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Abstract: Antimicrobial resistance has emerged as a significant threat to public health, prompt-
ing novel combinations comprising of natural sources such as essential oil compounds with con-
ventional antibiotics. This study aimed to determine the possible interactions between six essen-
tial oil compounds with eight antibiotics/antifungals against six pathogens (Staphylococcus aureus,
Staphylococcus epidermidis, Pseudomonas aeruginosa, Acinetobacter baumannii, Cutibacterium acnes, and
Candida albicans) commonly implicated in skin infections. The minimum inhibitory concentrations
(MICs) for the antibiotics and essential oil compounds were evaluated singularly and in combination
using the broth microdilution assay. The fractional inhibitory concentrations (FIC) were calculated
to determine the interactive profile of the combinations. The synergistic interactions (FIC ≤ 0.5)
were further analysed at varying ratios and depicted on isobolograms. The toxicity of the synergistic
combinations was determined using the brine shrimp lethality assay. Eight synergistic interactions
were identified against the selected Gram-positive and P. aeruginosa pathogens, and the combinations
also demonstrated a reduced toxicity. The combination of amoxicillin and eugenol demonstrated the
lowest toxicity (LC50 = 1081 µg/mL) and the highest selectivity index (14.41) when in a 70:30 ratio.
This study provides insight into the in vitro antimicrobial interactions of essential oil compounds
and conventional antibiotics that can form a basis for newer therapies.

Keywords: skin; toxicity; antimicrobial; minimum inhibitory concentration; selectivity index; synergy

1. Introduction

Skin and soft tissue infections (SSTIs) are one of the most common types of infections
in humans and occur in approximately 7–10% of all hospital patients [1,2]. These occur
when there is a breakage in the epidermis layer that results in the microbial invasion of the
skin or soft tissue, causing a cascade of biochemical reactions due to interactions between
the host defences and pathogens [3,4]. The two main categories are uncomplicated and
complicated skin infections [5]. Uncomplicated infections include superficial infections
such as cellulitis or abscesses, which rarely require antibiotics and are often self-limiting [6].
In contrast, complicated infections are deep-tissue infections such as necrotizing fasciitis,
which require broad-spectrum empiric antibiotic therapy or surgical intervention [5]. Al-
though complicated infections can be treated with antibiotics, most treatment regimens are
prolonged, contributing to increased antimicrobial resistance [7].

The injudicious use of antibiotics has allowed the dissemination of antibiotic resistance
throughout the community and hospital settings, placing an ever-increasing burden on
the healthcare system [8,9]. According to a recent review by Murray et al. [10], approxi-
mately 4.95 million deaths occurred in 2019 due to antimicrobial resistance. The six leading
pathogens were the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter) species [11]. Moreover,
these pathogens are frequently linked to skin infections, with S. aureus being responsible for
35–50% of all skin infections [12]. Antibiotic resistance amongst these pathogens has increased
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substantially, with approximately 20–100% of methicillin-resistant S. aureus (MRSA) clinical
isolates showing high resistance to several antibiotic classes, including glycopeptides [10,13].
Gram-negative pathogens such as A. baumannii have also exhibited widespread resistance,
with approximately 90% of clinical isolates being resistant to meropenem [14–16], whilst
P. aeruginosa’s resistance rates have increased by between 15 to 30%, with some isolates show-
ing extensively drug-resistant (XDR) profiles [17]. Antifungal resistance has also emerged as
another public health crisis [18,19]. Recent epidemiological data suggest that fungal infections
contribute to approximately 13 million infections annually with roughly 1.5 million deaths
worldwide [20,21]. Candidiasis is the most common fungal infection, with C. albicans account-
ing for 70–90% of all infections [18]. The continuous increase in antimicrobial resistance in
contrast to the slow development of new antimicrobial agents has expedited the need for
alternative approaches, such as the investigation of natural antimicrobial agents from essential
oils and related compounds.

Essential oils (EOs) are complex natural mixtures of bio-active compounds produced
by plants as secondary metabolites and have been used for centuries to treat various
diseases and ailments [22,23]. An EO is composed of between 20 and >200 different
chemical compounds with varying molecular structures and can be broadly classified into
three groups: terpenes, terpenoids, and non-terpene-derived compounds called phenyl-
propanoids [24,25]. These essential oil compounds (EOCs) are responsible for the phar-
macological properties of an EO and, more specifically, their antimicrobial properties [24].
EOCs have been studied independently and are actively being sought as novel chemical
entities for antimicrobial development [25,26].

In the past decade, antimicrobial combination therapy has become the mainstay for
many clinically problematic infections requiring higher-order combinations, especially
for nosocomial infections [11,17]. Many authors have argued and even alluded to the hy-
pothesis that EOCs could be combined with conventional antibiotics as a type of syncretic
combination [27–29]. Numerous studies have documented in vitro interactions of combi-
nations between EOCs and conventional antibiotics with varying outcomes, which have
been reviewed extensively [22,30–32]. However, there are limited studies investigating
combinations against skin pathogens that have elucidated the type of interactions that can
occur between the EOCs and any conventional antibiotic at varying ratios [33]. Since EOCs
elicit broad-spectrum antimicrobial activity via multitarget mechanisms, combinations with
conventional antibiotics could be a novel approach to reduce or attenuate resistance in
pathogens, allowing ineffective antibiotics to be reclaimed [23].

Despite the overwhelming evidence which supports the antimicrobial properties
of EOCs, the toxicity of these compounds remains understudied and has been recom-
mended for further investigation [34]. Many EOCs elicit a high inherent toxicity due to
their lipophilic nature, which causes damage to cell membranes and induces oxidative
stress [35]. Several reviews have discussed various methods, such as formulating EOCs into
nano-emulsions or adding adjunctive agents which can reduce the toxicity of individual
EOCs [36,37], with only a handful of studies investigating the overall toxicity of these
combinations [38,39].

This study evaluated the effects of combining essential oil compounds with conven-
tional antibiotics against common skin pathogens to elucidate the effectiveness of these
combinations with regard to their overall antimicrobial effect and toxicity.

2. Results and Discussion
2.1. Antimicrobial Analysis

The MIC results for conventional antimicrobials and essential oil compounds are
presented in Table 1. For the conventional antibiotics, Gram-positive bacteria showed a
greater susceptibility than the Gram-negative bacteria, which is a common observation
due to physiological differences between the two types of bacteria [11]. Cutibacterium acnes
showed the greatest susceptibility to conventional antibiotics, particularly erythromycin
(0.12 µg/mL) and meropenem (0.20 µg/mL). All the Gram-positive bacteria demonstrated
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sensitivity to miconazole, with MIC values ranging from 0.63 to 1.88 µg/mL, which is
in agreement with several previous studies [40,41]. Miconazole is an imidazole typically
used for superficial cutaneous fungal infections [42]. Unlike other azole antifungal drugs,
miconazole elicits antibacterial activity that may be effective in polymicrobial infections [43].
In contrast, the Gram-negative bacteria showed no susceptibility to miconazole, with some
studies demonstrating MIC values > 1000 µg/mL [41,43]. For C. albicans, miconazole
(0.78 µg/mL) showed better activity when compared to nystatin (1.56 µg/mL), which had
also been demonstrated in previous studies [44].

Table 1. The mean MIC values (µg/mL) and standard deviation (±SD) of conventional antimicrobials
and essential oil compounds against the pathogens (n = 6).

Conventional
Antibiotic

Micro-Organisms

S. aureus
(ATCC 25923)

S. epidermidis
(ATCC 12228)

C. acnes
(ATCC 11827)

P. aeruginosa
(ATCC 27853)

A. baumannii
(ATCC 19606)

C. albicans
(ATCC 10231)

Amoxicillin 0.90 ± 0.13 0.51 ± 0.16 0.24 ± 0.09 NS 1 NS NS
Ciprofloxacin 1.06 ± 0.24 0.94 ± 0.36 1.25 ± 0.00 0.57 ± 0.28 0.52 ± 0.16 NS
Erythromycin 0.63 ± 0.00 0.42 ± 0.22 0.12 ± 0.06 NS NS NS
Gentamicin 1.41 ± 0.18 3.13 ± 0.00 1.56 ± 0.00 0.78 ± 0.00 2.73 ± 0.78 NS
Meropenem 3.13 ± 0.00 3.52 ± 0.45 0.20 ± 0.00 0.78 ± 0.00 1.53 ± 0.31 NS
Tetracycline 1.25 ± 0.00 1.25 ± 0.00 0.70 ± 0.09 18.75 ± 7.21 3.91 ± 1.91 NS
Miconazole 1.88 ± 0.96 1.72 ± 0.64 0.63 ± 0.00 NS NS 0.78 ± 0.29
Nystatin NS NS NS NS NS 1.56 ± 0.63

Essential Oil Compounds

α-Pinene 6000 ± 0.00 4000 ± 0.00 1500 ± 577 3750 ± 250 4000 ± 0.00 1500 ± 577
γ-Terpinene 4000 ± 0.00 3000 ± 1154 1500 ± 577 3500 ± 1788 4000 ± 0.00 2500 ± 1000
±Linalool 2750 ± 1035 4000 ± 0.00 1500 ± 547 3000 ± 1673 2000 ± 0.00 1250 ± 500
Eugenol 1667 ± 517 2000 ± 0.00 1000 ± 0.00 1500 ± 837 1500 ± 837 750 ± 288
Carvacrol 2000 ± 0.00 750 ± 274 500 ± 0.00 750 ± 478 1000 ± 0.00 500 ± 0.00
Cinnamaldehyde 417 ± 129 1000 ± 250 208 ± 65.0 500 ± 0.00 500 ± 0.00 125 ± 0.00
Negative control >8000 ± 0.00 >8000 ± 0.00 >8000 ± 0.00 >8000 ± 0.00 >8000 ± 0.00 >8000 ± 0.00
Culture control >8000 ± 0.00 >8000 ± 0.00 >8000 ± 0.00 >8000 ± 0.00 >8000 ± 0.00 >8000 ± 0.00

1 NS—not susceptible.

All the EOCs showed varying degrees of antimicrobial activity against all the ref-
erence strains, with cinnamaldehyde (MIC 458 µg/mL) being the most effective. These
results agree with previous studies that have discussed that the variability in an EOC’s
antimicrobial activity is primarily based on the chemical nature, chirality, and hydropho-
bic/hydrophilic nature of the compound [27,45,46]. Cinnamaldehyde (458 µg/mL) demon-
strated better antimicrobial effects compared to eugenol, which differs from previous stud-
ies [47], with the consensus being that eugenol is more effective than cinnamaldehyde and
exhibits a higher activity against Gram-negative bacteria [48]. These observations may im-
ply that certain EOCs are better suited for a specific type of micro-organism. Both α-pinene
and γ-terpinene showed a higher antimicrobial activity against C. albicans than the bacteria,
which had also been demonstrated by previous studies [49]. However, Silva et al. [50]
showed that α-pinene had no activity against C. albicans and suggested that racemic mix-
tures of both enantiomers would be more effective. Both the negative and culture control
did not affect the growth of the bacterial and fungal cultures.

2.2. Combinations

The results for the 1:1 combinations against the Gram-positive bacteria are presented in
Table 2. A total of 126 combinations were studied with seven (5%) being synergistic, 68 (54%)
being additive, and 51 (40%) demonstrating non-interactive interactions. No antagonistic
interactions were observed. Four synergistic interactions were observed against S. aureus:
amoxicillin with carvacrol (ΣFIC 0.42), gentamicin with carvacrol (ΣFIC 0.36), miconazole
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with carvacrol (ΣFIC 0.33), and miconazole with cinnamaldehyde (ΣFIC 0.32). Two syner-
gistic interactions were noted against S. epidermidis: erythromycin with cinnamaldehyde
(ΣFIC 0.44) and miconazole with cinnamaldehyde (ΣFIC 0.07). For C. acnes, combining
amoxicillin with eugenol resulted in synergy (ΣFIC 0.30). The synergistic interactions
highlight the potential of carvacrol and cinnamaldehyde against Gram-positive bacteria.
Previous studies had elucidated similar results involving carvacrol and cinnamaldehyde
against S. aureus and S. epidermidis [51,52]. However, in contrast, there are limited studies
investigating C. acnes, which may be attributed to its low virulence potential [53]. The
investigation of miconazole’s anti-staphylococcal properties is often overlooked in the
literature, with no previous studies investigating the interactive profiles of miconazole
and EOCs against Gram-positive bacteria. From the results observed, it was noted that
several interactions were additive (28%), demonstrating some feasibility for inclusion.
Several additive interactions were noted for combinations involving meropenem against all
Gram-positive bacteria studied, possibly due to meropenem’s strong antibacterial activity
and high barrier to resistance [54].

Table 2. The FIC values for combinations of conventional antibiotics (A) and EOCs (B) against
Gram-positive bacteria (n = 4).

Conventional
Antibiotic

Essential Oil
Compounds

S. aureus
(ATCC 25923)

S. epidermidis
(ATCC 12228)

C. acnes
(ATCC 11827)

FIC(A) 1 FIC(B) 2 ΣFIC 3 FIC(A) FIC(B) ΣFIC FIC(A) FIC(B) ΣFIC

Amoxicillin

α-pinene 0.69 0.33 1.02 0.62 0.25 0.87 0.50 0.25 0.75
γ-terpinene 0.69 0.50 1.19 0.92 0.50 1.12 0.67 0.33 1.00
±Linalool 0.69 0.73 1.42 0.62 0.25 0.87 0.67 0.33 1.00
Eugenol 0.35 0.60 0.85 0.31 0.25 0.56 0.17 0.13 0.30

Carvacrol 0.17 0.25 0.42 0.31 0.67 0.98 0.33 0.50 0.83
Cinnamaldehyde 0.17 1.20 1.37 0.31 0.50 0.81 0.25 0.90 1.15

Ciprofloxacin

α-pinene 0.59 0.33 0.92 0.67 0.50 1.17 0.50 1.33 1.85
γ-terpinene 0.29 0.25 0.54 0.33 0.33 0.66 0.50 1.33 1.83
±Linalool 0.59 0.73 1.32 0.33 0.25 0.58 0.50 1.33 1.83
Eugenol 0.59 1.20 1.79 0.50 0.75 1.25 0.25 1.00 1.25

Carvacrol 0.29 0.50 0.79 0.17 0.67 0.84 0.13 1.00 1.13
Cinnamaldehyde 0.15 1.20 1.35 0.17 0.50 0.67 0.06 1.20 1.26

Erythromycin

α-pinene 0.50 0.17 0.67 2.99 1.00 3.99 0.50 0.13 0.63
γ-terpinene 0.50 0.25 0.75 1.50 0.67 2.17 0.67 0.17 0.84
±Linalool 0.50 0.37 0.87 1.50 0.50 2.00 0.67 0.17 0.84
Eugenol 0.50 0.60 1.10 1.12 0.75 1.87 1.00 0.38 1.38

Carvacrol 0.50 0.50 1.00 0.75 1.33 2.08 0.67 0.50 1.17
Cinnamaldehyde 0.13 0.60 0.73 0.19 0.25 0.44 0.67 1.20 1.87

Gentamicin

α-pinene 0.44 0.33 0.77 0.50 0.83 1.33 1.00 0.67 1.67
γ-terpinene 0.44 0.50 0.94 0.50 2.00 2.50 1.00 0.67 1.67
±Linalool 0.44 0.73 1.17 0.50 0.25 0.75 1.00 0.67 1.67
Eugenol 0.22 0.60 0.82 0.50 0.50 1.00 0.50 0.50 1.00

Carvacrol 0.11 0.25 0.36 0.25 0.67 0.92 0.25 0.50 0.75
Cinnamaldehyde 0.08 0.60 0.68 0.25 0.50 0.75 0.12 0.60 0.72

Meropenem

α-pinene 0.50 0.17 0.67 0.44 0.25 0.69 0.50 0.04 0.54
γ-terpinene 0.50 0.25 0.75 0.44 0.33 0.77 1.00 0.08 1.08
±Linalool 0.50 0.36 0.86 0.44 0.25 0.69 0.50 0.04 0.54
Eugenol 0.25 1.20 1.45 0.44 0.50 0.94 0.50 0.06 0.56

Carvacrol 0.38 0.38 0.76 0.22 0.67 0.89 0.50 0.12 0.62
Cinnamaldehyde 0.25 1.20 1.45 0.22 0.50 0.72 0.50 0.30 0.80
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Table 2. Cont.

Conventional
Antibiotic

Essential Oil
Compounds

S. aureus
(ATCC 25923)

S. epidermidis
(ATCC 12228)

C. acnes
(ATCC 11827)

FIC(A) 1 FIC(B) 2 ΣFIC 3 FIC(A) FIC(B) ΣFIC FIC(A) FIC(B) ΣFIC

Miconazole

α-pinene 0.67 0.67 1.34 0.36 0.50 0.86 1.00 1.33 2.33
γ-terpinene 0.33 0.50 0.83 0.36 0.67 1.03 1.00 1.33 2.33
±Linalool 0.33 1.46 1.79 0.36 0.50 0.86 0.50 0.67 1.17
Eugenol 0.33 1.20 1.53 0.36 1.00 1.36 1.25 0.50 1.75

Carvacrol 0.08 0.25 0.33 0.14 1.00 1.14 0.12 0.50 0.62
Cinnamaldehyde 0.02 0.30 0.32 0.01 0.06 0.07 0.06 0.60 0.66

Tetracycline

α-pinene 0.50 0.33 0.83 0.50 0.50 1.00 0.89 1.33 2.20
γ-terpinene 0.50 0.50 1.00 1.00 1.33 2.33 0.89 1.33 2.22
±Linalool 0.50 0.73 1.23 0.50 0.50 1.00 0.44 0.67 1.11
Eugenol 0.25 0.60 0.82 0.25 0.50 0.75 0.22 0.67 0.89

Carvacrol 0.25 0.50 0.75 0.25 0.67 0.92 0.11 0.50 0.61
Cinnamaldehyde 0.13 1.20 1.33 0.13 0.50 0.63 0.05 0.60 0.65

1 FIC(A)—fractional inhibitory concentration of antibiotic; 2 FIC(B)—fractional inhibitory concentration of EOC;
3 ΣFIC—sum of FIC values; bold values indicate synergy, while italicized values indicate additivity.

The synergistic interactions were further analysed in varied ratio concentrations and
presented on isobolograms (Figure 1A–G). For S. aureus, three synergistic interactions were
observed involving carvacrol with three antibiotics (Figure 1A–C). Comparatively, these
combinations showed a similar trend in the ratio of antibiotic to EOC, with ratios of 60:40,
50:50, and 40:60 showing the highest degree of synergy. Figure 1D shows the isobologram
of miconazole and cinnamaldehyde against S. aureus, which demonstrated higher levels
of synergy (lower ΣFIC values) compared to the isobologram depicting the combination
of miconazole and carvacrol (Figure 1C) against S. aureus. Figure 1E and F represent
the isobolograms of synergistic combinations against S. epidermidis. The combination
of erythromycin with cinnamaldehyde demonstrated the highest synergy compared to
the combination of miconazole with cinnamaldehyde. In addition, six out of the nine
ratios for the combination of erythromycin with cinnamaldehyde were synergistic. The
combination of miconazole with cinnamaldehyde was synergistic against both S. aureus
(Figure 1D) and S. epidermidis (Figure 1F). Very similar results in terms of synergistic
ratios were noted, which highlights the potential of this combination. The isobologram for
C. acnes is presented in Figure 1G. The general trend for C. acnes was that greater degrees of
synergy were achieved when the ratio of antibiotic to EOC approached equal parts (1:1). In
comparison to the combination of amoxicillin with carvacrol against S. aureus (Figure 1A),
a similar trend was observed particularly at ratios where the EOC made up the majority of
the concentration (10:90).

Several reviews have discussed carvacrol and cinnamaldehyde against food-borne
pathogens [55,56], with the general consensus being that carvacrol has more potent antibac-
terial effects on Gram-positive bacteria whilst cinnamaldehyde has a more broad-spectrum
effect against bacteria and fungi [57]. In the context of combinations, cell membrane
damage brought about by carvacrol or cinnamaldehyde may increase the intracellular
concentration of an antibiotic due to allosteric modulatory mechanisms that results in
reduced MICs [46,48]. However, further studies are needed to investigate these mecha-
nisms. The synergistic interactions elucidated in this study between miconazole, carvacrol,
and cinnamaldehyde against S. aureus and S. epidermidis highlight its potential as a novel
candidate broad-spectrum topical agent. Considering that most skin lesions are perpet-
uated by the presence of bacteria which may also increase the virulence of some fungal
species [58], miconazole’s combined antifungal and antibacterial properties may be an ef-
fective treatment. This has already been demonstrated in mixed fungal–bacterial infections
such as dermatomycoses, with some studies suggesting miconazole’s direct involvement
in reducing the severity of this type of infection [59].
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The results for the 1:1 combinations against Gram-negative bacteria are presented
in Table 3. A total of 48 combinations, which only included the conventional antibiotics
that had activity against Gram-negative bacteria. From the results, 40% (19/48) of the
combinations were additive, while the remaining 58% (28/48) were non-interactive.

One synergistic interaction (ΣFIC 0.32) was observed against P. aeruginosa. Most
combinations (16/24) against P. aeruginosa were additive, with combinations involving
ciprofloxacin showing more favourable results than the rest. Figure 2 represents varied
ratios for the synergistic interaction of ciprofloxacin with cinnamaldehyde against P. aerugi-
nosa. In addition to the ratios in which the EOC and antibiotic components were in equal
parts, the ratios (antibiotic/EOC) of 60:40, 40:60, and 30:70 also demonstrated synergy.
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Figure 1. (A–G): Isobologram representation of synergistic interactions between different antibiotics
and EOCs against Gram-positive bacteria. (A–D) was against S. aureus (ATCC 25923); (E,F) was
against S. epidermidis (ATCC 12228); and (G) was against C. acnes (ATCC 11827).

Due to its high virulence potential and intrinsic resistance to several antibiotic classes [11,60],
many studies have attempted to find combinations of EOCs and antibiotics against P. aeruginosa.
However, only some have elucidated the precise synergistic combinations, with the majority
being non-interactive [46]. A study by Miladinović et al. [61] demonstrated that geraniol and
thymol were synergistic with tetracycline and chloramphenicol against P. aeruginosa. Recent
studies [62,63] demonstrated synergistic interactions (ΣFIC 0.37–0.50) involving gentamicin and
colistin in combination with cinnamaldehyde against the PA01 strain of P. aeruginosa. These
antibiotics exhibit poor permeability through the pseudomonal outer membrane as well as
being extruded out of the cell by efflux pumps [60]. From the results, the majority (17/24) of the
combinations against A. baumannii were non-interactive (ΣFIC 1.07–2.20). However, gentamicin
with eugenol (ΣFIC 0.62) and meropenem with eugenol (ΣFIC 0.64) demonstrated additivity.
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Table 3. The FIC values of combinations of conventional antibiotics (A) and EOCs (B) against
Gram-negative bacteria (n = 4).

Conventional
Antibiotic

Essential Oil
Compounds

P. aeruginosa (ATCC 27853) A. baumannii (ATCC 19606)

FIC(A) 1 FIC(B) 2 ΣFIC 3 FIC(A) FIC(B) ΣFIC

Ciprofloxacin

α-pinene 0.54 0.27 0.81 1.20 0.50 1.70
γ-terpinene 0.54 0.29 0.83 1.20 0.50 1.70
±Linalool 0.54 0.33 0.87 1.20 1.00 2.20
Eugenol 0.27 0.33 0.60 0.60 0.67 1.27
Carvacrol 0.27 0.67 0.94 0.60 1.00 1.60
Cinnamaldehyde 0.07 0.25 0.32 0.30 1.00 1.30

Gentamicin

α-pinene 0.75 0.10 0.85 0.57 0.25 0.82
γ-terpinene 1.51 0.21 1.72 1.14 0.50 1.64
±Linalool 2.00 0.17 2.17 0.57 0.50 1.07
Eugenol 1.00 0.33 1.33 0.29 0.33 0.62
Carvacrol 0.50 0.33 0.83 0.57 1.00 1.57
Cinnamaldehyde 1.00 1.00 2.00 0.29 1.00 1.29

Meropenem

α-pinene 2.00 0.53 2.53 1.04 0.25 1.29
γ-terpinene 1.00 0.13 1.13 1.04 0.25 1.29
±Linalool 1.00 0.17 1.17 1.04 0.50 1.54
Eugenol 0.75 0.25 1.00 0.39 0.25 0.64
Carvacrol 0.75 0.50 1.25 0.39 0.38 0.77
Cinnamaldehyde 0.50 0.50 1.00 0.26 0.50 0.76

Tetracycline

α-pinene 0.33 0.53 0.86 0.40 0.25 0.65
γ-terpinene 0.33 0.57 0.90 0.60 0.38 0.98
±Linalool 0.33 0.67 1.00 0.80 1.00 1.80
Eugenol 0.33 1.33 1.66 0.40 0.67 1.07
Carvacrol 0.17 1.33 1.50 0.40 1.00 1.40
Cinnamaldehyde 0.08 1.00 1.08 0.20 1.00 1.20

1 FIC(A)—fractional inhibitory concentration of antibiotic; 2 FIC(B)—fractional inhibitory concentration of EOC;
3 ΣFIC—sum of FIC values; bold values indicate synergy, while italicized values indicate additivity.
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Figure 2. Isobologram represents synergistic interactions between ciprofloxacin and cinnamaldehyde
against P. aeruginosa (ATCC 27853).

Previous studies investigating A. baumannii have used essential oils such as Corian-
drum sativum L. (coriander) and Origanum vulgare L. (oregano) with conventional antibi-
otics, with some studies reporting that certain essential oils can increase the sensitivity of
A. baumannii, resulting in synergy [64,65]. However, there are limited studies investigating
EOCs against A. baumannii [66]. Karumathil et al. [67] demonstrated that triple combina-
tions of cinnamaldehyde and eugenol with some beta-lactams enhanced the sensitivity
of A. baumannii to these antibiotics, resulting in lower MIC values and reduced bacterial
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cell counts. Aleksic Sabo et al. [68] reported that combinations of carvacrol, thymol, and
eugenol with ciprofloxacin were synergistic (ΣFIC 0.11–0.50) against both reference and
multi-drug resistant strains of A. baumannii, which differs from the results in this study, in
which non-interactive interactions were observed (ΣFIC 1.27–1.60). A possible reason for this
difference may be due to the solvent used in the MIC assays or the overall resistance profiles
of the A. baumannii strains. There are limited studies investigating interactions between
EOCs and conventional antibiotics against Gram-negative bacteria and fungi. Much of the
focus has shifted to investigating how EOCs can attenuate virulence factors and resistance
mechanisms [23,25,26]. Based on current therapies, many existing antibiotic strategies rely
on combinations of an antibiotic with an adjuvant to target a resistance mechanism and
“resensitize” the micro-organism to the antibiotic [16].

A well-known example of this is coupling beta-lactams with beta-lactamase inhibitors [69].
This strategy is often very effective and EOCs in combination with conventional antibiotics may
be the best way to approach this type of combination therapy. Many studies published in the
last five years have investigated the ability of certain EOCs to attenuate resistance mechanisms
such as efflux pumps and beta-lactamase enzymes [67,70–73]. These studies have shown that
EOCs can downregulate and even inactivate specific resistance mechanisms, re-establishing the
antibiotic’s effectiveness against the pathogen. Therefore, the results from this study support
the concept that EOCs can be used as adjunctive agents alongside conventional antibiotics.

For C. albicans, 75% of the combinations (Table 4) were non-interactive (ΣFIC 1.02–2.13),
whilst 25% were additive (ΣFIC 0.77–0.90). Eugenol showed the lowest overall ΣFIC values
when combined with miconazole (0.87) and nystatin (0.77), whilst α-pinene had the high-
est ΣFIC values of 2.13 (miconazole) and 1.73 (nystatin). Eugenol exhibited noteworthy
antifungal activity against various fungal species due to its ability to damage the fungal
cell envelope and attenuate virulence factors [74]. Several studies have demonstrated syn-
ergistic interactions between eugenol and various antifungal agents, including fluconazole,
micafungin, and amphotericin B, against C. albicans and related species [75–79]. These
studies highlight the effectiveness of eugenol in combination with conventional antifungals
against fungi. In this study, most of the interactions against C. albicans were non-interactive,
which could be based on the fact that both the antifungal agent and the EOC may compete
for the same molecular target [80]. Both nystatin and miconazole interact differently with
the fungal cell membrane, which is also the primary molecular target for most EOCs [20,74].
Considering that EOCs can have multiple mechanisms of action which act sequentially
and are not selective for a specific target site [48,80,81], the EOC may compete with the
antifungal agent for the binding site and reduce the overall effectiveness of the combination.

Table 4. The FIC values of combinations of antifungals (A) and EOCs (B) against C. albicans (n = 4).

Antifungals Essential Oil
Compounds

C. albicans (ATCC 10231)

FIC(A) 1 FIC(B) 2 ΣFIC 3

Miconazole

α-pinene 0.80 1.33 2.13
γ-terpinene 0.80 0.80 1.60
±Linalool 0.40 0.80 1.20
Eugenol 0.20 0.67 0.87
Carvacrol 0.15 0.75 0.90
Cinnamaldehyde 0.05 1.00 1.05

Nystatin

α-pinene 0.40 1.33 1.73
γ-terpinene 0.40 0.80 1.20
±Linalool 0.20 1.33 1.53
Eugenol 0.10 0.67 0.77
Carvacrol 0.10 1.00 1.10
Cinnamaldehyde 0.03 1.00 1.03

1 FIC(A)—fractional inhibitory concentration of antibiotic; 2 FIC(B)—fractional inhibitory concentration of EOC;
3 ΣFIC—sum of FIC values; italicized values indicate additivity.
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2.3. Toxicity Analysis

The toxicity of the conventional antimicrobials is presented in Table 5. Based on the
results, none of the conventional antimicrobials were considered toxic (LC50 > 1000 µg/mL),
which can be attributed to the selectivity of the antibiotics for prokaryotes as opposed to
eukaryotes [82]. In addition, the negative controls did not affect the outcome of the assay.

The toxicity values of the EOCs expressed as LC50 after 24 h and 48 h of exposure
are presented in Table 6. From the results for the 24 h of exposure, both α-pinene and
γ-terpinene were considered non-toxic (LC50 > 1000 µg/mL), with the remaining four
compounds (linalool, eugenol, carvacrol, and cinnamaldehyde) showing high toxicity
(LC50 = 64.43–77.62 µg/mL). All EOCs showed a decrease in the LC50 after 48 h, except for
linalool, which showed an increase (LC50 = 84.12 µg/mL) in toxicity, which may have been
due to the pharmacokinetics and chemical stability of the compound [83].

Table 5. The mean percentage mortality and standard deviation (±SD) for the conventional antibiotics
and controls (n = 3).

Conventional
Antibiotics

Concentrations

0.01 mg/mL 0.05 mg/mL

24 h 48 h 24 h 48 h

Amoxicillin 0.00 ± 0.00 2.67 ± 3.06 0.00 ± 0.00 0.67 ± 1.15
Ciprofloxacin 0.00 ± 0.00 0.00 ± 0.00 1.67 ± 2.89 3.67 ± 6.35
Erythromycin 1.00 ± 2.31 5.67 ± 1.15 11.00 ± 7.94 15.67 ± 7.77
Gentamicin 0.00 ± 0.00 0.00 ± 0.00 2.67 ± 2.31 7.00 ± 2.64
Meropenem 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
Tetracycline 1.00 ± 1.15 6.00 ± 5.29 5.67 ± 4.73 12.00 ± 3.61
Miconazole 0.00 ± 0.00 0.00 ± 0.00 7.67 ± 3.06 17.00 ± 1.73
Nystatin 3.00 ± 2.31 7.67 ± 3.79 5.33 ± 7.57 12.00 ± 7.94

Controls 24 h 48 h

Potassium dichromate (positive control) 100.00 ± 0.00 100.00 ± 0.00
2.00% DMSO (negative control) 3.00 ± 1.41 4.50 ± 0.71
Distilled water (negative control) 0.00 ± 0.00 0.00 ± 0.00
Saltwater (negative control) 1.93 ± 0.03 2.10 ± 0.01

Table 6. Lethal concentration (LC50) with a 95% confidence interval (CI) of EOCs after 24 h and 48 h.

Essential Oil Compounds LC50 (µg/mL) at 24 h LC50 (µg/mL) at 48 h

α-pinene >1000 1 (>1000) >1000 (>1000)
γ-terpinene >1000 (>1000) >1000 (>1000)
±Linalool 73.04 (71.24–74.85) 84.12 (82.23–86.01)
Eugenol 77.62 (75.41–79.83) 56.47 (54.80–58.14)
Carvacrol 64.43 (62.46–66.40) 37.14 (35.67–38.61)
Cinnamaldehyde 74.01 (71.91–76.11) 64.05 (62.26–65.84)

1 The LC50 value represents the concentration of a test substance necessary to have a lethal effect on 50% of a brine
shrimp sample. LC50 values < 249 µg/mL are considered highly toxic; 250–499 µg/mL are considered moderately
toxic; 500–999 µg/mL are considered weak or low in toxicity; and ≥1000 µg/mL are considered non-toxic [84].

Carvacrol showed the highest increase in toxicity (LC50 = 37.14 µg/mL), with both
α-pinene and γ-terpinene remaining non-toxic after 48 h. Previous studies have investi-
gated the toxic effects of EOCs, with varying results based on the studied model [85,86].
Pattanasiri et al. [87] reported eugenol to cause 100.00% mortality in Siamese fighting
fish at a concentration of 0.04 mg/mL, which supports the findings of this study, as
100.00% mortality of brine shrimp was observed at doses of 0.50 and 1.00 mg/mL. Youssefi
et al. [88] demonstrated that carvacrol elicited a high toxicity in mosquito larvae with
an LC50 = 15 µg/mL. Terpenoids such as eugenol and linalool are known for their high
toxicity, whilst lower LC50 values are typically recorded for terpenes such as α-pinene and
γ-terpinene [89].
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The toxicity of the antimicrobial synergistic combinations is presented in Table 7. All
the combinations showed weak/low toxicity (LC50 = 500–999 µg/mL) with the combination
of ciprofloxacin and cinnamaldehyde being the least toxic (LC50 = 827.92 µg/mL) after 24 h,
and the combination of gentamicin and carvacrol being the least toxic (LC50 = 696.07 µg/mL)
after 48 h. A comparison of the toxicity of individual EOCs alone and when combined with
conventional antibiotics shows a notable decrease in toxicity. This suggests that the conven-
tional antibiotics used attenuate the toxicity of the EOCs. To the best of our knowledge, there
have been minimal studies investigating the toxicity of combinations comprising conventional
antibiotics and EOCs, supporting the novelty of this study.

Table 7. Lethal concentration (LC50) with a 95% confidence interval (CI) of synergistic combinations
after 24 h and 48 h.

Antimicrobial Synergistic Combination LC50 (µg/mL) at 24 h LC50 (µg/mL) at 48 h

Amoxicillin + Carvacrol 522.95 (520.99–524.91) 513.89 (511.77–516.01)

Gentamicin + Carvacrol 764.77 (762.61–766.94) 696.07 (693.85–698.29)

Miconazole + Carvacrol 707.03 (704.83–709.24) 657.45 (655.12–659.78)

Ciprofloxacin + Cinnamaldehyde 827.92 (825.85–829.99) 640.04 (638.25–641.83)

Erythromycin + Cinnamaldehyde 736.85 (734.84–738.86) 573.63 (571.86–575.40)

Miconazole + Cinnamaldehyde 704.23 (702.34–706.12) 636.05 (633.99–638.11)

Amoxicillin + Eugenol 806.43 (804.42–808.44) 628.81 (626.77–630.85)

2.4. Selectivity Index

The LC50 and SI for each synergistic ratio are presented in Table 8. Most of the ratios
demonstrated a low toxicity (LC50 = 500–999 µg/mL), with the general trend being that
increasing the amount of the EOC increased the toxicity. The combination of gentamicin and
carvacrol at a ratio of 70:30, with the antibiotic making up the majority of the compound,
was non-toxic, with an LC50 = 1025.32 µg/mL after 24 h. It showed a weak/low toxicity
(LC50 = 931.44 µg/mL) after 48 h. In addition, the combination of amoxicillin and eugenol
at a ratio of 70:30, with the antibiotic making up the majority of the compound, was also
non-toxic, with an LC50 = 1081.17 µg/mL after 24 h and an LC50 = 843.04 µg/mL after 48 h.

For the SI values, the combination of amoxicillin and eugenol at a ratio of 70:30
demonstrated the highest SI of 14.41 at 24 h and 11.23 at 48 h. The lowest SI was noted for
combinations comprising amoxicillin and carvacrol ranging from 0.31 to 1.05. Based on
the results from Table 8, several combinations warrant further investigation, particularly
against cell lines or a comparative model.

Table 8. Lethal concentration (LC50) and selectivity index (SI) of synergistic ratios after 24 h and 48 h.

Synergistic
Combinations

Pathogen Synergistic
Ratios (AB:EOC)

LC50 (µg/mL) of
Combinations at

Synergistic Ratios

SI of Combinations at
Synergistic Ratios

24 h 48 h 24 h 48 h

Amoxicillin +
Carvacrol

S. aureus

60:40 612.03 1 601.54 1.53 1.50
50:50 522.95 513.89 1.05 1.03
40:60 433.87 426.24 0.87 0.85
30:70 344.79 338.60 0.98 0.97
20:80 255.71 250.95 0.32 0.31
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Table 8. Cont.

Synergistic
Combinations

Pathogen Synergistic
Ratios (AB:EOC)

LC50 (µg/mL) of
Combinations at

Synergistic Ratios

SI of Combinations at Synergistic
Ratios

24 h 48 h 24 h 48 h

Gentamicin +
Carvacrol S. aureus

70:30 1025.32 2 931.44 3.42 3.10
60:40 895.04 813.75 4.47 3 4.07
50:50 764.77 696.07 3.06 2.78
40:60 634.49 578.38 2.11 1.93
30:70 504.21 460.69 0.72 0.66

Miconazole +
Carvacrol

S. aureus

60:40 826.80 769.44 2.07 1.92
50:50 707.03 657.45 2.83 2.63
40:60 587.25 545.45 1.96 1.82
30:70 467.48 433.46 1.34 1.24

Miconazole +
Cinnamaldehyde

S. aureus,
S. epidermidis

70:30 944.15 852.75 3.14 2.84
60:40 824.19 744.40 4.12 3.72
50:50 704.23 636.05 5.63 5.09
40:60 584.27 527.70 3.89 3.52
30:70 464.31 419.35 1.32 1.20

Ciprofloxacin +
Cinnamaldehyde P. aeruginosa

60:40 968.95 749.06 9.68 7.49
50:50 827.92 640.04 6.62 5.12
40:60 686.88 531.01 4.58 3.54
30:70 545.85 421.98 3.12 2.41
20:80 404.81 312.95 1.01 0.78

Erythromycin +
Cinnamaldehyde S. epidermidis

70:30 987.89 769.06 6.58 5.12
60:40 862.37 671.34 4.31 3.36
50:50 736.85 573.63 5.89 4.59
40:60 611.33 475.92 4.07 3.17
30:70 485.81 378.20 1.39 1.08

Amoxicillin +
Eugenol C. acnes

70:30 1081.17 843.04 14.41 11.23
60:40 943.80 735.93 9.43 7.36
50:50 806.43 628.81 6.45 5.03
40:60 669.05 521.69 4.46 3.48
30:70 531.68 414.58 3.04 2.37

1 Italicized values indicate a weak or low toxicity; 2 bold values indicate non-toxic concentrations; and 3 bold and
italicized values indicate SI ≥ 4.

3. Materials and Methods

The overall experimental design can be found in Figure S1 (Supplementary Materials).

3.1. Preparation of Cultures

Due to their prevalence in skin infections, the following six American Type Culture
Collection (ATCC) reference strains were included in this study: Staphylococcus aureus
(ATCC 25923), Staphylococcus epidermidis (ATCC 12228), Acinetobacter baumannii (ATCC
19606), Pseudomonas aeruginosa (ATCC 27853), Cutibacterium acnes (ATCC 11827), and Can-
dida albicans (ATCC 10231). All the bacteria were cultured in Tryptone Soya broth (TSB)
(Oxoid) and incubated at 37 ◦C for 24 h, except for C. acnes, which was inoculated into Thio-
glycolate broth (TGB) (Oxoid) and incubated for seven days under anaerobic conditions
(5.00% CO2) at 37 ◦C. Candida albicans was cultured in TSB and incubated at 37 ◦C for 48 h.
In addition, streak plates were prepared to ensure purity.

3.2. Antimicrobial Agents and Essential Oil Compounds

Based on their use in skin infections, the following antibiotics/antifungals (Sigma-Aldrich,
St. Louis, MO, USA) were included; amoxicillin (potency ≥ 90.0%), ciprofloxacin (≥98.0%),
erythromycin (≥85.0%), tetracycline (≥98.0%), gentamicin (≤100%), meropenem (≥95.0%),
miconazole (99.5%), and nystatin (≥95.0%). The antibiotics were only tested against the micro-
organisms in which direct antibacterial activity had been noted. Miconazole was also tested
against Gram-positive bacteria due to its known antibacterial activity [41,90]. The antibi-
otic/antifungal stocks were prepared as outlined by the Clinical and Laboratory Standards
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Institute (CLSI) [91]. Stock solutions (0.01 mg/mL and 0.05 mg/mL) were stored at −20 ◦C, and
working stocks were stored at 4 ◦C.

Based on the previous literature which has documented EOCs’ antimicrobial prop-
erties [28,33,51], the following EOCs (Sigma-Aldrich, St. Louis, MO, USA) were selected:
α-pinene, γ-terpinene, ±Linalool, eugenol, carvacrol, and cinnamaldehyde. For the com-
binations, the compounds were only combined with antibiotics/antifungals that had
demonstrated direct antimicrobial activity against the tested organism. All the compounds
had a purity range of 95.00–99.00%. The compounds were stored at 4 ◦C and prepared to a
starting concentration of 32.00 mg/mL.

3.3. Minimum Inhibitory Concentration (MIC)

The broth microdilution assay (MIC) was used to evaluate the antimicrobial activity
of the conventional antimicrobials and the selected EOCs independently and in combi-
nation [92]. Briefly, each well of a 96-well microtiter plate was filled with 100 µL of their
respective sterile broth, followed by adding 100 µL of the antibiotic/antifungal or EOC
into the top row. For the combinations, 50 µL of each antibiotic/antifungal and 50 µL of
each EOC were added so that the ratio of antibiotic/antifungal to the EOC was 1:1. Serial
doubling dilutions were then performed. The prepared microtiter plates were then inocu-
lated with 100 µL of the relevant pathogen at colony-forming units (CFU) of approximately
1 × 106 (CFU/mL). The plates were then sealed with sterile adhesive to ensure no sample
loss since EOCs are volatile. The plates were then incubated at their respective temperature
and times. After incubation, 40.00 µL of a 0.40% p-iodonitrotetrazolium (INT) violet indi-
cator solution was added to all the inoculated wells. A change in the colour of the wells
from clear to pink or red was used to indicate the presence of microbial growth [93]. The
MIC values were interpreted as the lowest concentration at which growth was inhibited.
Each combination was performed in quadruplicate. Three controls were included: a culture
control for the broth corresponding to the sample, a solvent control, and a conventional
antimicrobial control to ensure susceptibility. The mean and standard deviations (±SD) for
the MICs were calculated in MS Office (2016).

3.4. Interactive Profiles

The interactions between the combinations of the antibiotics and compounds were
classified according to their fractional inhibitory concentration (FIC) (Equation (1)).

FIC (I) =
(A) combined with (B)
(A) independently

FIC (II) =
(B) combined with (A)

(B) independently
(1)

where (A) is the MIC of the essential oil compound, and (B) is the MIC of the antibiotic.
From these values, the ΣFIC was calculated following Equation (2):

ΣFIC = FIC (I) + FIC (II) (2)

The ΣFIC for each EO compound combined with an antibiotic was interpreted as
follows; an ΣFIC value of ≤0.5 was indicative of synergy; an ΣFIC value of >0.5–1.0
indicated an additive interaction; an ΣFIC of >1.0–≤ 4.0 indicated non-interactive; and an
ΣFIC value of >4.0 indicated antagonism [94].

3.5. Varied Ratio Combinations

For notable combinations demonstrating synergistic interactions in the 1:1 ΣFIC analy-
sis, a further study was undertaken during which combinations were investigated at varied
ratios of 90:10, 80:20, 70:30, 60:40, 50:50, 40:60, 30:70, 20:80, and 10:90. The data points
for each ratio were then plotted on an isobologram using the GraphPad Prism® software
(Version 9). Synergy was displayed for the data points closest to the apex and falling
beneath or on the 0.5:0.5 line. Additive interactions referred to the data points between the
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0.5:0.5 and the 1:1 lines. Non-interactive effects were those that were between the 1:1 and
the 4:4 lines and antagonism was displayed for the data points above or on the 4:4 line [94].

3.6. Toxicity Studies

The brine shrimp lethality assay was used to determine the toxicity of the EOCs,
antibiotics, and combinations demonstrating synergy [95]. An amount of 0.50 g of dried
brine shrimp (Artemia franciscana) eggs (Ocean Nutrition) was weighed out and added to
artificial seawater (16.00 g of sea salt (TropicMarine) in 500.00 mL of distilled water). A
rotary pump was used to aerate the sea water to increase the hatch rate. The eggs were left
for 48 h under a light source to allow the brine shrimp to hatch. A 48-well microtiter plate
was prepared for the assay by adding 400.00 µL of saltwater containing 40–60 live brine
shrimp to each well. A volume of 400.00 µL of either the EOC or antibiotic was added to
each well. For the synergistic combinations, 200.00 µL of each sample (antibiotic/EOC) was
mixed prior to adding to the wells. Before adding the samples, each well was examined
using a light microscope (Olympus, 40× magnification) to check the viability of the brine
shrimp. Six concentrations (2.0, 1.0, 0.5, 0.25, 0.125, and 0.06125 mg/mL) of each EOC were
prepared using 2.00% DMSO and diluted in the well to achieve a 1:2 final concentration. All
the antibiotic samples were prepared to a 0.1 mg/mL concentration using sterile distilled
water. At 24 h and 48 h, the dead shrimp were viewed and counted. A lethal dose of 50 µL
acetic acid (Saarchem) was added to each well. Thereafter, the percentage of mortality
was calculated, and a percentage of 50% mortality or greater was considered biologically
toxic [84]. The assay included a negative, non-toxic control of 32.00 g/L of artificial sea
water to ensure the promotion of growth and the survival of the brine shrimp. The positive
(toxic) control in the assay consisted of a 1.60 mg/mL potassium dichromate solution. The
brine shrimp mortality was plotted against the logarithms of the concentrations using the
Probit analysis tool in the IBM SPSS Statistics software (Version 27). The median lethal
concentration (LC50) at 95% confidence intervals (CI) was calculated [96].

3.7. Selectivity Index (SI)

The SI can be defined as the ratio of the toxic concentration of a sample against
its effective bio-active concentration [36]. The SI represents the pre-clinical screening
calculation used to determine the feasibility of novel compounds for in vivo testing [82].
When evaluating the SI, a cut-off value of ≥4 was used [97,98]. The SI was calculated using
Equation (3) for each of the synergistic combinations.

SI =
LC50∗
MIC

(3)

* where the LC50 is the lethal concentration required to cause 50% mortality after
24 h and 48 h, and the MIC is the minimum inhibitory concentration of the antimicrobial
synergistic combination.

4. Conclusions

This study investigated the emerging strategy of combining essential oil compounds with
conventional antibiotics against six reference skin pathogens. Based on the findings, 48.39% of
combinations were additive, 47.31% were non-interactive, and 4.30% were synergistic, with
no antagonism observed. In addition, eight synergistic interactions were identified, seven
being effective against Gram-positive bacteria and one against P. aeruginosa. Two synergistic
interactions involving miconazole with two different EOCs were identified against S. aureus
and S. epidermidis, which was the first to be reported. Furthermore, this study showed that
synergistic interactions can exist at varying ratios for combinations of EOCs and conventional
antibiotics. For C. albicans, it may be worth investigating combinations of different antifungals
and EOCs at varying ratios to elucidate the potency of eugenol at different concentrations.
Although the individual EOCs have high inherent toxicities, the overall toxicity can be reduced
when combined with conventional antimicrobials. In addition, the combination of amoxicillin



Molecules 2024, 29, 1225 15 of 19

and eugenol demonstrated an SI of 14.41, which warrants further investigation. Therefore,
it can be proposed that some essential oil compounds enhance the antimicrobial efficacy of
some conventional antibiotics.
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