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Abstract: We reported a highly efficient electrochemical immunosensor utilizing chitosan–graphene
nanosheets (CS-GNs) nanocomposites for the detection of aflatoxin B1 (AFB1) in corn samples. The
CS-GNs nanocomposites, serving as a modifying layer, provide a significant specific surface area
and biocompatibility, thereby enhancing both the electron transfer rate and the efficiency of antibody
immobilization. The electrochemical characterization was conducted utilizing both differential pulse
voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Moreover, the antibody
concentration, pH, antibody immobilization time, and immunoreaction time, were optimized. The
results showed that the current change (∆I) before and after the immunoreaction demonstrated a
strong linear relationship (R2 = 0.990) with the AFB1 concentration, as well as good specificity and
stability. The linear range extended from 0.05 to 25 ng/mL, with a detection limit of 0.021 ng/mL
(S/N = 3). The immunosensor exhibited a recovery rate ranging from 97.3% to 101.4% in corn
samples, showing a promising performance using an efficient method, and indicating a remarkable
prospect for the detection of fungal toxins in grains.

Keywords: electrochemical immunosensor; aflatoxin B1; chitosan; graphene nanosheets; nanocomposites

1. Introduction

Aflatoxin is a highly toxic furanocoumarin derivative produced by Aspergillus flavus
and Aspergillus parasiticus. It is frequently encountered in moldy grains such as rice,
soybeans, and peanuts [1]. Aflatoxin B1 (AFB1) is known for its extreme toxicity and is
widely acknowledged as one of the most potent carcinogens to date [2]. The permissible
levels of aflatoxin B1 in various food items that are highly prone to contamination are
stipulated by the Chinese food hygiene standards. For corn, peanuts, and peanut oil, the
permitted level of aflatoxin B1 is set at ≤20 µg/kg [3]. The regulation of the levels of AFB1
in grain, peanuts, and their products has been established by the European Union and
other nations. For peanuts intended for immediate consumption, the permissible level of
AFB1 must not exceed 2 µg/kg. Additionally, for import purposes, peanuts utilized as food
ingredients must not exceed an AFB1 content of 8 µg/kg [4].

Several techniques have been reported for the detection and analysis of AFB1, includ-
ing high-performance liquid chromatography (HPLC) [5], enzyme-linked immunosorbent
assay (ELISA) [6], and thin-layer chromatography (TLC) [7]. Although these aforemen-
tioned methods offer high sensitivity and accuracy, they also come with distinct limitations.
These methods necessitate experimenters to possess proficient operational skills, as well
as expensive equipment, materials, and intricate sample preparation procedures [8]. In
addition to the aforementioned methods, in recent years, emerging techniques such as
electrochemistry [9], fluorescence [10], chemiluminescence [11], optical fibers [12], and
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surface plasmon resonance (SPR) [13] have also been employed for the detection of AFB1
concentration.

Researchers have demonstrated significant interest in electrochemical immunosensors
as a promising technology for detecting AFB1 in food. Their attractiveness stems from their
ability to provide high sensitivity, cost-effectiveness, and rapid response times. In recent
years, carbon nanomaterials have emerged as a prominent focus of research due to their
exceptional characteristics of high specific surface area [14] and excellent conductivity [15].
These properties render them widely applicable in the electrochemical detection of AFB1,
leading to significant improvements in both the accuracy and efficiency of the detection
process. Shi et al. magnetically stirred a dispersion of PVP, ascorbic acid, and COOH-GO
at 90 ◦C for 10 min. Subsequently, they mixed the dispersion with a HAuCl4 solution for
3 h. Through this procedure, they obtained Au-COOH-GO nanocomposites to fabricate
electrochemical immunosensors for AFB1 detection [16]. Srivastava et al. synthesized
graphene oxide (GO) using the modified Hummers method. Initially, graphite powder was
pre-oxidized by reacting it with a mixture of H2SO4, K2S2O8, and P2O5 for 4 h at 80 ◦C.
Subsequently, it was stirred in H2SO4/H3PO4, followed by the addition of KMnO4, and the
mixture was stirred for 15 h at 50 ◦C to obtain GO. The synthesized GO was then utilized
in the fabricate electrochemical immunosensors for detecting AFB1 [17]. Bhardwaj et al.
synthesized GO also using the modified Hummers method and subsequently subjected
the resulting GO to hydrothermal treatment at 200 ◦C for 10 h to obtain GQDs. The
GQDs were synthesized to fabricate electrochemical immunosensors for the detection of
AFB1 [18]. Although the electrochemical methods developed above demonstrate good
performance in detecting AFB1, the fabrication process of the nanocomposites is intricate
and the preparation efficiency is relatively low.

In conclusion, the application of graphene and its modified materials in electrochemi-
cal immunosensors has provided a new approach for the detection of AFB1. These studies
have laid the foundation for the development of more sensitive and highly selective meth-
ods for detecting AFB1, holding significant importance in the field of food safety [19,20].
Additionally, graphene has significant advantages due to its large specific surface area and
high conductivity for electrochemical biosensors. However, it is naturally hydrophobic
and tends to aggregate in hydrophilic solvents [21]. Due to its excellent film-forming
properties and effective dispersion effect, chitosan has emerged as a popular dispersant for
graphene [22]. Furthermore, chitosan exhibits excellent biocompatibility and the ability to
immobilize various functional groups, rendering it a desirable substrate for the immobi-
lization of biosensors [23]. In this work, CS-GNs nanocomposites were synthesized and
immobilized on glass carbon electrodes (GCE). Chitosan, known for its biocompatibility,
was utilized to immobilize the AFB1 antibody, thereby enhancing the specificity of the
sensor. Through this approach, a straightforward, effective, and exceptionally precise
electrochemical immunosensor was constructed and utilized for the detection of AFB1
concentration in actual corn samples.

2. Results and Discussion
2.1. Characterization of CS-GNs Nanocomposites

Raman spectroscopy is a powerful tool for characterizing the structure and properties
of graphene [24]. We conducted an analysis of GN samples using the Raman spectroscopy
technique. As shown in Figure 1, three main peaks are observed, namely the G band, 2D
band, and D band. The G band is located at approximately 1579 cm−1, representing the
E2g vibrational mode within the GNs lattice, corresponding to the in-plane vibrations
between carbon atoms. The 2D band is located at around 2717 cm−1, representing the
double resonance mode between the layers of GNs. The D band is situated at approximately
1355 cm−1, indicating structural distortions caused by defects and impurities within GNs.
It is notable that the intensity of the D band is relatively weak, suggesting that the GNs
sample exhibits high crystallinity and fewer defects.
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Figure 1. Raman spectra of GNs.

The morphology of the CS-GNs was characterized using SEM and EDS. To study
the SEM of CS-GNs nanocomposites, a droplet of CS-GN dispersion was applied onto
tin foil for scanning. The SEM image of Figure 2a shows the size dimensions of the GNs
around 10 µm. The SEM image in Figure 2b illustrates the structure of the GNs. The image
clearly showed the structure of the overlapped graphene sheets, with visible layer edges
and folds. The SEM image in Figure 2c shows the dispersion of GNs. It is evident that the
graphene was uniformly distributed in the chitosan solution, indicating that graphene is
relatively well dispersed in chitosan, with a homogeneous morphology and a substantial
biocompatible membrane surface area.

Furthermore, the EDS patterns of CS-GNs nanocomposites are depicted in Figure 2d.
From the patterns, it is evident that the main elements detected include C, O, and Al
elements. Among them, the weight percentage of element C was 80.90%, with an atomic
percentage of 88.06%; the weight percentage of the element O was 8.05% and the atomic
percentage was 6.58%; and the weight percentage of element Al was 11.05% and the atomic
percentage was 5.35%. Since tin foil was utilized as the substrate for the SEM inspection of
CS-GNs nanocomposites, and the predominant element in tin foil paper is aluminum, a
significant peak of aluminum is observed in the EDS pattern. These results showed that the
CS-GNs nanocomposites were successfully prepared.

The FTIR spectra of the GN dispersion solution, CS solution, and CS-GNs nanocom-
posites are shown in Figure 3. It can be observed that there are more oxygen-containing
functional groups in the GNs dispersion. The vibrational bands observed around 3158 cm−1

correspond to the −OH stretching vibration peak. The stretching vibration peak of the
skeleton C=C is at 1389 cm−1. The stretching vibration peak at 1672 cm−1 corresponds to
C=O, and the stretching vibration peak of the epoxy bond C–O–C is at 1095 cm−1. In the
CS solution, the N–H stretching vibrations originating from amino and −NH2 groups are
observed at 3452 cm−1. The peak at 1638 cm−1 corresponds to the stretching vibration of
the C=O group in acetylated amino units. Additionally, the peaks observed at 1152 cm−1

and 1015 cm−1 are attributed to the stretching vibrations of the C6–OH primary alcohol
group and the C3–OH secondary alcohol group in CS, respectively. The FTIR spectra of
CS-GNs is generally similar to that of the dispersed GNs and the CS solution, with no new
characteristic peaks observed. This indicates that there is no chemical reaction between
GNs and CS. The peak observed at 3431 cm−1 in the CS-GNs spectrum is attributed to the
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interaction between the −OH groups of GNs and the −NH2 groups of CS. Compared to
the FTIR spectra of GNs and CS, the intensities of the characteristic peaks in the CS-GNs
spectrum are enhanced, indicating the formation of hydrogen bond interactions between
GNs and CS.
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Due to its structural characteristics, CS-GNs exhibit a relatively high specific surface
area. Firstly, graphene nanosheets, as a component of CS-GNs, possess a two-dimensional
structure and a monolayer arrangement of carbon atoms, resulting in a significantly large
specific surface area [25]. This characteristic endows graphene nanosheets with excellent
performance in adsorption, catalysis, and other fields. Secondly, chitosan is a polysac-
charide polymer containing abundant hydroxyl functional groups, enabling it to interact
favorably with graphene nanosheets at the molecular level [26]. Through the composite of
chitosan with graphene, a greater surface area of nanocomposite materials can be achieved.
The advantage of this composite structure not only increases its specific surface area but
also enhances its performance in applications such as adsorption, catalysis, sensing, and
others, making it a material with promising and wide-ranging application prospects [27].
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2.2. Characterization of the Immunosensor

To examine the characteristics of the immunosensor interface, experiments were
conducted using CV and EIS methods. The base solution consisted of 0.2 M PBS con-
taining 5.0 mM K3[Fe(CN)6] and 0.1 M KCl. Figure 4 shows the CV and EIS scan the
results of different modified electrodes: bare CS-GNs/GCE (curve a), anti-AFB1/CS-
GNs/GCE (curve b), BSA/anti-AFB1/CS-GNs/GCE (curve c), and AFB1/BSA/anti-
AFB1/CS-GNs/GCE (curve d).
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Figure 4. CV (a) and EIS (b) on CS-GNs/GCE (curve a), anti-AFB1/CS-GNs/GCE (curve b), BSA/anti-
AFB1/CS-GNs/GCE (curve c), AFB1/BSA/anti-AFB1/CS-GNs/GCE (curve d) in 0.2 M pH = 7.2
PBS containing 5.0 mM K3[Fe(CN)6] and 0.1 M KCl. The concentration of AFB1 is 15 ng/mL.
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CV scans were performed on the modified electrodes at a rate of 25 mV/S between
−0.2 and 0.6 V. In Figure 4a, two separate peaks are displayed by the CS-GNs/GCE with
a ∆Ep (Epa − Epc) value of 163 mV. The current values for Ipa and Ipc are 232.7 µA and
−248.3 µA, respectively. After the incubation of the antibodies on CS-GNs/GCE, the ∆Ep
value exhibited an increase to 168 mV, while the Ipa and Ipc values displayed a decrease
to 206.4 µA and −218.9 µA, respectively. Furthermore, the obstruction of active sites
by antibodies caused a hindrance to the electron transfer between [Fe(CN)6]3− and the
electrode. After BSA was immobilized on the electrode surface, the peak current decreased
even further. The ∆Ep value increased to 185 mV, and the Ipa and Ipc values decreased to
166.7 µA and −185.4 µA, respectively. The results indicated that the active sites responsible
for nonspecific adsorption were successfully obstructed [28]. When the immunosensor
was incubated with AFB1 (15 ng/mL), a clear reduction in peak current was detected.
The ∆Ep value increased to 198 mV, and the Ipa and Ipc values decreased to 144.7 µA and
−163.4 µA, respectively. The results indicated that the immunoreaction occurred, and the
AFB1 captured on the electrode surface hindered the reaction of [Fe(CN)6]3−, indicating
the successful formation of the immune complex on the electrode surface [29].

EIS was also a powerful tool for characterizing the step-by-step manufacturing process
of the electrode [30]. The electron transfer resistance (RCT) was analyzed by fitting the
diameter of the semicircle using the Randles equivalent circuit (inset in Figure 4b). The
Nyquist plot presents the RCT behavior of an electrode. A semicircle diameter forms at
the higher frequency region, indicating an electron-limiting process. Meanwhile, the low
frequency region exhibits a diffusion-controlled process [31]. As depicted in Figure 4b,
the diameter of the semicircle observed in the CS-GNs/GCE was significantly smaller
compared to the others, indicating a large electrode surface area and superior conductivity.
The RCT value of CS-GNs/GCE was measured at 66.72 Ω. Following the incubation of
antibodies on the CS-GNs/GCE, the RCT value increased to 129.2 Ω, surpassing that of the
CS-GNs/GCE. This may be attributed to the blocking of electron transfer by the antibodies.
After BSA was immobilized on the electrode surface, the semicircular domain increased,
and the RCT value was found to increase up to 197.2 Ω. This indicates that the active
sites causing nonspecific adsorption were successfully blocked by BSA. Finally, the AFB1
(15 ng/mL) was immobilized on the electrode, a significant increase in the semicircular
domain was observed, and the RCT value increased to 320.1 Ω. This result suggested
that the immune complex effectively formed on the electrode surface, thereby impeding
the electron transfer. As expected, EIS was utilized to assess the precise state of the
immunosensor during each stage of assembly. The results indicate that the immunosensor
was successfully fabricated. Consequently, data derived from both CV and EIS showed
that the successful fabrication of the immunosensor.

2.3. Optimization of Experimental Conditions

To examine the immunosensor’s optimum sensing capabilities, we investigated the im-
pacts of various factors on its performance. These factors included the concentration of the im-
mobilized antibody, pH levels, incubation duration of the antibody, and immunoreaction time.

The performance of the sensor is highly dependent on the concentration of antibodies
immobilized on the electrode surface, as they create binding sites for antigens. We con-
ducted an experiment to investigate the impact of different antibody concentrations (25,
50, 100, 150, and 200 µg/mL) on detecting AFB1 at a concentration of 15 ng/mL using the
immunosensor. Figure 5a illustrates the change in peak current (∆I) before and after the
immunoreaction. It is observed that ∆I increases until reaching 150 µg/mL, after which it
begins to decrease. This may be attributed to antibodies’ saturation at this concentration,
consistent with the findings in the existing literature [32]. Consequently, 150 µg/mL was
determined as the optimal antibody concentration.
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The pH value of the base solution was a crucial parameter, potentially resulting in
protein denaturalization or the instability of the immunosensor [33]. Figure 5b illustrates
that the peak current change (∆I) gradually increased with the pH value of the base solution
increased, reaching its peak at 7.0. This happens because extreme acidity or alkalinity can
damage the immobilized protein, especially under alkaline conditions [34]. As a result, the
pH value of the base solution was adjusted to 7.0 for further investigation.

The performance of the sensor can be affected by the duration of antibody immobiliza-
tion. As depicted in Figure 5c, the change in peak current (∆I) exhibited a gradual increase
with prolonged antibody immobilization time until it reached a plateau at 50 min. This
could be attributed to the antibody reaching its saturation point in terms of activity [35].
Therefore, based on the experiment, 50 min was determined as the optimal duration.

The duration of the immunoreaction between the antigen and antibody significantly
affects the performance of the sensor. As depicted in Figure 5d, there was a gradual increase
in the peak current change (∆I), increasing the immunoreaction time, which eventually
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leveled off at 40 min. This outcome suggests that the immunoreaction between the antigen
and antibody reached saturation after 40 min. Thus, 40 min was identified as the optimal
duration for the immunoreaction between the antigen and antibody.

2.4. Analytical Performance

Under the optimal conditions, the performance of the prepared immunosensor was
evaluated for various concentrations of AFB1 using the DPV technique.

As depicted in Figure 6a, the DPV peak currents exhibited a notable decrease with
an increasing AFB1 concentration within the range of 0–25 ng/mL. This decrease can be
attributed to the heightened hindrance of the immunocomplex to electron transfer. As
depicted in Figure 6b, the current change (∆I) before and after immunization displayed a
linear relationship with AFB1 concentrations from 0.05 ng/mL to 25 ng/mL, with a low
detection limit of 0.021 ng/mL (S/N = 3). The limit of detection (LOD) was determined
using the regression curve parameters, LOD = 3·Sb/s, where “Sb” represents the ard
deviation of the blank sample and “s” represents the slope [36].The calibrated regression
equation is:

∆I = 0.822·C + 6.504,

with a correlation coefficient of 0.99. The proposed immunosensor was compared with
other reported AFB1 immunosensors reported in the literature. The acceptable linear range
and detection limit of the proposed immunosensor are described in Table 1, indicating its
excellent performance for AFB1 detection. The outstanding electrochemical performance
of the proposed immunosensor stemmed from the large surface area and exceptional
conductivity of CS-GNs nanocomposites.
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The LOD of the developed immunosensor surpassed that of most reported electro-
chemical methods for the detection of AFB1. The LOD of the immunosensor was compara-
ble to that achieved by Li et al. [37], which developed a biosensor based on aptamers for
AFB1 detection. However, the biosensor developed by Li et al. [37] had a complex structure,
was costly, and cumbersome to prepare.
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Table 1. Comparison of the proposed immunosensor and other sensors.

Immunosensors Linear Range (ng/mL) Detection Limit (ng/mL) References

AFB1/Fc-apt/MCH/cDNA/AuNPs/THI-
rGO/GCE 0.05–20 0.016 [37]

AFB1/BSA/anti-AFB1/AuNPs/Zn/Ni-ZIF-8-
800@Graphene/GCE 0.18–100 0.18 [38]

AFB1/BSA/anti-AFB1/Au@PEI@CNFs/GCE 0.05–25 0.027 [39]
AFB1/BSA/anti-AFB1/Au-COOH-GO/GCE 0.05–25 0.05 [16]

AFB1/MCH/pept/porous/AuNPs/GCE 10–20,000 0.94 [40]
AFB1/BSA/anti-AFB1/CS-GNs/GCE 0.05–25 0.021 This work

2.5. Reproducibility, Stability, and Selectivity

In order to investigate the reproducibility of the immunosensor, five electrodes were
tested to detect 15 ng/mL AFB1 under the same conditions. The results are depicted in
Figure 7a, the relative standard deviation (RSD) of the AFB1 measurements for the five sen-
sors is 2.4%, which proved that the proposed immunosensor has excellent reproducibility.
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Figure 7. Amperometric change response of the immunosensor to 5 different electrodes treated in the
same way (a); the time stability study of the immunosensor (b); and the current change responses of
the immunosensor to AFB1, AFB2, AFB1 + AFB2, AFG1, AFB1 + AFG1 (c).

The stability of the immunosensor was assessed by detecting the electrochemical
response after the immunosensors were stored at 4 ◦C for 2, 6, 10, and 14 days. As
depicted in Figure 7b, after 14 days of storage, the electrochemical response retained 94.42%
of the initial current for 5 ng/mL AFB1, which indicated the significant stability of the
immunosensor.

The specificity of the prepared immunosensor was also crucial for assessing its per-
formance. The specificity was evaluated using interfering substances, which consisted
of 15 ng/mL of AFB2 and AFG1. As observed in Figure 7c, the peak current change (∆I)
before and after immunization with pure interfering substances exhibited no noticeable
variation. The observed peak current change (∆I) before and after immunization with the
mixture solution showed similarity to that of the 15 ng/mL AFB1 standard solution. All the
above observations demonstrate that the immunosensor exhibited a commendable level of
specificity.

2.6. Detection of AFB1 in Corn Samples

In order to assess the precision of the immunosensor, spiked recoveries were measured
in pretreated samples of corn. The standard addition method was employed to assess
the application of the proposed immunosensor in corn samples. AFB1 was added to the
corn samples at spiked concentrations of 5 ng/mL, 10 ng/mL, and 15 ng/mL, respectively.
As shown in Table 2, the range of the recovery was from 97.3 to 101.4%. These results
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demonstrated the practicality of the immunosensor in effectively analyzing the target AFB1
concentrations in real samples.

Table 2. Recovery for different concentrations of AFB1 spiked in corn samples.

Samples Added AFB1 (ng/mL) Found AFB1 (ng/mL) Recovery (%)

1 5.00 4.86 97.3
2 10.00 10.14 101.4
3 15.00 14.64 97.6

3. Materials and Methods
3.1. Materials and Apparatus

The graphene nanosheets (2 nm, with a diameter of 2~3 µm) were purchased from
Nanjing Xianfeng Nanomaterials Technology Co., Ltd., located in Nanjing, China. Chi-
tosan was obtained from China National Pharmaceutical Group Chemical Reagent Co.,
Ltd. (Shanghai, China). Aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), and aflatoxin G1 (AFG1)
standard solution (in acetonitrile, 10 µg/mL) were sourced from Beijing ZhongkeErhuan
Technology Co., Ltd. (Beijing, China). The anti-Aflatoxin B1 antibody was provided by
Shanghai Sangong Biological Engineering Co., Ltd. (Shanghai, China). Bovine serum albu-
min (BSA) and 1-ethyl-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC.HCl)
were obtained from Hefei Genial Biotech Co., Ltd. (Hefei, China). N-hydroxysuccinimide
(NHS), N,N-dimethylformamide (DMF), and phosphate-buffered saline (PBS) at a pH range
of 7.2–7.4 were procured from Shanghai Titan Technology Co., Ltd. (Shanghai, China),
for experimental use. P-aminobenzoic acid (PABA) was acquired from Hefei Qiansheng
Biological Technology Co., Ltd. (Hefei, China).

The electrochemical characterization tests, including differential pulse voltammetry
(DPV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), were
performed using the CHI-760E electrochemical workstation from Shanghai Chenhua Instru-
ment Co., Ltd. (Shanghai, China). The electrochemical experiment utilized a conventional
three-electrode system, comprising a saturated KCl Ag/AgCl electrode as the reference
electrode, a platinum wire (Pt) electrode as the counter electrode, and a glass carbon elec-
trode (GCE) as the working electrode. The scanning electron microscope (SEM) images
were captured using the Sigma 300 hot-field scanning electron microscope (Carl Zeiss,
Oberkochen, Germany).

3.2. Methods
3.2.1. Preparation of CS-GNs Nanocomposites

The powder of 5 mg chitosan was dissolved in 5 mL of 1.0% (v/v) acetic acid and stirred
with a magnetic stirrer for 1 h. After complete dispersion, the solution was stored at 4 ◦C for
later use. Then, 5 mg of graphene nanosheets was dissolved in 5 mL of anhydrous ethanol
and sonicated for 10 h. The supernatant was discarded after centrifugation in a centrifuge
at 9000 rpm for 15 min. Then, 5 mL of DMF was added and sonicated for more than 2 h
until completely dispersed. Subsequently, 5 mL of the prepared graphene dispersion was
taken and mixed with 5 mL of prepared CS solution, followed by ultrasonication for 2 h
to obtain a uniform CS-GNs dispersion. The CS-GNs dispersion was stored at 4 ◦C for
further use.

3.2.2. Fabrication of the Immunosensor

Before modification, the GCE was treated by a typical purification method. Initially,
the bare GCE was polished with a polishing powder containing 0.05 µm Al2O3 particles
until achieving a highly reflective, mirror-like surface. Secondly, the electrode was cleaned
5 min in ethanol and distilled water, and then dried at room temperature. To activate
the GCE, the dried electrode was subjected to cyclic voltammetry scanning (−0.3–1.5 V,
50 mV/s) in a 0.5 M H2SO4 solution for 15 cycles. Subsequently, the GCE was cleaned
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by ultrasonication in distilled water for 10 min and rinsed thoroughly with abundant
distilled water.

After being dried at room temperature, the cleaned GCE was subjected to CV scanning
(−1.5~1.0 V, 50 mV/s) in 5 mM p-aminobenzoic acid (PABA) solution for 15 cycles, followed
by rinsing with distilled water and dried at room temperature. Finally, 10 µL of CS-GNs
nanocomposites dispersion was carefully dropped onto the surface of the GCE.

Before immobilizing the antibodies, the surface of CS-GNs/GCE was initially activated
using EDC: NHS coupling chemistry. Here, EDC (0.4 M) served as a coupling agent, while
NHS (0.1 M) acted as an activator for the covalent immobilization of biomolecules [41].

After the activation, CS-GNs/GCE was thoroughly washed with PBS. Subsequently,
10 µL of 150 µg/mL anti-AFB1 was carefully dropped onto the surface of the CS-GNs/GCE
and then incubated at 37 ◦C for 50 min. Following that, the fabricated electrode was rinsed
with PBS to remove the physically adsorbed antibodies. Subsequently, the electrode was
incubated in 10 µL 3% BSA solution at 37 ◦C for 1 h, in order to block any unreacted active
sites on the surface. Afterwards, the electrode was thoroughly rinsed with PBS once more,
resulting in the successful fabrication of the AFB1 electrochemical immunosensor using
CS-GNs/GCE, which was then stored at 4 ◦C for further use. Thereafter, the electrode
was dropped with 10 µL of AFB1 solution with diverse concentrations and incubated at
37 ◦C for 40 min. The physically adsorbed AFB1 antigen molecules were washed away
by PBS, and then electrochemically tested by the DPV method in the base solution (5 mM
K3[Fe(CN)6] + 0.1 M KCl + 0.2 M PBS). The DPV peak current change (∆I) before and
after the immunoreaction served as the basis for quantifying the AFB1 concentration in
the samples. Figure 8 shows the preparation of CS-GNs nanocomposites and outlines the
process for preparing the electrochemical immunosensor.
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3.2.3. Preparation of Spiked Samples

The spiked sample was prepared using a previously established method [42]. The
unaffected corn samples were crushed and ground into powder, weighed 30 mg in a
centrifuge tube, added to 30 mL of acetonitrile/water (8:2 v/v) solution, ultrasonicated for
4 h until completely dispersed, and then centrifuged at 9000 r/min for 15 min. The resulting
supernatant collected and diluted multiple concentrations with PBS, and the samples were
subsequently spiked with varying concentrations of AFB1 (5.0, 10.0, 15.0 ng/mL), before
being stored at 4 ◦C until use.

4. Conclusions

In this work, we designed an electrochemical immunosensor based on chitosan
graphene nanosheets (CS-GNs) for the detection of AFB1 concentration in corn samples.
The CS-GNs nanocomposites exhibited a large specific surface area, excellent biocompati-
bility, and high electrochemical activity. These properties facilitate the immobilization of
antibodies and enhance the rate of electron transfer. The obtained CS-GNs nanocomposites
were surface characterized using SEM. The optimization of antibody concentration, pH, an-
tibody incubation time, and immunoreaction time was based on the DPV method. With the
best conditions, the change in DPV peak currents before and after immunization was linear
over the concentration range of 0.05–25 ng/mL AFB1, with a detection limit of 0.021 ng/mL
(S/N = 3). The developed immunosensor exhibited favorable reproducibility, stability,
and specificity for detecting the concentration of AFB1 in corn samples. Additionally, the
recovery of AFB1 detection in corn samples ranged from 97.3% to 101.4%. The results show
that the developed AFB1 immunosensor possesses the advantages of simplicity, sensitivity,
and high selectivity. This makes it a valuable reference for the detection and analysis of
other biomolecules.
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