyrolytic formation SiO2 nanospheres from
TEOS. During the carbonization process of TEOS-modified SB fibers, the -O-Si(OEt)3 groups
were detached from cellulose chains by the pyrolytic dissociation of C-O bonds, which
are weaker than Si-O bonds, followed by hydrolysis into orthosilicic acid (Si(OH)4) and
finally thermal decomposition into SiO2 [55,56]. Raman spectra of WSB-C and the differ-
ent WSB-C/SiO2 nanocomposites are displayed in Figure 1b. Two characteristic Raman
active bands at around 1593 and 1356 cm−1 appeared for all nanocomposite samples. The
low frequency G band is related to graphitic lattice vibration with E2g mode, while the
D band represents defects in graphitic structure. The degree of disorder in the different
formulated samples was characterized by determining their ID/IG ratio [57]. As shown in
Figure 1b, the ID/IG value of WSB-C is significantly lower than that of the WSB-C/SiO2
nanocomposites, indicating that there is a greater degree of graphitization in WSB-C as
compared to the nanocomposites. The in situ pyrolytic growth of SiO2 nanospheres dur-
ing carbonization of the TEOS-modified SB matrix perhaps impedes the graphitization
kinetics. However, the higher ID/IG values of the nanocomposites suggest the greater
extent of an amorphous phase in the nanocomposites compared to WSB-C, which can
facilitate their electrochemical capacitive performances. The X-ray diffraction patterns
of the formulated WSB-C/SiO2 nanocomposites are illustrated in Figure 1c. The XRD
pattern of WSB-C reveals a strong peak at 2θ = 26.4◦, assigned to the (002) plane of the
graphite lattice [58]. This high intense graphitic (002) peak indicates the formation of
highly crystalline carbon as a result of the carbonization of SB-derived crystalline cellulose,
which was prepared by alkaline treatment of raw SB prior to the carbonization process. In
contrast, the WSB-C/SiO2 nanocomposites display several diffraction peaks at 2θ = 20.4◦,
36.5◦, 39.3◦, 40.2◦, 42.3◦, and 50◦ corresponding to the (100), (110), (102), (111), (200), and
(112) crystalline planes of SiO2, respectively [59], along with a (002) peak of crystalline
graphite. The intensity of the graphitic (002) peak gradually decreases with increasing SiO2
concentration in the nanocomposites, which might be related to the degree of graphitization
of the SB matrix. It can be noticed that the position of the (002) crystalline peak slightly
shifted toward lower 2θ values for the WSB-C/SiO2 nanocomposites compared to WSB-C.
The lower 2θ values of the WSB-C/SiO2 nanocomposites indicate their higher d-spacing
compared to WSB-C. The d-spacing of WSB-C, WSB-C/SiO2 1025, WSB-C/SiO2 105, and
WSB-C/SiO2 11 are calculated to be 0.33, 0.341, 0.358, and 0.347 nm, respectively. The
results indicate the disordered layer structure of graphite with multi-layered stacking [60],
which is well in agreement with the Raman spectroscopy results. The greater d-spacing
of the WSB-C/SiO2 nanocomposites can facilitate the easy diffusion of electrolyte ions
into electrodes during electrolysis, making them potential candidates for energy storage
applications. Furthermore, there is a weak and broad peak appearing in the 2θ range of
21–25◦ for the WSB-C/SiO2 nanocomposites, indicating some degree of amorphous SiO2
and carbon [61]. The surface characteristics of SB-derived carbon and its nanocomposites
were evaluated by BET analysis. The N2 adsorption–desorption isotherms of WSB-C and
the formulated WSB-C/SiO2 nanocomposites are illustrated in Figure 2a. A mixture of type
I and type IV isotherms is observed for both WSB-C and the WSB-C/SiO2 nanocomposites,
indicating a typical combination of micropores and mesopores [62]. The initial part of
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the isotherm follows type I adsorption, which is attributed to the controlled monolayer
adsorption by micropores [63]. However, the middle of the isotherm shows a characteristic
hysteresis loop indicating the presence of large mesopores with a wide pore size distri-
bution. The specific surface areas and total pore volumes of the different samples are
presented in Figure 1. The specific surface areas and pore volumes were decreased for
the WSB-C/SiO2 nanocomposites compared to WSB-C. The maximum SBET and total pore
volume of 342 m2/g and 0.0426 cm3/g were recorded for WSB-C, while the lowest values
of 115.7 m2/g and 0.0219 cm3/g were obtained for the WSB-C/SiO2 11 nanocomposite
containing higher concentrations of SiO2 nanoparticles. This could be attributed to the
blocking of micropores by SiO2 nanoparticles, as evidenced in the FE-SEM images. In
contrast to microporosity, the mesoporosity of the WSB-C/SiO2 nanocomposites is signif-
icantly increased compared to WSB-C, and the C/SiO2 105 nanocomposite exhibits the
highest amount of mesoporosity with 74.2%. The BJH pore size distributions of WSB-C
and the different formulated WSB-C/SiO2 nanocomposites are displayed in Figure 2b. The
average diameters of the pores of the different samples are presented in Table 1. The pore
size is gradually increased with increasing SiO2 content, which might be the result of pore
enlargement caused by heterogeneous shrinkage during the carbonization process [64].
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Figure 1. (a) FTIR spectra, (b) Raman spectra, and (c) XRD patterns of pure WSB−C and the different
formulated WSB−C/SiO2 nanocomposites.

Table 1. Summary of BET characteristics of the as-prepared WSB-C and its nanocomposites.

Sample WSB-C WSB-C/SiO2 1024 WSB-C/SiO2 105 WSB-C/SiO2 11

SBET (m2/g) 342.8 279.9 207.7 115.7
Vtotal (cm3/g) 0.0426 0.389 0.0288 0.0219
Mesopore (%) 44.7 57.4 74.2 68.8

Dav (nm) 3.46 3.63 3.92 4.47
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Figure 2. (a) Nitrogen adsorption and desorption isotherms and (b) Barrett−Joyner−Halenda (BJH)
pore size distribution of WSB−C and the WSB−C/SiO2 nanocomposites.

The surface chemical compositions of the as-synthesized WSB-C/SiO2 nanocompos-
ites were determined by XPS analysis. Figure 3a demonstrates the XPS survey curves of
activated SB-derived carbon and the different WSB-C/SiO2 nanocomposites. The XPS
signals for three major elements such as carbon (C), oxygen (O), and silicon (Si) at ~285 eV,
~531 eV, and ~104 eV are observed in the survey curves of the WSB-C/SiO2 nanocom-
posites, while WSB-C contained no elemental silicon. As is obvious, the peak intensity of
elemental Si for the nanocomposites gradually increased with increasing TEOS loading
in the modified-SB fibers. Figure 3b displays the core level Si 2p spectra of WSB-C/SiO2
105 consisting of a single Gaussian peak at 104.3 eV, corresponding to the Si-O-Si bond
of SiO2 nanospheres [62]. The C 1s spectra is deconvoluted into four peaks at 284.1 eV,
284.9 eV, and 287.5 eV, shown in Figure 3c, which are associated with C=C, C-C, and C=O
bonds, respectively. The atomic percentages of elemental C, Si, and O in the different
formulated carbon samples are demonstrated in Figure 3d. The results indicate that the
atomic percentage of carbon is reduced for the WSB-C/SiO2 nanocomposites compared
to WSB-C. The lowest yield of 77.21% was recorded for WSB-C/SiO2 11, which is 17%
lower than that achieved for WSB-C. Furthermore, the at% of carbon is gradually decreased
with increasing TEOS content in modified-SB. These findings suggest that the degree of
carbonization/graphitization of SB was affected by the in situ formation of SiO2, which
might be due to the change in the heat of carbonization during the pyrolysis process.

The microstructures of SB-derived carbon and its hybrids with SiO2 were observed
with SEM analysis and the resulting images are shown in Figure 4. The orderly aligned
channels appear in the cross-sectional images of the nanocomposites with multiple sizes of
pores on their surfaces. The top surface of the WSB-C displays slightly crumpled features
with multiple size pores (Figure 4a). In contrast, the WSB-C/SiO2 nanocomposites clearly
exhibit a uniform distribution of SiO2 nanospheres on the porous carbon surface. The
concentration of SiO2 nanospheres gradually increases with increasing TEOS loading in the
modified-SB precursor. For the WSB-C/SiO2 1025 and WSB-C/SiO2 105 nanocomposites,
the majority of SiO2 nanospheres remain discrete and embedded into the carbon matrix
(Figure 4d), while the SiO2 nanospheres are largely agglomerated in the WSB-C/SiO2 11
nanocomposite (Figure 4e). The extensive agglomeration of SiO2 nanospheres reduced
the specific surface area and limited the pseudocapacitive effects of the WSB-C/SiO2 11
nanocomposite, which have been observed in the BET and CV results. The cross-sectional
view of the WSB-C/SiO2 nanocomposites in Figure 4f–h exhibits three-dimensional (3D)
channels within the carbon matrix. This 3D structure provides plenty of space for growing
SiO2 nanospheres. Like tree trunks, these channels remain aligned along their longitudinal
axis, which can facilitate the transport of electrolyte through them. Furthermore, the
cross-sectional images reveal a uniform dispersion of SiO2 nanospheres throughout the
channel wall, which can facilitate the access of electrolyte ions to redox-active SiO2 and
thus enhance the capacitance efficiency of the nanocomposites.
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Figure 3. (a) XPS survey spectra of WSB-C and the WSB−C/SiO2 nanocomposites; the high-resolution
spectra of (b) Si 2p and (c) C 1s along with the fitting peaks of the as-prepared WSB−C/SiO2 105;
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The effects of SiO2 nanospheres on the electrochemical properties of SB-derived acti-
vated carbon were evaluated using CV and GCD measurements. Figure 5a demonstrates
the CV profiles of WSB-C and the different WSB-C/SiO2 nanocomposites in a potential
range of -1.0 to 0 V at 50 mV/s. The WSB-C electrode reveals a nearly rectangular CV
curve with no obvious redox peaks, suggesting the behavior of an electrical double-layer
capacitor with fast charge and discharge processes. On the other hand, the CV curves of the
WSB-C/SiO2 nanocomposite electrodes reveal a distorted rectangular shape with a pair of
faradaic redox peaks, suggesting both EDLC and pseudocapacitance characteristics of the
WSB-C/SiO2 electrode. The oxidation and reduction peaks appear at −0.12 and −0.30 V,
respectively. The redox reactions involved during the electrochemical process in the KOH
electrolyte can be illustrated as follows [65]:

SiI IO2 + K+ + e− ↔ SiI I IOOK (1)

For the WSB-C/SiO2 electrodes, the anodic peak current gradually increased for the
WSB-C/SiO2 1025 and WSB-C/SiO2 105 electrodes but it decreased for the WSB-C/SiO2 11
electrode. The WSB-C/SiO2 105 electrode exhibited better pseudocapacitive characteristics
in terms of current response to voltage. However, the decrease in anodic current of the
WSB-C/SiO2 11 electrode was the result of the agglomeration of SiO2 nanospheres (as
shown in the FE-SEM image) and the subsequent decrease in surface area of active SiO2.
The CV curves of the WSB-C electrode in a wide range of scan rates are displayed in
Figure 5b. The CV curves retained a nearly rectangular shape even at a high scan rate of
125 mV/s, indicating the fast and reversible EDLC behavior of the WSB-C electrode. The
shape of the CV profiles of the WSB-C/SiO2 105 electrode remained unchanged with a
small shift in redox peak position upon increasing the scan rate (Figure 5c), suggesting its
high-rate capability over a wide range of scan rates.
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Figure 5. (a) CV curves of WSB−C, WSB−C/SiO2 1025, WSB−C/SiO2 105, and WSB−C/SiO2 11
electrodes in 6 M KOH electrolyte at a scan rate of 50 mV/s; (b) CV profiles of the WSB−C electrode at
different scan rates; (c) CV curves of the WSB−C/SiO2 105 electrode at different scan rates; (d) linear
fitting curves between ln (i) vs. ln (sweep rate) for the WSB−C/SiO2 105 electrode; (e) Dunn’s
method analysis of the capacitance contribution of the WSB−C/SiO2 105 electrode at 10 mV/s; and
(f) contribution ratio of capacitive and diffusion-controlled processes at various scan rates.

It is necessary to study the kinetics of charge storage in WSB-C/SiO2 electrodes at
different potentials in order to identify the mechanism behind the charge stored in them.
In general, there are two different mechanisms through which the total charge is stored:
(i) diffusion mechanism (intercalation/deintercalation) and (ii) capacitive mechanism [64].
The Power’s law was used to characterize this phenomenon [65]:

i (V) = aϑb (2)

where ϑ is the scan rate and b is the slope of the linear plot of Log (i) vs. Log (ϑ). Two con-
ditions based on the b values determine the mechanism responsible for charge storage:
if b = 0.5, the diffusion-controlled intercalation process is dominant over the capacitive
process, and when b = 1.0, the capacitive contribution is higher than the diffusion contri-
bution. Figure 5d demonstrates the logarithmic linear plots between redox current and
scan rate. In the present case, the b values for anodic and cathodic processes are 0.6835
and 0.7386, respectively, which suggests that the charge storage process is governed by
both surface-controlled and diffusion-controlled mechanisms. Furthermore, the diffusion-
controlled faradaic process made a considerable contribution to enhancing the charge
storage capability of the WSB-C/SiO2 105 electrode. The large fraction of mesopores in the
WSB-C/SiO2 105 nanocomposite facilitated the intercalation/deintercalation of electrolyte
ions. The relative currents from the capacitive and diffusion processes at different scan
rates can be determined using the given equation [66]:

i (V) = k1(ϑ) + k2ϑ1/2 (3)

where k1(ϑ) and k2ϑ1/2 values correspond to the current contribution from the diffusion
and capacitive processes, respectively. Figure 5e reveals the percent contribution of the
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diffusion and capacitive processes to the CV area at 5 mV/s. The low scan rate favors
the diffusion process and thus diffusion is dominant over the capacitive contribution. As
scan rates increase, the diffusion contribution gradually decreases, and the capacitive
contribution steadily increases (Figure 5f).

The impedance analyses (EIS) were further carried out to investigate the ionic diffu-
sion kinetics for the as-synthesized WSB-C and its nanocomposites with SiO2 [67]. The
Nyquist plots, shown in Figure 6a, allow us to compare the impedance properties of the
different formulated electrode materials. WSB-C exhibits a solution resistance (Rs) of 2.86 Ω
due to the relatively low hydrophilicity of carbon material, while the low Rs values of the
WSB-C/SiO2 nanocomposites suggest their better hydrophilic characteristics. At high fre-
quencies, Nyquist plots represent charge-transfer resistance (RCT), while at low frequencies
a line with a 45◦ slope represents capacitive behavior. Table 2 presents the fitted values
for each component for each material. The charge-transfer resistance of WSB-C was sig-
nificantly reduced upon the inclusion of the SiO2 nanospheres. The lower charge-transfer
resistance of the WSB-C/SiO2 electrodes reflects their electrochemical performance. The
equivalent circuit model for WSB-C/SiO2 105 is shown in the inset of Figure 6a.
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Figure 6. (a) Nyquist plots of the WSB−C and the different WSB−C/SiO2 nanocomposite electrodes;
(b) GCD curves of the WSB−C and the different WSB-C/SiO2 nanocomposite electrodes in 6 M
KOH electrolyte; (c) GCD profiles of the WSB−C electrode at different current densities; (d) GCD
curves of the WSB−C/SiO2 105 electrode at different current densities; (e) variations in gravimetric
capacitances of the WSB−C and the different WSB−C/SiO2 nanocomposite electrodes as a function
of current density; (f) cyclic stability up to 10,000 cycles at 1 A/g for the WSB−C and the different
WSB−C/SiO2 nanocomposite electrodes.

Table 2. Calculated values of Rs, RCT, ZW, and CPE by fitting the experimental data.

Sample WSB-C WSB-C/SiO2 1024 WSB-C/SiO2 105 WSB-C/SiO2 11

Rs (Ω) 2.17 0.876 0.114 0.064
RCT (Ω) 11.59 6.39 2.57 4.38
Zw (Ω/s0.5) 48.7 12.67 3.23 8.18
CPE (µF) 11.46 15.63 23.92 19.47
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The gravimetric charge–discharge (GCD) profiles of the pure WSB-C and the different
WSB-C/SiO2 nanocomposite electrodes at a current density of 1 A/g are demonstrated in
Figure 6b. A nearly symmetric triangular charge–discharge curve appears for the WSB-C
electrode, indicating pure non-faradaic EDLC behavior. The WSB-C electrode reveals a
Coulombic efficiency of 100.6% at 1 A/g, suggesting its excellent electrochemical reversibil-
ity. In contrast, the WSB-C/SiO2 nanocomposite electrodes display asymmetric distorted
triangular charge–discharge curves with an obvious discharge plateau at ~0.4 V, suggest-
ing faradaic contribution to the overall charge storage process. Furthermore, there was
a longer discharge time for the WSB-C/SiO2 electrodes than for the WSB-C electrodes,
indicating that the nanocomposites have superior capacity for storing charge than the
WSB-C electrodes. Among the nanocomposite electrodes, the WSB-C/SiO2 105 electrode
took the maximum time to discharge, indicating greater charge storage capability. Figure 6c
illustrates the GCD curves of the WSB-C electrode at different current densities. The sym-
metric features of the GCD curves remain unaffected upon increasing the current density,
indicating excellent rate capability. The GCD profiles of the WSB-C/SiO2 105 nanocom-
posite electrode at various current densities between 0.25 and 5 A/g are demonstrated in
Figure 6d. The asymmetric features of the GCD curves appear for all GCD curves due to
the pseudocapacitance effects. The gravimetric specific capacitances (Cgsp) of the WSB-C
and the WSB-C/SiO2 nanocomposite electrodes were calculated from their respective GCD
curves, using Equation (4):

Cgsp =
I∆t

m∆V
(4)

Figure 6e demonstrates the variation in specific capacitances as a function of current
densities for the different electrodes. The results clearly exhibit a significant improvement
in the specific capacitance of SB-derived carbon upon hybridization with SiO2. The specific
capacitances of the WSB-C/SiO2 1025, WSB-C/SiO2 105, and WSB-C/SiO2 11 electrodes are
~160%, ~240%, and ~210% higher than those of the pure WSB-C electrodes, respectively. The
highest specific capacitance of 362.3 F/g at 0.25 A/g was achieved for the WSB-C/SiO2 105
electrode. Table 3 presents that the specific capacitance of the WSB-C/SiO2 105 electrode
is higher than those previously reported for similar types of electrode materials. The
capacitance values gradually reduced from 362.3 to 220.6 F/g when the current density
increased from 0.25 to 5 A/g, indicating an excellent capacitance retention of 61% even with
a 20-fold increase in current density. However, a relative lower capacitance retention was
observed for WSB-C/SiO2 1025 (49% retention) and WSB-C/SiO2 11 (37% retention). The
lower capacitance retention in the WSB-C/SiO2 1025 and WSB-C/SiO2 11 electrodes might
be ascribed to the presence of a smaller fraction of mesopores and some fraction of unused
SiO2 at high current densities. The cycling stability of the WSB-C/SiO2 nanocomposite
electrodes was compared with that of the WSB-C electrode, shown in Figure 6f. The
nanocomposite electrodes revealed somewhat lower cycling stability than the WSB-C
electrode, which might be due to their limited pseudocapacitance contribution at higher
cycles [68]. The highest cycling stability of 97.4% was achieved for the WSB-C electrode,
while the cycling stability went down to 91.7% and 86.9% for the WSB-C/SiO2 105 and WSB-
C/SiO2 11 electrodes, respectively. This might be due to the relatively low electrochemical
stability of metal oxide compared to carbon.

Table 3. Comparison of the electrochemical performance of the present WSB−C/SiO2 composites
and those of similar biomass-derived carbon composite materials reported earlier.

Biomass
Biomass-Derived
Carbon (Cbiomass)

Composites
Electrolyte Potential Range

(V)
Sp. Capacitance

(F/g)
Cycling
Stability Ref.

Bamboo leaves Cbiomass/CuO/Cu2O 1 M HCl −1.0 to +0.3 147@1 A/g 93% after 5000 cycles [69]

Wasted litchi shell Cbiomass/MnO 6 M KOH −1.0 to +0.2 162.7@0.5 A/g 93.5% after
5000 cycles [70]
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Table 3. Cont.

Biomass
Biomass-Derived
Carbon (Cbiomass)

Composites
Electrolyte Potential Range

(V)
Sp. Capacitance

(F/g)
Cycling
Stability Ref.

Vegetable sponge Cbiomass/Mn3O4
Composite 1 M Na2SO4 0 to 1.0 162.8@0.5 A/g 89.5% after

4500 cycles [71]

Watermelon Cbiomass/MnO2 6 M KOH −1.0 to 0 123.5@0.5 A/g 60% after 1000 cycles [72]
Waste bamboo

shoot shells Cbiomass/PEDOT 1 M H2SO4 0 to 1.0 302.5@0.5 A/g 87% after
10,000 cycles [73]

Loofah Cbiomass/TiO2 1 M H2SO4 0 to 1.0 250.8@1 A/g 84% after 100 cycles [74]
Wheat flour Cbiomass/Co3O4 2 M KOH −0.8 to +0.4 161.4@0.5 A/g 80% after 1000 cycles [75]

Waste sugarcane
bagasse Cbiomass/SiO2 6 M KOH −1.0–0.0 307.1@0.5 A/g 91.7 after 10,000 cycles Present

The capacitive performance of the WSB-C/SiO2 105 electrode was further evaluated in
neutral electrolyte, i.e., 1 M Na2SO4, and the results were compared with those obtained in
alkaline electrolyte, i.e., 6 M KOH. The CV profiles of the WSB-C/SiO2 105 electrode over
the potential window of −1.0 to 0 V in 1 M Na2SO4 electrolyte at different scan rates are
illustrated in Figure 7a. Nearly rectangular-shaped CV curves with a pair of oxidation and
reduction peaks centered at −0.49 V and −0.64 V are observed, indicating the involvement
of both EDLC and pseudocapacitance mechanisms in the charge storage process. The redox
peaks are associated with the reactions given in Equation (5) [76]:

SiI IO2 + Na+ + e− ↔ SiI I IOONa (5)
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Figure 7. (a) CV profiles of the WSB−C/SiO2 105 nanocomposite electrode in 1 M Na2SO4; (b) GCD
profiles of the WSB−C/SiO2 105 nanocomposite electrode in 1 M Na2SO4; (c) variations in gravimet-
ric capacitances of the WSB−C/SiO2 105 electrode as a function of current density in two different
electrolytes; (d) cyclic stability up to 10,000 cycles at 1 A/g for WSB−C/SiO2 105 in two different
electrolytes; and (e) Ragone plots of the symmetric WSB−C/SiO2 105// WSB−C/SiO2 105 superca-
pacitor in two different electrolytes and the WSB−C//WSB−C supercapacitor in alkaline electrolyte.
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There is almost no change in the shape of the CV profiles when the scan rate is in-
creased from 5 to 125 mV/s, indicating the high-rate capability and electrochemical stability
of the nanocomposite electrode in Na2SO4 electrolyte. The total current gradually increases
with the increasing scan rate. The GCD profiles for the two-electrode system at various
current densities are displayed in Figure 7b. The distorted triangular shape of the GCD
curves with a voltage plateau further suggests the occurrence of faradaic surface-redox
reactions during the charge storage process. The Coulombic efficiency was determined
to be 100.9%. The specific capacitances at different current densities were determined
from the corresponding GCD curves, using Equation (4). Figure 7c reveals the gravimet-
ric specific capacitance of the WSB-C/SiO2 105 electrode at different current densities in
two different electrolytes, i.e., 6 M KOH and 1 M Na2SO4. The maximum specific capaci-
tance of 319.8 F/g at 0.25 A/g was achieved in 1 M Na2SO4 electrolyte. As can be seen in
Figure 7c, the capacitive performance of the nanocomposite electrode is somewhat lower
in the Na2SO4 electrolyte than in the KOH electrolyte. Compared to K+ ions, Na+ ions
have a bigger size and higher internal resistance, resulting in a slower transport rate, which
results in lower capacitance. With the Na2SO4 electrolyte, the WSB-C/SiO2 105 electrodes
show a lower rate capability of 46.8% than with the KOH electrolytes (61%). For hydrated
Na+ ions, their larger size is indeed unfavorable to smooth transportation and diffusion,
especially at higher current densities, resulting in lower capacitance. The nanocomposite
electrode exhibited superior cycling stability with capacitance retention of 95.6% after
10,000 cycles in 1 M Na2SO4 compared to that in 6 M KOH (91.7%), as shown in Figure 7d.
The relatively lower cycling stability in the alkaline electrolyte might be due to the harsh
and corrosive nature of the strong alkaline electrolyte (KOH) compared to the neutral
Na2SO4 electrolyte. Figure 7e demonstrates the Ragone plots for the as-assembled symmet-
ric WSB-C//WSB-C and WSB-C/SiO2 105//WSB-C/SiO2 105 devices in KOH and Na2SO4
electrolytes. The WSB-C/SiO2 105//WSB-C/SiO2 105 device in 6 M KOH electrolyte deliv-
ered a maximum energy density of 50.3 WH kg−1 at a power density of 250 W kg−1, which
is significantly greater than that produced by the WSB-C//WSB-C device (22.1 Wh kg−1

at 250 W kg−1). The as-achieved energy density is superior to earlier reported biomass-
derived carbon-based symmetric supercapacitors such as silkworm cocoon-derived carbon
(34.4 Wh kg−1) [77]; wheat bran-derived carbon (32.7 Wh kg−1) [78]; peanut meal-derived
carbon (24.9 Wh kg−1) [79]; rice straw-derived carbon (7.8 Wh kg−1) [80]; coconut shell-
derived carbon (14.7 Wh kg−1) [81]; sugarcane bagasse-derived carbon (37.5 Wh kg−1) [82];
and cornstalk-derived carbon (10 Wh kg−1) [83]. Furthermore, the SC device achieved
higher energy density in KOH electrolyte than in Na2SO4 electrolyte (44.4 Wh kg−1). The
mechanism of electrochemical process and LED lightening of the as-fabricated symmetric
WSB-C/SiO2 105//WSB-C/SiO2 105 device is displayed in Scheme 1. The LED bulb (1.5 V)
was lit with two symmetric WSB-C/SiO2 105//WSB-C/SiO2 105 electrodes after charging
to 1.5 V, where the dimension of each electrode used in the device was 1.5 × 1.5 cm2.
The LED bulb showed stable brightness for 30 min. The results indicate that the present
WSB-C/SiO2//WSB-C/SiO2 symmetric supercapacitors have great potential for energy
storage applications with impressive market value. This impressive energy density of
waste sugarcane bagasse-derived carbon/SiO2 105 makes it a potential cost-effective and
environmentally friendly electrode material for next-generation supercapacitors.
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3. Experimental
3.1. Materials

Waste sugarcane bagasse fibers were collected from a sugar mill in Uttar Pradesh,
India. Potassium hydroxide (KOH), glacial acetic acid, triethyl orthosilicate, ethanol, and
liquid ammonia solution were collected from Alfa Asare, India. All chemicals were utilized
without undergoing additional purification.

3.2. Activation and Chemical Modification of Sugarcane Bagasse Fibers

The as-collected WSB fibers were initially washed thoroughly with DI water and dried
at 60 ◦C. The dried WSB fibers were milled to size 40 mesh. For the activation process,
100 g WSB powder was dispersed in 500 mL 6 M KOH solution under stirring for 2 h.
Afterward, the WSB fibers were treated with glacial acetic acid and washed with DI water
to neutralize (pH = 7) them. The activated WSB fibers were then chemically modified
with TEOS, where activated WSB fibers were mixed with different concentrations of TEOS
(WSB fiber/WTEOS = 1/0.25, 1/0.5, and 1/1) in ethanol/water (80/20 v/v) and stirred for
3 h. Liquid NH3 was drop-wisely added to the solution for neutralization. The resulting
TEOS-modified WSB fibers were washed with DI water and thermally cured at 120 ◦C
for 3 h.

3.3. Carbonization of Activated SB and TEOS-Modified SB Fibers

The alkaline-activated WSB and TEOS-modified WSB fibers were carbonized at 600 ◦C
under nitrogen flow (20 mL/min) using a tube furnace. The carbonization of activated
WSB and TEOS-modified WSB fibers produced porous carbon (WSB-C) and carbon/SiO2
nanocomposites, respectively. The nanocomposites obtained from TEOS-modified WSB
fibers with fiber/TEOS ratios of 1/0.25, 1/0.5, and 1/1 are designated as WSB-C/SiO2 1025,
WSB-C/SiO2 105, and WSB-C/SiO2 11, respectively.

3.4. Structural Characterizations

FTIR and Raman analyses were conducted on Shimadzu IR-Prestige 21 (Shimadzu
Corp, Japan) and Renishaw Raman System 3000 spectrophotometers (Renishaw, UK), re-
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spectively, using powdered samples. The XRD patterns of the samples were obtained with
a Rigaku SmartLab diffractometer (Rigaku Corporation, Japan). The surface characteristics
of the as-prepared materials were evaluated using a Micromeritics ASAP 2020 adsorption
analyzer (Micromeritics Instrument Corporation, USA). An ESCA MultiLab 2000 spec-
troscopic analyzer (VG Systems Ltd. UK) was used to characterize the surface chemical
compositions of the materials. A field-emission scanning electron microscope (FE-SEM,
S-4700, Hitachi, Japan) was used to take microstructural images of the as-prepared samples.

3.5. Electrochemical Measurements

The electrochemical measurements were carried out in aqueous 6 M KOH electrolyte
at room temperature (25 ◦C) using 3-electrode and 2-electrode cells for cycling voltametric
(CV) and charge–discharge experiments, respectively. A potentiostat–galvanostat (SQUID-
STAT SOLO, Admiral Instruments, USA) was used for these measurements. For the
3-electrode cell, powdery sample-coated GCE with 2 µL Nafion solution (5 wt%), platinum
sheet, and calomel electrode served as working, counter, and reference electrodes, respec-
tively. For the 2-electrode configuration, two symmetric electrodes (1 × 1 cm2) consisting
of active material-loaded Ni-foam were superimposed with a separator. The electrode
was prepared by dispersing the WSB-C or WSB-C/SiO2 powder (~1.8 mg) on nickel foam
and pressing under pressure of 15 tons, using a hydraulic press. EIS measurements were
performed in a range of 100,000–0.1 Hz and an AC amplitude of 5 mV.

4. Conclusions

In summary, waste sugarcane bagasse-derived carbon/SiO2 nanocomposites were
prepared through carbonization of TEOS-modified activated bagasse fibers. The capacitive
performance of WSB-derived activated carbon was remarkably enhanced upon hybridiza-
tion with SiO2, indicating a significant pseudocapacitive contribution from redox-active
SiO2. A maximum capacitance of 362.3 F/g at 0.25 A/g was achieved for the WSB-C/SiO2
105 nanocomposite, which is around 2.5 times higher than that of the WSB-derived ac-
tivated carbon. However, higher SiO2 concentrations decrease the capacitance of the
nanocomposite due to the agglomeration of SiO2 particles, as shown for WSB-C/SiO2 11.
The nanocomposite electrode demonstrated superior capacitance and energy density in
KOH electrolyte compared to neutral Na2SO4 electrolyte. The WSB-C/SiO2 105//WSB-
C/SiO2 105 supercapacitor achieved an energy density of 50.3 Wh kg−1 at a power density
of 250 W kg−1 in 6 M KOH electrolyte, which is considerably higher than that achieved
in 1 M Na2SO4 (44.4 Wh kg−1). However, the cycling stability of the supercapacitor was
significantly higher in neutral Na2SO4 electrolyte than in alkaline electrolyte. Hence, the
WSB-C/SiO2 105 nanocomposite as an efficient, sustainable, and cheap electrode material
could potentially be used in next-generation energy storage devices.
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