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Abstract: From the aerial parts of Salvia carranzae Zamudio and Bedolla, three new icetexane-
type diterpenoids were isolated. Their structures were established through spectroscopic methods
and named the following: salvicarranzanolide (1), 19-deoxo-salvicarranzanolide (2) and 19-deoxo-
20-deoxy-salvicarranzanolide (3). In addition, the known icetexane-type diterpenoids, 6,7,11,14-
tetrahydro-7-oxo-icetexone (4), iso-icetexone (5), 19-deoxo-iso-icetexone (6), icetexone (7), 19-deoxo-
icetexone (8) and 7α-acetoxy-6,7-dihydroicetexone (9), were also isolated, along with the abietanes
sessein (10) and ferruginol (11). α-Tocopherol was also identified. Compounds 5, 6 and 8 were tested
for their antiproliferative activity using the sulforhodamine B assay on six cancer and one normal
human cell lines. Diterpenoids 5 and 6 showed noteworthy antiproliferative activity, exhibiting an
IC50 (µM) = 0.43 ± 0.01 and 1.34 ± 0.04, respectively, for U251 (glioblastoma), an IC50 (µM) = 0.45 ± 0.01
and 1.29 ± 0.06 for K5621 (myelogenous leukemia), 0.84 ± 0.07 and 1.03 ± 0.10 for HCT-15 (colon
cancer), and 0.73 ± 0.06 and 0.95 ± 0.09 for SKLU-1 (lung adenocarcinoma) cell lines. On the other
hand, the phytotoxicity of compounds 5–7 and 9–10 was evaluated on seed germination and root
growth in some weeds such as Medicago sativa, Panicum miliaceum, Amaranthus hypochondriacus and
Trifolium pratense as models. While compounds 5 and 10 exhibited a moderate inhibitory effect on
the root growth of A. hypochondriacus and T. pratense at 100 ppm, the diterpenoids 6, 7 and 9 were
ineffective in all the plant models. Taxonomic positions based on the chemical profiles found are
also discussed.

Keywords: Salvia carranzae; icetexane diterpenoids; abietane diterpenoids; antiproliferative activity;
phytotoxicity

1. Introduction

The genus Salvia L., comprising approximately 1000 species worldwide, is one of
the largest genera of angiosperms [1]. The genus was organized in 1876 into four sub-
genera by Bentham (Salvia, Leonia, Sclarea and Calosphace) [2]; however, its diterpenoid
content [3] and recent taxonomic work, including molecular phylogenetic analysis, suggest
a reconsideration of this classification [4,5]. Some authors have considered the existence of
additional subgenera and the taxonomic complexity of such a rich genus has led to two
main proposals regarding taxonomic treatment: on the one hand, the splitting of Salvia
into six separate genera, and on the other hand, the inclusion of the species of the related
genera Dorystaechas, Meriandra, Perovskia, Rosmarinus and Zhumeria as part of Salvia [6,7].
The second proposal is based on phylogenetic analysis using two low-copy nuclear gene
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regions, in addition to chloroplast and nuclear ribosomal DNA, thus providing a broader
definition of the genus. Recently, the analysis of phylogeny and staminal evolution of East
Asian species of Salvia has led to the proposal of the subgenus Glutinaria for the inclusion
of the Chinese, Japanese and Korean species. The most recent subgeneric classification of
Salvia L., following a broader definition, comprises ten subgenera, including almost 95% of
recognized species [8].

Regardless of these two trends, there is a general agreement that the subgenus
Calosphace (Benth.) is the most diverse of the genus, comprising between 61 and 64%
of the world’s species. It is also accepted that Salvia species developing in Mexico and
Central and South America and belong mainly to this subgenus. Salvia is the most species-
rich genus in Mexico, with approximately 312 species, representing 55% of the Calosphace
subgenus and 30% of the world estimate [9]. On the other hand, 82% of Mexican species
are endemic [10]. Due to this diversity of species and endemism, Mexico is considered the
center of the origin and diversification of the subgenus Calosphace. The exact number of
Salvia species in Mexico is constantly changing due to the discovery of new species. This
is a consequence of the very intensive research dealing with the investigation of regional
floras across the country performed in the last three decades [11,12]. Since 2007, 62 new
species of the genus have been described [13–18]. S. carranzae Bedolla and Zamudio is a
perennial herb that grows in temperate forests and was described for the first time in 2015
in the framework of the project, Flora del Bajío y de Regiones Adyacentes. Although it was ten-
tatively classified in section Fulgentes (Epling), its taxonomic position within the subgenus
Calosphace is uncertain, since its morphological characteristics do not exactly coincide with
any of the sections proposed by Epling et al. [19,20]. In its original description, S. carranzae
was compared with species of the Fulgentes section, particularly with S. fulgens Cav., but
it differs from this and the other species of the section by its leaves with an irregularly
toothed margin, the tube of its corolla missing papillae and the upper branch of its style
being shorter than the lower one [19]. S. carranzae was also compared with species from
sections Blackea, Glareosae, Brandegeei and Nobiles, but it did not completely coincide with
any of them [20]. From a phytochemical point of view, section Fulgentes is characterized by
the presence of neo-clerodane, rearranged neo-clerodane and pimarane diterpenoids, as
have been described in Salvia fulgens [21–23], S. lineata [24] and S. microphylla [22,25–27].

As a result of the systematic phytochemical study of Mexican salvias, it can be stated
that diterpenoids are the most characteristic constituents of the genus, and there exists a
certain parallelism between the chemical composition of species and the botanical sections
to which they belong, according to Epling, as in the cases of sections Erythrostachys, To-
mentellae and Scorodonia. On the other hand, it has been possible to show that the chemical
composition of Salvia species belonging to the subgenus Calosphace differs significantly
from that found in species from Europe and Asia. The diterpenes most frequently found in
Mexican salvias are of a neo-clerodane type or derived from this skeleton, although some
abietane, icetexane, pimarane, totarane and recently labdane-type diterpenoids have also
been found [28]. It is considered that these compounds may be the basis, in part, of the
use of many Salvia species in traditional medicine in many countries. Several species of
the genus Salvia are used as medicinal herbs in different regions of the world, for example,
the Mediterranean species S. officinalis L. and S. sclarea L. have been used for centuries in
different areas of Europe and the roots of S. miltiorrhiza are very appreciated in traditional
Chinese medicine [29,30]. In Mexico, the genus is widely used for medicinal purposes and
several species with similar uses are grouped in medicinal mixtures, such as S. microphylla
Kunth, S. coccinea Juss. ex Murr., S. elegans Vahl, S. fulgens Cav. and S. involucrata Cav.,
which constitute the “Mirto” complex and are used to relieve stomach ailments, for exam-
ple, stomachache, diarrhea, stomach cramps, colic, dysentery, stomach infections. They are
even used as sedatives and muscle relaxants. On the other hand, S. lavanduloides Kunth
and S. longispicata Mart. and Gal. constitute the “Cantueso” complex and are used mainly
for respiratory conditions [31].
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In this work, we describe the results of the phytochemical analysis of the new species,
S. carranzae, hoping that these results will help to establish its most suitable taxonomic
position and, on the other hand, to evaluate the biological activity of its isolated sec-
ondary metabolites. From the analysis of the dichloromethane extract of the aerial parts
of S. carranzae, nine diterpenes with an icetexane skeleton were isolated, in addition to
two abietanes and α-tocopherol. Some of these compounds were evaluated to establish
their antiproliferative capacity against human cancer cell cultures and phytotoxicity against
some weeds.

2. Results and Discussion
2.1. Characterization

The aerial parts of S. carranzae yielded, after dichloromethane extraction and thor-
ough chromatographic purification, α-tocopherol and eleven diterpenoids: three new
icetexane-type (1–3), in addition to the already known icetexanes (4–9) and abietanes
(10–11) (Figure 1).
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Structural elucidation and identification of the isolated compounds were performed
by spectroscopic methods and comparison with the literature data.

Salvicarranzanolide (1) was isolated as a yellow solid; m.p. 178–180 ◦C. The HR-
DART-MS showed a pseudomolecular ion [M + H]+ at a m/z 377.1586 (calculated for
C20H24O7 + H, 377.1600), establishing a molecular formula, C20H24O7, indicating a high
degree of unsaturation (Ω = 9). In the 13C-NMR of 1 (Table 1), in addition to the charac-
teristic signals of an icetexone-type diterpenoid derivative at δC 178.8 and 87.5, due to
carbons of the γ-lactone carbonyl (C-19, C-10) and C-18 methyl group at 16.9, signals for a
fully substituted benzene ring at δC 109.8 (C-8), 114.1 (C-9), 136.9 (C-11), 151.9 (C-12), 121.2
(C-13) and 158.8 (C-14) were also observed [28]. One of the substituents of the benzene
ring was identified as the typical iso-propyl group at C-13, since the expected signals for
this moiety were observed at δC 24.5 (C-15), 20.1 (C-16) and 19.8 (C-17). A signal at δC
202.7 was ascribed to a conjugated ketone carbonyl located at C-7. The IR spectrum of
salvicarranzanolide (1) showed bands due to hydroxy groups (3593, 3500 and 3352 cm−1),
indicating that the other substituents of the aromatic ring must have been hydroxy groups.
The IR spectrum also showed the γ-lactone and conjugated ketone carbonyl bands at
1776 and 1601 cm−1, respectively, confirming the presence of these groups in 1. Similar
functionalities were observed for 6,7,11,14-tetrahydro-7-oxo-icetexone (4) an icetexane-type
diterpenoid previously isolated from Salvia ballotiflora [28] and also present in S. carranzae.

Table 1. NMR data (1H 700 MHz, CDCl3) of 1–3.

1 2 3 *

Position δC Type δH (J in Hz) δC Type δH (J in Hz) δC Type δH (J in Hz)

1a 25.0 CH2 2.54, dd (13.5, 6.1) 28.6 CH2 2.28, dd (13.6, 6.2) 37.6 CH2 1.81, dd (13.4, 6.4)
1b 1.64, m CH2 1.52, dd (13.6, 6.0) 1.60, td (12.9, 6.1)
2a 19.1 CH2 1.97, dt (13.5, 6.1) 19.6 CH2 1.60, m 21.1 CH2 1.90, dh (19.6, 6.3)
2b 1.75, m 1.49, m 1.66, m
3a 36.2 CH2 1.81, m 39.7 CH2 1.80, m 40.3 CH2 1.53, dd (13.3, 6.4)

3b 1.65, m 1.84, m 1.45, tdd (13.3,
5.8, 2.2)

4 47.6 C 44.1 C 44.9 C
5 50.1 CH 2.11, dd (12.4, 1.5) 51.5 CH 1.77, dd (10.8, 3.6) 53.4 CH 1.65, m
6a 39.9 CH2 2.72, dd (17.5, 12.4) 40.4 CH2 2.78, m 41.9 CH2 2.95, dd (16.8, 12.4)
6b 2.80, dd (17.5, 1.5) 2.75, d (16.8)
7a 202.7 C 204.6 C 208.1 C
7b 126.3 C
8 109.8 C 110.1 C 113.6 C
9 114.1 C 117.0 C 88.0 C

10 87.5 C 88.8 C 136.4 C
11 136.9 C 136.3 C 154.9 C
12 151.9 C 151.4 C 120.3 C
13 121.2 C 120.4 C 160.5 C
14 158.8 C 158.6 C 25.7 CH 3.51, hept (7.1)
15 24.5 CH 3.57, hept (7.1) 24.5 CH 3.55, hept (7.1) 20.5 CH3 1.31, d (7.1)
16 20.1 CH3 1.34, d (7.1) 20.17 CH3 1.32, d (7.1) 20.6 CH3 1.30, d (7.1)
17 19.8 CH3 1.35, d (7.1) 20.22 CH3 1.33, d (7.1) 19.2 CH3 1.02, s
18 16.9 CH3 1.18, s 28.5 CH3 1.00, s 78.2 CH2 3.86, d (7.7)

19a 178.8 C 77.9 CH2 3.90, d (7.9) 3.72, dd (7.7, 2.2)
19b 3.72, dd (7.9, 2.1) 35.9 CH2 3.44, d (13.6)
20a 76.4 CH 5.44, s 78.5 CH 5.32, s 2.84, d (13.6)

11-OH 9.30, s 9.20, brs
12-OH 6.69, s 6.57, brs
14-OH 12.76, s 12.92, s

* CD3OD was used as a solvent.
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In the 1H-NMR spectrum of 1 (Table 1), signals for an ABX system were observed
at δH 2.72 (dd, J = 17.5, 12.4 Hz), 2.80 (dd, J = 17.5, 1.5 Hz) and 2.11 (dd, J = 12.4, 1.5 Hz).
The chemical shift and coupling constants of the AB methylene proton signals indicate
its vicinity to a carbonyl group and were ascribed to the C-6 methylene hydrogen atoms.
Therefore, the X part of this system was ascribed to the axially oriented H-5. Another
relevant signal in the 1H-NMR spectrum of 1 is a singlet at δH 5.44 which was assigned to
the hydrogen atom at the C-20 position, geminal to a hydroxy group. A singlet at δH 12.76
was assigned to a hydrogen-bonded hydroxy group between the C-7 carbonyl group and
the hydrogen atom of the hydroxyl group at the aromatic C-14. Based on the above evidence,
the structure of compound 1 was established as the C-20 hydroxy derivative of compound 4.
The HMBC spectrum of salvicarranzanolide (1) supports the previous considerations since
the expected correlation cross peaks were observed as depicted in Figure 2. The relative
configuration of salvicarranzanolide (1) was established according to coupling constants
and nOe interactions observed in the NOESY spectrum (Figure 2). The nOe correlation
observed between H-20 and H-6β suggested an α-orientation for the hydroxy group at
C-20. To establish the absolute configuration of compound 1, the excitation energy (nm)
and rotatory strength (R) in dipole velocity (Rvel) for the 4S,5S,10R,20R isomer and its
enantiomer were calculated using TD-DFT and simulated into ECD curves (Figure 3). The
experimental ECD spectrum for 1 displayed two positive Cotton effects at 265 and 320 nm,
two negatives at 295 and 365 nm, and was in good agreement with the calculated data for
the 4S,5S,10R,20R enantiomer depicted in 1.
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19-Deoxo-salvicarranzanolide (2) was isolated as a yellow powder; m.p. 140–142 ◦C;
[α]D-160 (c 0.0006, MeOH). The HR-DART-MS indicated a C20H26O6 molecular formula.
Its IR spectrum showed bands at 3591, 3501 and 3319 cm−1, ascribed to hydroxyl groups,
and 1599 cm−1, assigned to a conjugated ketone carbonyl. The 13C-NMR spectrum (Table 1)
displayed signals for 20 carbons accounting for three methyls, five methylenes, three
methines and nine quaternary carbons, which include two quaternary sp3, one carbonyl
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and six aromatic carbons, according to HMBC and HSQC experiments. The NMR data
of compound 2 (Table 1) are similar to those obtained for salvicarranzanolide (1), with
the most significant differences being the absence of a γ-lactone carbonyl group in the
13C-NMR of 2 and the presence of an AB system at δH 3.90 (d, J = 7.9 Hz) and 3.72 (dd,
J = 7.9, 2.1 Hz), ascribed to the C-19 methylene hydrogen atoms. The C-19 pro-R hydrogen
atom showed an additional long-range coupling with H-3α. The previous considerations
were supported by the correlation cross peaks observed in the HMBC spectrum (Figure 4).
The relative stereochemistry of compound 2 was established by the analysis of coupling
constants and nOe observed in the NOESY spectrum. A cross peak of correlation between
H-20 and H-6β led us to propose an α-orientation for the hydroxyl group at C-20, as in
compound 1. The absolute configuration of compound 2 was established as 4S,5S,10R,20R
based on the results obtained from the comparison between the theoretical (blue and red
lines) and experimental ECD curves (black line, Figure 5), which displayed a negative
Cotton effect at 295 nm and a positive effect at 320 nm.
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Compound 3 was obtained as a yellow powder. Its molecular formula was determined
to be C20H26O5 from the [M + H]+ pseudomolecular ion observed at a m/z 347.1853
(calculated 347.1858) in HR-DART-MS, indicating a high degree of unsaturation (Ω = 8).
The IR spectrum showed bands ascribed to hydroxyl groups (3317 cm−1), a conjugated
ketone carbonyl group (1597 cm−1) and aromatic double bonds (1570 cm−1). Mass and IR
spectra, together with NMR data (Table 1), led us to establish the structure depicted in 3 for
this novel icetexane-type diterpenoid. The 13C NMR signals for a fully substituted benzene
ring were observed at δC 126.3 (C-8), 113.6 (C-9), 136.4 (C-11), 154.9 (C-12), 120.3 (C-13)
and 160.5 (C-14). The chemical shifts of these signals indicated the presence of hydroxyl
groups at the C-11, C-12 and C-14 positions. Signals of an iso-propyl group at the C-13
position were also observed at δC 25.7 (C-15), 20.5 (C-16) and 20.6 (C-17). The signal for
the C-7 keto carbonyl was observed at δC 208.1. These facts indicated that compound 3
possesses a similar fully substituted aromatic ring conjugated with a ketone group at C-7,
as diterpenoids 1 and 2.

In the 1H NMR spectrum of 3 (Table 1), the signals for an AB system at δH 3.44 (d,
J = 13.6 Hz) and 2.84 (d, J = 13.6 Hz) were observed and attributed to the C-20 methylene
hydrogen atoms, characteristic of an icetexane-type diterpenoid. Compound 3, therefore, is
devoid of the hydroxy group at the C-20 position present in compounds 1 and 2. Another
AB system was observed at δH 3.86 (d, J = 7.7 Hz) and 3.72 (dd, J = 7.7 and 2.2 Hz)
and assigned to the C-19 methylene hydrogen atoms. The pro-R hydrogen of this group
exhibited a long-range coupling of 2.2 Hz with H-3α in agreement with a β orientation for
the ether linkage between C-4 and C-10. Compound 3 could be considered to be the C-20
deoxy derivative of 2 and named 20-deoxy-19-deoxo-salvicarranzanolide (3). The relative
and absolute configuration of 3 were established by nOe cross peaks of correlation in the
NOESY spectrum (Figure 6) and by TD-DFT calculation of the ECD (Figure 7), respectively.
The absolute configuration of compound 3 was established as 4S,5S,10S.
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The icetexane 5, named iso-icetexone, was recently described from a population of
Salvia uliginosa Benth (section Uliginosae) collected in Brazil, together with icetexone (7)
and compound 9 [29]. In the 1H NMR spectrum of 5, obtained in CDCl3, a complex signal
is observed for the hydrogen of the C-7 position at δ 7.37 ppm, which was described as
a multiplet by the authors who originally isolated this compound [29]. The complexity
of this signal suggests the existence of conformers in the CDCl3 solution. Inspection
of a Dreiding model of 5 revealed that it is a rigid molecule and that the possibility of
conformers affecting the appearance of its H-7 may be due to the movement of the bonds
of the molecule around C-6. When the 1H NMR spectrum of 5 was obtained in CD2Cl2
as a solvent, this complex signal was observed as a clear double doublet as expected at δ
7.35. The complete 1H and 13C data for iso-icetexone (5) recorded in CD2Cl2 are included
in the experimental section. Additionally, when compound 5 was placed on the heating
block of the Fisher-Johns apparatus to obtain its melting point, a color change from yellow
to orange began to be observed around 160 degrees Celsius, which was completed when
the temperature reached 190 degrees. When the 1H NMR spectrum of the orange crystals
recovered from the Fisher-Johns was obtained, the iso-icetexone (5) signals were no longer
observed and the spectrum corresponds to icetexone (7), indicating isomerization of 5 to 7
under heating conditions. This transformation could be considered as a [1,5] H sigmatropic
rearrangement, which is allowed under thermal conditions, as indicated in Scheme 1.
This isomerization takes place slowly, even at room temperature, as shown in a series of
1H NMR spectra taken over several months (see Supplementary Materials Figure S29).
After each determination, the solvent was evaporated, and the dried sample was left at
room temperature until the next one. As can be observed, over 10 months, the signals
corresponding to the vinylic hydrogen atoms H-6 and H-7 at δ 6.43 and 6.86, respectively,
and the hydrogen of -OH at C-12 (δ 7.11) corresponding to icetexone (7), appeared and
increased, while the iso-icetexone signals decreased. A similar behavior was observed for
compound 6, since when it was heating in the Fisher-Johns apparatus, it was transformed
into the diterpenoid 8. Isomerization started at 175 ◦C and completed at 185 ◦C. A similar
mechanism could be proposed for this rearrangement.
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Scheme 1. Thermically induced transposition of iso-icetexone (5) to icetexone (7) through a [1,5] H
sigmatropic reaction.

Compounds 4 and 6–9 have been previously isolated from different populations of S.
ballotiflora Benth (section Tomentellae). Compounds 6,7,11,14-tetrahydro-7-oxo-icetexone
(4) and 7α-acetoxy-6,7-dihydroicetexone (9) were isolated from a population collected in
the State of Nuevo Leon (Mexico). Both compounds showed significant antiproliferative
activity in a panel of six human cancer cell lines [28]. Samples collected in the Municipality
of Guadalcázar in the State of San Luis Potosi (Mexico) led to the isolation of 19-deoxo-
iso-icetexone (6), icetexone (7) and 19-deoxo-icetexone (8). Compound 6 proved to be very
active against Hela cells approaching cis-platin, while compounds 7 and 8 showed inhibition
of the production of NO and decreased the concentration of pro-inflammatory cytokine in
macrophages, and compound 8 showed antidiarrheal activity in a rodent model [30]. Even
though icetexone (7) was the first isolated icetexane [9(10 → 20)-abeo-abietane] diterpenoid
originally isolated from Salvia ballotiflora several years ago, its absolute configuration and
the full assignments of its 1H and 13C NMR were only recently published [31]. Compounds
5 and 7 exhibited potent antichemotactic and leishmanicidal activities [29]. Ferruginol (11)
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was obtained several years ago from Podocarpus ferruginea (Podocarpaceae) [32] but is also
present in plants of the Cupressaceae, Verbenaceae and Lamiaceae families and has shown
a plethora of biological activities [33].

Although the diterpenoid content found for S. carranzae resembles that found for
Salvia ballotiflora [28,31], it is strongly related to that described for the Mexican species
of section Erythrostachys [20], chemically studied up to now for the following species:
S. sessei, S. pubescens and S. regla. Sessein (10), isolated from S. carranzae, is a diterpene
lactone originally isolated from S. sessei [34,35] and described in two populations of S.
regla [36,37]. No other sources of sessein (10) have been described up to now. On the other
hand, icetexone (7), as well as 19-deoxo-icetexone derivatives, such as 2–3, 6 and 8, found
in S. carranzae, have also been isolated from S. pubescens [38], thus reinforcing the chemical
relationship between S. carranzae and the species of section Erythrostachys. S. carranzae
shares with the members of section Erythrostachys ovate-acuminate leaves and flowers
with the following characteristics: glabrous to rarely pilose style, red calyx and corolla, the
latter ± 5 cm long with an infundibular, epapillated, non-invaginate tube and subequal
lips, with the lower one narrow. In its original description, it was compared with species of
the Fulgentes section, particularly with S. fulgens Cav., but it differs in a very marked way
in its type of diterpenoids produced. S. carranzae was also compared with species from
sections Blakea, Glareosae, Brandegeei and Nobiles, but it does not completely coincide with
any of them [19].

S. carranzae has not yet been included in any molecular phylogenetic analyses, and
thus, its exact relationship is not known. We suspect that it belongs to the basal Ery-
throstachys clade, which also includes species of sections Blakea and Glareosae. Like S. carran-
zae, members of this clade have styles with a longer lower branch than the upper branch, a
characteristic of the species already mentioned by the present authors [19]. It is necessary to
carry out chemical studies in the Blackea and Glareosae sections, to compare the diterpenoid
content of representative species of both sections with that of S. carranzae. The results
described in this work support the inclusion of S. carranzae in the section Erythrostachys;
however, a definitive solution to the taxonomic position of this new species could be found
when phylogenetic studies are carried out. It is pertinent to clarify that recent works have
shown that most of the sections proposed by Epling et al. for the Calosphace subgenus do
not phylogenetically represent related groups [39,40].

2.2. Biological Activity
2.2.1. Antiproliferative Activity

The family Lamiaceae is one of the richest sources of diterpenoids, with some of them
exhibited promising anticancer activity [41]. Diterpenes of the abietane and icetexane type
have demonstrated interesting antiproliferative activities, such as anastomosin from Salvia
anastomosans and S. ballotiflora, as well as compound 9 (6,7-dihydro-7α-acetoxy icetexone)
from S. ballotiflora [28], which is also present in S. carranzae. These results motivated us
to evaluate the major products 5, 6 and 8, isolated from S. carranzae in a panel of human
cancer cell lines. The primary screening for the inhibition of cancer cell development by
compounds 5, 6 and 8 is shown in Table S1 (Supplementary Materials). At a concentration
of 25 µM, compounds 5 and 6 were shown to be highly cytotoxic across the entire panel,
which included a normal cell line derived from a monkey kidney (COS-7). When tested
at a concentration of 1 µM, compound 5 exhibited strong inhibition of cell lines U251,
K562, HCT-15 and SKLU-1 and showed moderate toxicity for healthy monkey kidney cells
(COS-7). On the other hand, product 6 demonstrated high activity at 1 µM against K562 and
SKLU-1 cell lines, with minimal cytotoxicity against COS-7 cells. Compound 8, however,
did not show cytotoxicity in the entire panel.

Table 2 shows the results of the IC50 determination of compounds 5 and 6 against cell
lines U251, K562, HCT-15, SKLU-1 and COS-7, compared with adriamycin, as a positive
control. Compound 5 was shown to be active in all cell lines tested, although its selectivity
index, calculated using the COS-7 line as a normal cell line, indicates low selectivity. It is
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interesting to note that the two active diterpenes 5 and 6 have a 1,4-diene system between
carbons C-7 to C-20, conferring a quinoid character to these products. Similar functionality
can be found in anastomosin, an icetexane-type diterpene whose antiproliferative activity
approaches that of adriamycin and was originally isolated from Salvia anastomosans and
recently, from S. ballotiflora [28].

Table 2. IC50 (µM) values of antiproliferative activity for compounds 5 and 6.

Compound IC50 (µM) (SI)

U251 K562 HCT-15 SKLU-1 COS-7
5 0.43 ± 0.01 (2.8) 0.45 ± 0.01 (2.7) 0.84 ± 0.07 (1.4) 0.73 ± 0.06 (1.7) 1.21 ± 0.1
6 1.34 ± 0.04 (0.7) 1.29 ± 0.06 (0.7) 1.03 ± 0.10 (0.9) 0.95 ± 0.09 (1.0) 0.91 ± 0.05

Adriamycin 0.08 ± 0.003 (3.1) 0.20 ± 0.02 (12.5) 0.16 ± 0.01 (1.6) 0.20 ± 0.02 (1.3) 0.25 ± 0.009

Results represent the mean ± SD of at least three different experiments; U251 = human glioblastoma;
K562 = human chronic myelogenous leukemia; HCT-15 = human colon cancer; SKLU-1 = human lung ade-
nocarcinoma; COS-7 = normal monkey kidney; SI = selectivity index calculated as the quotient of the IC50 of
COS-7/IC50 of cancer cell lines.

2.2.2. Phytotoxic Activity

Plants of the genus Salvia in Mexico are dominant species in their habitat, with ev-
ident allelopathic effects, making them an ideal source for the extraction of secondary
metabolites with potentially useful phytotoxic effects. Recently, the phytotoxic effect of
exudates from several Salvia species was studied, showing strong inhibitory effects on
the germination of Papaver rhoeas and Avena sativa [42]. These facts added to the need for
new herbicides for sustainable agricultural production in Mexico, which motivated us
to evaluate the phytotoxic effect of some of the isolated products of S. carranzae on the
germination and elongation of the roots of four species of plants considered in Mexico as
weeds: the dicotyledons Trifolium pratense, Medicago sativa and Amaranthus hypochondriacus
and the monocotyledon Panicum miliaceum. Compounds 5–7, 9 and 10 were tested for
their inhibitory effects on the germination and elongation of the roots on the previously
mentioned model plants.

While compound 5 showed moderate inhibition on A. hypochondriacus root elongation,
with a 54.82 ± 0.05% of inhibition at 100 mg/mL, compound 10 showed weak inhibition
on A. hypochondriacus (35.54 ± 0.11) and P. miliaceum (35.20 ± 0.11). None of the tested
products showed activity in the inhibition of the germination of the plants used in this
bioassay (Table S2, Supplementary Materials).

3. Materials and Methods
3.1. General Experimental Procedure

Melting points were measured using a Fisher-Johns apparatus (Fisher Scientific Com-
pany, Pittsburgh, PA, USA) and are uncorrected. Optical rotations were measured on
a PerkinElmer 323 polarimeter (PerkinElmer Inc., London, UK). Ultraviolet absorptions
were recorded on a Shimadzu UV 160U spectrophotometer (Kyoto, Japan). ECD spectra
were recorded on a JASCO-1500 polarimeter (JASCO Inc., Easton, MD, USA) in MeOH
or CHCl3. 1D and 2D NMR experiments were performed on a Bruker Advance III spec-
trometer (Bruker Corporation, Billerica, MA, USA) at 700 MHz for 1H and 175 MHz for
13C. CDCl3, CD2Cl2 or CD3OD were used as solvents as indicated, and chemical shifts
were referred to a residual solvent (CHCl3:δH = 7.26, δC = 77.16; CH2Cl2:δH = 5.32, δC = 54;
CH3OH:δH = 3.31, δC = 49). IR spectra were obtained on an FT-IR NICOLET IS-50 spectrom-
eter (Thermo Fisher Scientific Inc., Waltham, MA, USA). HR-DART-MS was determined
on an AccuTOF JMS-T100LC mass spectrometer (Jeol Ltd., Tokyo, Japan). Silica gel with a
230–400 Macherey-Nagel mesh (Düren, Germany), precoated TLC plates (SIL G-100 UV254;
Macherey-Nagel, Düren, Germany) and Sephadex LH-20 (Pharmacia Biotech AB, Uppsala,
Sweden) were used for column chromatography. GC–MS was performed using an Agilent
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Technologies (7890B) gas chromatograph equipped with a mass detector (Agilent 5977A;
Agilent, Santa Clara, CA, USA).

3.2. Plant Material

S. carranzae was collected in the Municipality of Xilitla, San Luis Potosí, Mexico, in
October 2018. Plant material was identified by Sergio Zamudio and Brenda Y. Bedolla-
Garcia and deposited in the IEB herbarium of the Instituto de Ecología, A. C., Centro
Regional del Bajío (Voucher IEB-266883).

3.3. Extraction and Isolation

Dried and powdered leaves of S. carranzae (300 g) were extracted by percolation with
CH2Cl2 (1.5 L). The solvent was eliminated by distillation and dried by reduced pressure to
yield 16.0 g of residue. The crude extract was subjected to column chromatography (CC) on
silica gel using petrol/EtOAc (85:15) as the eluent to obtain 62 primary fractions (225 mL
each). Compound 11 and α-tocopherol were identified by GC–MS from fraction 2.

Compound 8 (40.0 mg) was obtained as orange crystals from fraction 5 (237.7 mg),
and compound 6 (498.0 mg) was identified from fraction 6 (729.9 mg) as yellow powder.
Fraction 17 (338.2 mg) was separated by column chromatography on silica gel, using a
mixture of CH2Cl2/EtOAc/MeOH/H2O (95:4:0.6:0.4) to yield compounds 5 (40.1 mg)
and 7 (56.4 mg) as yellow and red crystals, respectively. Fractions 27–42 were combined
according to their chromatographic profiles to obtain 450.4 mg and further fractionated on a
Sephadex LH-20 column, using MeOH as the eluent, to obtain 27 eluates (4 mL each), which
were combined into five major fractions (A–E) according to their chromatographic profile.
Fraction B (140.3 mg) was purified by CC on silica gel using petrol/EtOAc/MeOH/H2O
(60:36:3:1) to obtain 27 eluates (25 mL each), which were combined into four major fractions
(BA–BD) according to their chromatographic profile. Fraction BB (18.1 mg) was purified
by preparative TLC using petrol/EtOAc/MeOH/H2O (67:30:2:1) as the mobile phase to
give compound 1 (5.2 mg). Fraction BC (24.8 mg) was purified by preparative TLC using
petrol/EtOAc/MeOH (77:19:4) as the mobile phase to give compound 2 (7.5 mg). Fraction
BD (26.8 mg) was subjected to CC using petrol/EtOAc (100:0–0:100) to obtain 34 eluates
(20 mL each), which were combined into three major fractions (BDA–BDC). Fraction
BDB (15.3 mg) was subjected to preparative TLC using CH2Cl2/petrol/EtOAc/MeOH)
(85:13.5:1.0:0.5) as the mobile phase to give compounds 9 (6.7 mg) and 10 (5.9 mg) as
yellow powders.

Primary fractions 43–47 were combined according to their chromatographic profiles
(463.9mg) and further fractionated over a Sephadex LH-20 column, using CH2Cl2/MeOH
(8:2) as the eluent, to obtain 18 eluates. Fractions 10–11 were combined, obtaining a yellow
powder (21 mg), which was subjected to preparative TLC using CH2Cl2/acetone (9:1) to
obtain compounds 3 (7.1 mg) and 4 (8.2 mg).

Compound 1, Yellow powder; m.p. 178–180 ◦C; [α]D-287 (c 0.001, MeOH); UV (MeOH)
λmax (log ε) 214 (3.99), 243 (3.64), 300 (3.85), 348 (3.62), 369 (3.69) nm; IR (CHCl3) νmax
3593, 3500, 3352, 2962, 2877, 1776, 1601, 1422, 1323, 1289, 1169, 1093, 935, 903 cm−1; 1H
and 13C NMR (CDCl3) (see Table 1); HR-DART-MS m/z 377.1586 [M + H]+ (calculated for
C20H25O7, 377.1600).
Compound 2, Yellow powder; m.p. 140–142 ◦C; [α]D-160 (c 0.0006, MeOH); UV (MeOH)
λmax (log ε) 215 (4.12), 244 (3.71), 302 (3.83), 367 (3.63) nm; IR (CHCl3) νmax 3591, 3501, 3319,
2960, 1936, 2874, 1775, 1711, 1599, 1423, 1327, 1289, 1168, 1118, 1019, 919, 193 cm−1; 1H
and 13C NMR (CDCl3) (see Table 1); HR-DART-MS m/z 363.1808 [M + H]+ (calculated for
C20H27O6, 363.1804).
Compound 3, Yellow powder; m.p. 285–290 ◦C; [α]D-89 (c 0.0021, MeOH); UV (MeOH)
λmax (log ε) 208 (3.78), 242 (3.12), 295 (3.63), 352 (2.94) nm; IR (ATR) νmax 3317, 3083, 2933,
2870, 1597, 1570, 1462, 1379, 1319, 1245, 1162, 1146, 1119, 1013, 994, 969, 901, 807, 189, 698,
641, 596, 567, 533, 498, 422 cm−1; 1H and 13C NMR (MeOD) (see Table 1); HR-DART-MS
m/z 347.1853 [M + H]+ (calculated for C20H27O5, 347.1858).
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Compound 5, Yellow powder; m.p. 275–276 ◦C; [α]D +352 (c 0.0013, MeOH); UV (MeOH)
λmax (log ε) 207 (4.07), 277 (3.91), 313 (3.92) nm; IR (CHCl3) νmax 3383, 2965, 2938, 2879,
1775, 1670, 1642, 1614, 1397, 1382, 1336, 1276, 1193, 1117, 1018, 922 cm−1; 1H NMR (CD2Cl2,
700 MHz) δ 2.11 (1H, dd, J = 13.2, 5.9, H-1a), 1.50 (1H, m, H-1b), 1.89 (1H, dt, J = 11.7, 5.8,
H-2a), 1.78 (1H, m, H-2b), 1.73 (1H, m, H-3a), 1.54 (1H, m, H-3b), 2.08 (1H, d, J = 14.0, H-5),
2.67 (1H, dd, J = 14.0, 9.5, H-6a), 2.02 (1H, dt, J = 14.0, 5.2, H-6b), 7.35 (1H, dd, J = 9.5, 5.2,
H-7), 3.51 (1H, hep, J = 7.1, H-15), 1.25 (3H, d, J = 7.2, H-16), 1.24 (3H, d, J = 7.2, H-17), 1.21
(3H, s, H-18), 7.24 (1H, s, H-20), 7.58 (1H, s, 12-OH; 13C NMR (CD2Cl2, 700 MHz) δ 34.8
(CH2-1), 20.1 (CH2-2), 35.8 (CH2-3), 48.4 (C-4), 57.7 (CH-5), 25.8 (CH2-6), 143.2 (CH-7), 129.0
(C-8), 132.9 (C-9), 86.0 (C-10), 182.7 (C-11), 155.1 (C-12), 132.7 (C-13), 184.1 (C-14), 25.7 (CH-
15), 19.6 (CH3-16), 19.8 (CH3-17), 17.6 (CH3-18), 178.0 (C-19), 140.6 (CH-20). HR-DART-MS
m/z 343.1548 [M + H]+ (calculated for C20H23O5, 343.1545).

3.4. CG-MS Analysis

For GC–MS, 1 µL of the sample was dissolved in CH2Cl2 and injected into an Agilent
Technologies (7890B) gas chromatograph equipped with a mass detector (Agilent 5977A,
Agilent Technologies, Santa Clara, CA, USA), which operated using helium as a carrying
gas, with a flow of 1 mL min−1, with a splitless injection at a temperature of 260 ◦C in
an HP5 MS non-polar capillary column (Agilent Technologies, Santa Clara, CA, USA)
(30 m × 0.25 mm I.D. × 0.25 µm film), under the following conditions: initial temperature
of 40 ◦C, followed by an 8 ◦C min−1 ramp in order to reach a temperature of 300 ◦C during
6.5 min. The mass spectrometer (Agilent 5977A; Agilent Techologies, Santa Clara, CA,
USA) operated at a flow of 1 mL min−1, with an ionization voltage of 70 eV, at an interface
temperature of 230 ◦C, in SCAN mode and at a mass interval of 30–700 mz−1. The mass
spectra obtained were compared with the spectra from the database NIST version 14.

3.5. Computational Methods

3D models for compounds 1–3 were built and their geometry was optimized using
a semiempirical method (PM3), as implemented in Spartan’10. Conformational analysis
was performed using the same software and force field. All conformers were filtered and
checked for redundancy. Subsequently, the conformers were minimized and optimized,
and thermochemical properties were obtained with Gaussian 09 using a DFT force field at
the B3YLP/DGZVP level of theory for optimization and frequency. ECD calculations in
MeOH solution were carried out by employing a TD-SCF force field at the B3LYP/6-31G(d)
theory level, with the default solvent model. The calculated excitation energy (nm) and
rotatory strength (R) in dipole velocity (Rvel) form were simulated into an ECD curve using
Equation (1), as implemented in the SpecDis software (Version 1.71), where E0k and R0k are
the transition energy and rotatory strength of kth electronic transition, respectively, and σ

is the exponential half width [43,44].

∆ε =
1

2.296 × 10−39 × 1
σ
√

π
∑
k

E0kR0ke

[
−
{

E − E0k
σ

}2
]

(1)

All calculations were performed on the HP Cluster Platform 3000SL “Miztli”, a parallel
supercomputer with a Linux operating system, containing 25,312 cores and a total of
45,000 GB of RAM.

3.6. Cytotoxicity Assay

Compounds 5, 6 and 8 were evaluated in vitro against human lung adenocarcinoma
(SKLU-1), breast cancer (MCF-7), human prostate cancer (PC-3), human colon cancer
(HCT-15), human chronic myelogenous leukemia (K562), human glioblastoma (U251)
and healthy monkey kidney (COS-7) cell lines, which were supplied by the National
Cancer Institute (USA) and American Type Culture Collection (ATCC). The human tumor
cytotoxicity was determined using the protein-binding dye sulforhodamine B (SRB) in
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a microculture assay to measure cell growth, and the assay was performed as reported
in [45].

3.7. Phytotoxic Assay

Compounds 5–7, 9 and 10 were tested for their inhibitory effects on the elongation
of the roots of the seedlings of three dicotyledonous species, Trifolium pratense (Fabaceae)
(red clover, peavine clover and cow grass), Medicago sativa (Fabaceae) (California clover
and buffalo grass) and Amaranthus hypochondriacus (Amaranthaceae) (amaranth), and one
monocotyledonous plant, Panicum miliaceum (Poaceae) (red millet). Seeds were obtained
from Casa Cobo, S.A. de C.V. (Central de Abastos, Mexico City, Mexico). The assay was
performed as reported in Refs. [46,47]. Briefly, a Petri dish bioassay was performed to
evaluate the phytotoxic effects of different treatments on seedling growth. The compounds
were evaluated at 100 µg/mL by dilution in agar (1%). The compounds were dissolved
in MeOH, not exceeding 0.5%, and added to ~40 ◦C sterile agar in 5 cm Petri dishes
before its solidification. Rival [glyphosate, N-(phosphonomethyl)glycine] (Monsanto, Sao
Paulo, Brazil) at 200 µg/mL was used as a positive control; agar (1% with 0.5% MeOH)
and pure agar (1%) were used as negative controls. Thirty seeds of every plant species
were sown onto the agar in four replicates in a completely randomized design. The agar
plates were placed in a germination chamber at 27 ◦C under complete darkness. After
treatment, germination of the seed and root growth were measured for A. hypochondriacus
(24 h) and T. pratense, M. sativa and P. miliaceum (48 h). Experimental results were analyzed
by analysis of variance (ANOVA) and Tukey’s statistical tests utilizing GraphPad Prism
version 6.01 statistical computer software (GraphPad Software, Inc., La Jolla, CA, USA).
Data are represented as the mean ± standard deviation (SD). A p-value of ≤0.05 (*) was
employed to indicate statistical significance.

4. Conclusions

From the dichloromethane extract of S. carranzae, three unpublished icetexane diter-
penoids (1–3), named salvicarranzanolide (1), 19-deoxo-salvicarranzanolide (2) and 19-
deoxo-20-deoxi-salvicarranzanolide (3), were isolated together with six known icetexane
types (4–9), two abietanes (10–11) and α-tocopherol. Compounds 5 and 6 showed to have
significant activity with an IC50 comparable with that of adriamycin, but a low selectivity
index (SI) on U251, K562, HCT-15 and SKLU-1 human cancer cell lines. While none of
the tested compounds (5–7 and 9, 10) showed activity in the inhibition of germination,
compound 5 showed moderate inhibition on A. hypochondriacus root elongation, and the
icetexane 10 showed weak inhibition of A. hypochondriacus and P. miliaceum root elongation.

The chemical profile found for S. carranzae reinforces its chemical relationship with
species of the section Erythrostachys. It is necessary to carry out more chemical and phy-
logenetic studies on S. carranzae and its related species to establish its most adequate
taxonomic classification.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29061226/s1, Figures S1–S28: 1D, 2D NMR and HR-MS
spectra of compounds 1–3 and 5. Figure S29: Isomerization from isoicetexone to icetexone at room
temperature; Table S1: Primary screening of compounds 5, 6 and 8 on antiproliferative activity;
Table S2: Inhibitory growth activity of compounds 5–7, 9 and 10 on the root elongation and seed
germination of Amaranthus hypochondriacus, Trifolium pratense, Medicago sativa and Panicum miliaceum.
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