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Abstract: To improve the mess-specific activity of Co supported on zeolite catalysts in Fischer–
Tropsch (FT) synthesis, the Co-MCM-22 catalyst was prepared by simply grinding the MCM-22 with
nanosized Co3O4 prefabricated by the thermal decomposition of the Co(II)-glycine complex. It is
found that this novel strategy is effective for improving the mess-specific activity of Co catalysts in
FT synthesis compared to the impregnation method. Moreover, the ion exchange and calcination
sequence of MCM-22 has a significant influence on the dispersion, particle size distribution, and
reduction degree of Co. The Co-MCM-22 prepared by the physical grinding of prefabricated Co3O4

and H+-type MCM-22 without a further calcination process exhibits a moderate interaction between
Co3O4 and MCM-22, which results in the higher reduction degree, higher dispersion, and higher
mess-specific activity of Co. Thus, the newly developed method is more controllable and promising
for the synthesis of metal-supported catalysts.

Keywords: Fischer–Tropsch; MCM-22; cobalt; physical grinding; dispersion

1. Introduction

Fischer–Tropsch (FT) synthesis is an efficient process for converting syngas (CO + H2)
to super clean fuels and high-value-added fine chemicals [1–3]. However, the product
distribution of FT synthesis is very broad because of the Anderson–Schulz–Flory (ASF)
polymerization mechanism [4,5]. Thus, controlling the product distribution is crucial for
the direct synthesis of target products (diesel, gasoline, et al.) with high selectivity through
the FT process [6,7]. Cobalt has been widely used as an effective catalyst for FT synthesis
due to its high activity, high resistance to deactivation, low water–gas shift activity, and
lower price compared with noble metals [1,5]. Consequently, bifunctional catalysts, that
is, combinations of cobalt with various solid acids for cracking and isomerizing the FT
hydrocarbons, have been extensively studied to circumvent the ASF distribution and
produce gasoline or diesel-range hydrocarbons with high selectivity [4,8,9].

Cobalt supported on zeolites has proven to be very effective, and the traditional FT
product distribution can be significantly changed with much-increased selectivity to liquid
fuels [10–12]. A cobalt nitrate precursor is often used owing to its high solubility, which
allows for high metal loading in a single impregnation step. However, due to the infil-
tration of cobalt species into the micropores of zeolite and the strong interaction between
Co and zeolite, a poor reduction degree of cobalt is frequently obtained, which results
in lower mass-specific activity [13–17]. Moreover, inhomogeneous size distributions of

Molecules 2024, 29, 1283. https://doi.org/10.3390/molecules29061283 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29061283
https://doi.org/10.3390/molecules29061283
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules29061283
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29061283?type=check_update&version=1


Molecules 2024, 29, 1283 2 of 12

cobalt are frequently obtained because the Co is simultaneously located on the internal
surface and external surface of the microporous channel, which results in a higher deacti-
vation rate [18–20]. Thus, developing a novel method for the preparation of an efficient
Co/zeolite catalyst with highly dispersed and reducible Co is crucial for the development
of a bifunctional FT catalyst with higher mass-specific activity of Co.

In essence, bifunctional Co-zeolite-based catalysts are combinations of FT-active metal
Co with zeolite for cracking and isomerizing the FT hydrocarbons. In fact, except for
the direct deposition of Co on or in zeolite, the physical mixing of FT catalysts (Co/SiO2,
Co/Al2O3) and zeolite has been extensively studied [21–23]. However, the distance be-
tween the two kinds of active sites, i.e., FT-active sites (Co/SiO2, Co/Al2O3) and acid
sites, in zeolite is relatively far, which results in a weaker synergistic effect. Therefore, the
physical mixing of prefabricated nanosized Co3O4 and zeolite is a prospective strategy for
obtaining efficient bifunctional FT catalysts with higher mass-specific activity.

As reported in the literature [24–33], the chelate-assisted method has been widely used
to improve the dispersion of metal for supported catalysts. In our previous work, Co/SiO2
catalysts with nanosized and homogenous size distributions of Co can be prepared by the
thermal decomposition of Co(II)-glycine complexes prepared by the reaction of glycine with
cobalt hydroxide [34]. Based on this work, nanosized Co3O4 should be prefabricated by the
thermal decomposition of Co(II)-glycine complexes in the absence of support. Consequently,
the interaction between Co and zeolite over the physical mixing of prefabricated nanosized
Co3O4 and zeolite may be decreased in comparison with Co/zeolite prepared by the
incipient impregnation method. MCM-22 zeolite with MWW topology is one of the most
investigated 2D zeolites due to its modifiable arrangement of thin layers (ca. 2.5 nm thick)
and unique pore systems, which consist of two different pores [35,36], i.e., intralayer 10-
member ring (MR) sinusoidal channels and interlayer 12MR supercages interconnected
through 10MR windows. It has been reported that Co/MCM-22 is a promising catalyst for
FT synthesis with narrowed product distributions [17,37].

In this work, using a newly developed method, the Co3O4 was prepared by the thermal
decomposition of Co(II)-glycine complexes prepared by the reaction of glycine with cobalt
hydroxide. Then, the FT bifunctional catalyst was obtained by the direct physical mixing
of prefabricated nanosized Co3O4 and MCM-22 zeolite. Moreover, the impacts of the
template removal order of MCM-22 on its structure, acidity, and particle size of Co3O4 were
comparatively investigated. For comparison, the Co-supported catalyst was also prepared
by co-impregnation with the impregnation solution containing cobalt nitrate. Significantly,
the Co-MCM-22 catalyst prepared by the physical mixing of prefabricated nanosized
Co3O4 and MCM-22 exhibited smaller Co particle size and narrower size distribution,
which resulted in higher activity and stability in the FT reaction.

2. Results and Discussion
2.1. The Effect of Ion Exchange and Calcination Sequence on the Structural and Acidic Properties
of MCM-22

Generally, the as-synthesized zeolites have a structure-directing agent (SDA) in their
framework. Thus, to convert the as-synthesized sample to H-type zeolite with acid sites,
two-step calcination is needed. Typically, the first step of calcination is to remove the SDA
and convert the as-synthesized sample to Na-type zeolite. Then, the Na-type zeolite is
ion-exchanged with NH4

+ to obtain the NH4
+-type zeolite. Finally, after the second step

of calcination, the H-type zeolite can be obtained. In this work, we attempt to eliminate
the first calcination to remove the SDA, that is, the as-synthesized MCM-22 (including
SDA) directly ion-exchanged with NH4

+ to obtain the NH4
+-type MCM-22 (including

SDA). Then, removing SDA and converting NH4
+ to H+ was achieved through only a

one-step calcination procedure. As mentioned in the introduction, the infiltration of cobalt
species into the micropores of zeolite will result in a strong interaction between Co and
zeolite. Thus, it is expected that the interaction between Co species and NH4

+-type MCM-
22 without removing the SDA could be decreased because of the existence of HMI in the
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micropores of MCM-22. However, whether the ion exchange and calcination sequence
have an effect on the physical and chemical properties of MCM-22 zeolites is unknown.
Thus, the influence of the ion exchange and calcination sequence on the structure and acidic
properties of MCM-22 was investigated first.

The XRD patterns of the MCM-22(P) and H-MCM-22 samples prepared by different
ion exchange sequences are shown in Figure 1. The XRD pattern of MCM-22(P) shows clear
(001) and (002) diffraction peaks at 2 theta of 3.2 and 6.5◦ corresponding to d-spacings of
2.70 and 1.35 nm, indicating the ordered layered structure of MCM-22(P) with the vertically
aligned layers along the c-axis [16,34]. Before template removal, the diffraction peaks in the
2 theta range of 12–30◦ are broad and some of them overlap. Significantly, the diffraction
peaks of two H-MCM-22 prepared by different ion exchange sequences are very similar,
indicating that the ion exchange and calcination sequence method has less effect on the
crystal structure of H-MCM-22.
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Figure 1. XRD patterns of the MCM-22 (P) (a), H-MCM-22(1) (b), and H-MCM-22(2) (c).

Commonly, the acidic properties of zeolites can be characterized by using the NH3-
TPD technique to estimate the amount and distribution of weak and strong acid sites
and using traditional pyridine-IR or novel Diffuse Reflectance Infrared Fourier Transform
Spectroscopy (DRIFTS) without molar extinction coefficients [38] to estimate the Lewis
and Brønsted sites. In this work, the acidic properties of H-MCM-22 prepared by different
ion exchange sequences are estimated by the NH3-TPD technique. As shown in Figure 2,
two clear NH3 desorption peaks can be seen for both H-MCM-22, which correspond to the
weak and strong acidic sites. Significantly, the NH3-TPD profiles of the two samples are
almost identical with each other. This observation indicates that the ion exchange sequence
and the calcination method have less effect on the acidic properties of H-MCM-22. These
results may be related to the unique SDA of hexamethyleneimine (HMI). The presence
of HMI in the framework of MCM-22 does not have a steric hindrance effect on the ion
exchange of NH4

+ to Na+ due to the smaller molecular size of HMI. Moreover, the thermal
stability of MCM-22 was indirectly proved by the slight change in structure and acidity
after calcining twice. Therefore, for the preparation of H+-type MCM-22 zeolite, the first
calcination procedure for removing the SDA can be eliminated, which can lower the cost of
the synthesis of H-MCM-22 zeolite.
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2.2. The Crystal Structure of Co3O4 and Co-MCM-22 Catalyst

As described in Section 3, the Co(II)-glycine complex is prepared by the reaction of
glycine and Co(OH)2. As shown in Figure 3, the diffraction peaks assigned to Co(OH)2
species cannot be seen over the Co(II)-glycine complex, indicating that the Co(OH)2 is
fully coordinated by the glycine and giving the homogenous Co complex with stable and
definite structure, namely, Co(glycine)2(H2O)2. After the calcination of the Co(II)-glycine
complex and Co(NO3)2·6H2O at 400 ◦C, the diffraction peaks of cobalt species are assigned
to Co3O4 without other crystalline phases. Significantly, the peak width at half the height
of Co3O4 prepared by the thermal decomposition of the Co complex is bigger than that of
Co3O4 prepared by the thermal decomposition of Co(NO3)2·6H2O. This result indicated
that the particle size of Co3O4 derived from the Co(II)-glycine complex is smaller than
that of Co3O4 derived from Co(NO3)2·6H2O. Therefore, the thermal decomposition of
the Co(II)-glycine complex is an effective method for the preparation of nanosized and
homogeneous Co3O4 crystals.
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Co(NO3)2·6H2O as precursor (c), and Co3O4 prepared using Co(II)-glycine as precursor (d).

The Co-based catalysts were prepared by three different methods, i.e., Co/MCM-22
prepared by the incipient impregnation method, Co-MCM-22(1) prepared by the physical
mixing of Co3O4 and H-MCM-22, and Co-MCM-22(2) prepared by the physical mixing of
Co3O4 and NH4

+-MCM-22 (including HMI in the micropores) followed by calcination at
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550 ◦C to remove HMI and obtain the H-MCM-22. As shown in Figure 4, the preparation
methods have influenced the particle size of Co3O4 over MCM-22 zeolite. Significantly, the
Co-MCM-22(1) shows the smallest particle size of Co3O4, in which the Co3O4 particle size
is similar to that of prefabricated Co3O4, indicating that the grinding process has a limited
effect on the particle size of Co3O4. It should be noted that the diffraction peak intensity of
MCM-22 in the Co/MCM-22 prepared by the impregnation method is lower than that of
Co3O4-MCM-22. This observation can be reasonably attributed to the entrance of Co3O4
into the micropores of MCM-22, which results in crystal imperfection and a decrease in
peak intensity. Because the Co3O4 is located on the internal and external micropores of
MCM-22 for Co/MCM-22 simultaneously, the Co3O4 particle size estimated from the XRD
is an average value, which is slightly larger than that of the Co-MCM-22(1). For the Co-
MCM-22(2) prepared using a tentative strategy, the particle size of Co3O4 is larger than
those of Co/MCM-22 and Co-MCM-22(1). Thus, the expected result was not achieved.
The larger particle size of Co3O4 over Co-MCM-22(2) can be attributed to the calcination
procedure for removing the SDA of MCM-22, which results in the sintering of Co3O4 at
high temperatures of 550 ◦C [1,19]. This explanation can be certified by the increased Co3O4
particle size of Co-MCM-22(1)-500 prepared by treating the Co-MCM-22(1) at 550 ◦C for
2 h.
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2.3. Reduction Behavior and the Dispersion of Co Catalysts

Our H2-TPR measurement was used to evaluate the reduction behavior of the catalysts
(Figure 5). The Co supported on MCM-22 catalysts shows two discrete peaks in the range
of 250–650 ◦C, which are assigned to the two-step reduction of Co3O4 to CoO and CoO to
metallic Co, respectively. As shown in Figure 5, the temperature for the reduction of Co3O4
to CoO (the first reduction peak) over Co/MCM-22 is clearly lower than those of Co3O4-
MCM-22 prepared by the physical mixing method, indicating the existence of external
Co3O4 with a bigger particle size over Co/MCM-22 [17]. Significantly, the reduction peak
of CoO to metallic Co over Co-MCM-22(1) is in the broader range of 350–600 ◦C, which can
be attributed to the smaller and moderate interaction between the Co species and MCM-22
zeolite. In contrast, the sharp reduction peak at about 400 ◦C over Co-MCM-22(2) and
Co-MCM-22(1)-500 can be reasonably attributed to the bigger Co3O4 particle size induced
by the higher temperature treating procedure.

It should be noted that there are clear reduction peaks in the range of 650-850 ◦C,
which are attributed to the reduction in Co2SiO4-like species [16,17]. However, it must be
pointed out that the Co2SiO4-like species can be formed in the temperature-programmed
process above 400 ◦C for the H2-TPR measurement, while the reduction process before the
FT reaction used in this work is at 400 ◦C for 4 h. Therefore, to demonstrate the formation
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reasons and estimate the reduction degree of different catalysts, the H2-TPR measurements
were tested after the in situ reduction at 400 ◦C for 4 h. As shown in Figure 6, the Co/MCM-
22 exhibits a clear reduction peak in the range of 650–850 ◦C, while the reduction peak in
this temperature range for those three Co3O4-MCM-22 catalysts is not very obvious. These
observations indicate that the irreducible Co2SiO4-like species at 400 ◦C can be avoided to a
certain extent by using the physical mixing method to prevent Co species from moving into
the micropores of MCM-22 zeolite. Moreover, the reduction degrees of the four catalysts
are summarized in Table 1. The reduction degree of Co3O4-MCM-22 is clearly higher than
that of Co/MCM-22.
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Commonly, the surface Co0 density (Co dispersion) of the catalyst is determined by
the particle size and the reduction degree of Co. H2-chemisorption is an effective technique
to obtain the actual surface Co0 density and the dispersion (normalized by the total moles
of Co over the catalyst). As shown in Table 1, the Co/MCM-22 exhibits the lowest Co
dispersion (about 3.0%) in the four catalysts in this work, which can be attributed to the
lower reduction degree and large particle size of Co. Moreover, the Co-MCM-22(1) shows
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the highest Co dispersion in the three catalysts prepared by the physical mixing method.
This result can be attributed to the moderate interaction between Co and MCM-22, which
results in a higher reduction degree and smaller Co particle size.

Table 1. Crystal sizes and reduction degree of cobalt over different catalysts.

Catalysts
Co Size (nm) Reduction Degree b

(RD, %)
Co Dispersion c

(D, %)d(Co3O4) a d(Co)H
d

Co3O4(G) 12.1 --- --- ---
Co3O4(N) 34.5 --- --- ---

Co/MCM-22 20.0 21.4 67.0 3.0
Co-MCM-22(1) 13.4 14.9 82.1 5.3
Co-MCM-22(2) 18.5 20.4 87.3 4.1
Co-MCM-22(1)-

500 19.5 19.7 86.2 4.2

a Estimation derived from Scherrer’s equation using (311) diffraction lines (2θ at about 37.0◦). b The reduction
degree (RD, %) was estimated based on the consumption of oxygen. c Co dispersion (D, %) was calculated using
H2 uptakes in H2-chemisorption. d The particle sizes of Co0 were calculated using d(Co)H = 96 × RD/D formula.

2.4. FT Performance

The catalyst was evaluated for FT synthesis under the conditions of 250 ◦C, 1 MPa,
H2/CO = 2, and W/F = 5.0 g h mol−1. As shown in Figure 7, the CO conversions at
a steady state (at TOS = 10 h) over the catalysts are increased in the order of Co-MCM-
22(1) > Co-MCM-22(1)-500 = Co-MCM-22(2) > Co/MCM-22, which is consistent with
the changing trend of Co0 dispersion in Table 1. Moreover, the catalytic stability of Co-
MCM-22(1) within the reaction time is obviously higher than that of others. In contrast,
the deactivation rate of Co/MCM-22 is clearly higher than those of Co-MCM-22 catalysts
prepared by the physical mixing method. Based on the theoretical calculation, the Ostwald
ripening rate could be suppressed further by preparing the homogeneously distributed
metal particles with identical sizes. [19] Therefore, the higher stability of Co-MCM-22(1)
can be reasonably explained by the homogeneous size distribution of Co particles and
moderate interaction between Co and MCM-22 zeolites. In addition, the Co/MCM-22
is prepared by the incipient impregnation method, which makes a major part of the Co
species infiltrate into the micropores of zeolite. The coke deposition will be formed over
acid sites in the micropores due to the second cracking reaction of FT products, which will
result in the coverage of Co0 active sites and the deactivation of the Co/MCM-22 [11,12,39].
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Figure 8 shows the product distribution of the FT synthesis at TOS of 5 h and 10 h
over these catalysts. The product distribution at TOS of 5 h and 10 h are very similar due
to the slight change in CO conversion in this period. The selectivity of CH4 and C2-C4
over the four catalysts is higher than in the previous report [16] due to the higher reaction
temperature in this work. However, the product distribution over the four catalysts in
this work is very similar. It must be pointed out that the particle size of Co0 in the range
of 10–30 nm exhibits a slight influence on the product distribution [13,14,40]. As shown
in Table 1, the particle size of Co0 in this work is in the range of 14–21 nm, which results
in the selectivity of the FT primary product being very similar. The selectivity of C21+ is
obviously restrained due to the second cracking reaction of the FT product over the acidic
sites of MCM-22, while the selectivity of C5–C20 is significantly increased compared with
that of Co/SiO2 catalysts without acidic sites. It should be noted that the selectivity of C21+
over Co-MCM-22(1) is slightly higher than that of the other three catalysts. This result can
be reasonably attributed to the higher CO conversion and the not-covered acidic site in the
micropores of MCM-22.
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3. Materials and Methods
3.1. Materials

Hexamethyleneimine (HMI, 99%) and colloidal silica (Ludox, AS-40, 40%) were pur-
chased from Sigma-Aldrich, Shanghai, China. Co(NO3)2·6H2O (98.5%), glycine (99%),



Molecules 2024, 29, 1283 9 of 12

sodium hydroxide (NaOH, 96%), sodium, aluminate (NaAlO2, 41% Al2O3), and ammo-
nium nitrate (NH4NO3, 99%) were provided by Sinopharm Chemical Reagent Co., Ltd.,
Shanghai, China. All reagents were used directly without further treatment.

3.2. Preparation of Nanosized Co3O4

The nanosized Co3O4 was prepared by the thermal decomposition of Co(II)-glycine
complexes. Typically, the Co(II)-glycine precursor was prepared by the reaction of glycine
with Co(OH)2 (mole ratio of glycine/Co(OH)2 = 3). The Co(OH)2 was prepared by the
reaction of Co(NO3)2 with NaOH using the molar ratio of OH−/Co2+ = 2. After the
formation of Co(OH)2 precipitate, the Co(OH)2 was recovered by filtration and washing
with deionized water thoroughly, and then the wet Co(OH)2 was dried at 80 ◦C for 12 h.
For the preparation of the Co(II)-glycine complex, the Co(OH)2 powder was slowly added
to the 0.2 mol/L glycine aqueous solution (in which the molar ratio of glycine to Co(OH)2
is 3) at 80 ◦C. After the addition of Co(OH)2 powder, the solution was still stirred for 2 h at
80 ◦C, and then most of the water was removed through rotary evaporation. Finally, the
Co(II)-glycine complex was obtained after drying the samples overnight at 90 ◦C.

3.3. Preparation of MCM-22 Zeolite

MCM-22(P) was synthesized based on the reported method in the literature [35].
Typically, 0.15 g of NaAlO2 and 0.18 g of NaOH were dissolved in 25.2 mL of deionized
water, and then 4.7 g of colloidal silica was added. The mixture was stirred for 0.5 h, and
then 1.1 g of HMI was added. The final molar composition of the mixture was 0.07 Na2O/
1 SiO2/0.02 Al2O3/0.35 HMI/ 45 H2O. The reaction mixture was transferred into 50 mL
Teflon-lined stainless-steel autoclaves. The autoclaves were tumbled at 60 rpm in an oven
at 150 ◦C. After 7 days, the autoclaves were fast-cooled in water, and the products were
centrifuged and washed with deionized water until the pH = 8. MCM-22(P) was obtained
after drying the samples overnight at 90 ◦C. A part of the MCM-22(P) was calcined at 550 ◦C
for 6 h to obtain the Na-type MCM-22 zeolite. Consequently, the Na-type MCM-22 was
ion-exchanged 3 times in a 1 mol/L NH4NO3 solution at 80 ◦C for 2 h. Finally, the NH4

+-
type MCM-22 was calcined at 500 ◦C for 2 h to obtain the H-type MCM-22 (H-MCM-22(1)).
Another part of MCM-22(P) was directly ion-exchanged 3 times in a 1 mol/L NH4NO3
solution at 80 ◦C for 2 h to obtain the NH4

+-type MCM-22 without removing the structure
direct agent (HMI). Finally, the NH4

+-type MCM-22 was calcined at 500 ◦C for 4 h to obtain
the H-type MCM-22 (H-MCM-22(2)).

3.4. Preparation of Co-Based Catalyst

The Co-MCM-22 catalyst was prepared by the direct physical mixing of prefabricated
nanosized Co3O4 and MCM-22. Typically, the nanosized Co3O4 and H-MCM-22 were
mixed in an agate mortar for 10 min, which is denoted as Co-MCM-22(1). The nanosized
Co3O4 and NH4

+-type MCM-22 were mixed in an agate mortar for 10 min, and then the
catalyst was calcined at 500 ◦C for 4 h to remove the structure direct agent (HMI) and
convert the NH4

+ to H+ of MCM-22, which is denoted as Co-MCM-22(2). The metallic Co
loading for all the catalysts was 10 wt.%.

For comparison, the Co/MCM-22 was prepared by the incipient impregnation method.
The cobalt nitrate (Co(NO3)2·6H2O, 99.0%) was used as the cobalt precursor. The catalysts
were dried at 120 ◦C for 12 h, and then calcined at 200 ◦C for 2 h in air by programmed
heating with a rate of 2 ◦C min−1.

3.5. Characterizations

The NH3-TPD measurements were performed with a BELCAT II (Microtrac BEL,
Osaka, Japan) instrument. Typically, 0.05 g of the sample was preheated with flowing
He at 550 ◦C for 1 h and then cooled to 120 ◦C. Subsequently, the sample was exposed
to an NH3-He mixture (5 vol% NH3) for 0.5 h. After this, the system was purged for
1 h under a flow of He at the same temperature. After this, NH3-TPD was performed
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by raising the temperature to 600 ◦C at a heating rate of 10 ◦C/min under a He flow of
30 cm3/min. XRD measurement was performed on an X-ray diffractometer (D8 Advance)
with Cu Kα radiation operated at 40 kV and 40 mA. The speed of scanning is 4◦/min
with a step size of 0.02◦. The average crystallite size of Co3O4 over the catalysts was
estimated using (311) diffraction lines (2θ at about 37.0◦) according to Scherrer’s equation.
The H2-TPR was carried out on a BELCAT II (MicrotracBEL) instrument. Notably, 0.05 g of
the catalysts was first purged in a flow of argon at 200 ◦C for 30 min. After the temperature
decreased to 35 ◦C, the catalysts were heated to 900 ◦C at a heating rate of 10 ◦C/min
under 10 vol.% hydrogen–argon mixtures with a flow rate of 30 cm3/min. The reduction
degree of cobalt was determined by the O2 pulse titration method. Firstly, about 0.1 g
of catalyst was reduced in situ for 6 h at 500 ◦C using pure hydrogen. Afterwards, the
temperature of the sample was decreased to 400 ◦C, and it was flushed with pure Ar for
1 h. At the same temperature, 3 vol. % O2 was injected with a pulse mode to oxidize
the reduced catalyst. The reduction degree (RD, %) of the catalyst was estimated based
on the consumption of oxygen assuming that metallic Co was converted to Co3O4. H2-
chemisorption measurements were performed on a Micromeretics ASAP 2020C instrument
to evaluate the Co dispersion. Before measurement, the sample was reduced on the analysis
station in situ in flowing H2 at 500 ◦C for 6 h. Afterwards, the temperature was decreased
to 100 ◦C and the H2-chemisorption was measured at this temperature. The H2 uptakes
and Co dispersion (D, %) were determined using the method reported in the literature.
Assuming the hemispherical geometry of the metallic Co, with a surface atomic density of
14.6 atoms/nm2, the particle sizes of Co0 were calculated using the d(Co)H = 96 × RD/D
formula.

3.6. Catalytic Reactions

The catalytic performance of the catalysts in FT synthesis was tested in a fixed-bed
reactor. Typically, 0.5 g of catalyst (40–60 mesh diluted with quartz sands) was firstly
reduced in situ in a flow of pure H2 (50 cm3/min) at 400 ◦C for 6 h. And then, the
temperature was decreased to 190 ◦C and the syngas (H2/CO = 2, 4% Ar as an internal
standard) was fed into the reactor. The reaction conditions are at 250 ◦C, 1.0 MPa, and
W/F = 5.0 g·h·mol−1. To prevent condensation of the products, the pipeline from the outlet
of the reactor to the inlet of the gas chromatography (GC) was heated at 180 ◦C. The
hydrocarbons in the effluent were online and were analyzed by a GC with an HP-PONA
capillary column (0.20 mm × 50 m, 0.5 µm) and a flame ionization detector (FID) (SP-3420A,
Beifen-Ruili Analytical Instrument (Group) Co., Ltd., Beijing, China). The CO, CH4, Ar, and
CO2 in the effluent were online and were analyzed by a GC with a packed activated carbon
column and a TCD detector (SP-3420A). The selectivity for hydrocarbons was calculated
based on carbon number.

4. Conclusions

In summary, nanosized Co3O4 was prefabricated by the thermal decomposition of
the Co(II)-glycine complex prepared by the reaction of glycine and Co(OH)2. MCM-22-
supported Co catalysts were prepared by the physical mixing of prefabricated Co3O4
with H-MCM-22 and NH4

+-MCM-22. This is an effective strategy for improving the
dispersion of Co and the mess-specific activity of Co catalysts in FT synthesis compared to
the impregnation method. It is found that the dispersion, particle size distribution, and
reduction degree of Co were significantly influenced by the ion exchange sequence and
calcination conditions, although the ion exchange sequence and calcination conditions have
a limited impact on the structure and acidic properties of MCM-22 zeolite. In comparison
to the Co/MCM-22 prepared by the traditional impregnation method, the Co-MCM-22(1)
prepared by the newly developed method, i.e., simply mixing the nanosized Co3O4 and
H-MCM-22, exhibited higher mess-specific activity of Co. Thus, the newly developed
method is more controllable and promising for the synthesis of Co-based catalysts for
FT synthesis.
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