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Abstract: Since the discovery of classical chiral oxazoline ferrocene ligands in 1995, they have become
pivotal in transition metal-catalyzed asymmetric transformations. Over the past decade, a notable
evolution has been observed with the emergence of siloxane-substituted oxazoline ferrocenes, demon-
strating significant potential as chiral ligands and catalysts. These compounds have consistently
delivered exceptional results in diverse and mechanistically distinct transformations, surpassing the
capabilities of classical oxazoline ferrocene ligands. This review meticulously delineates the research
progress on siloxane-substituted oxazoline ferrocene compounds. It encompasses the synthesis
of crucial precursors and desired products, highlights their achievements in asymmetric catalysis
reactions, and delves into the exploration of the derivatization of these compounds, emphasizing the
introduction of ionophilic groups and their impact on the recovery of transition metal catalysts. In
addition to presenting the current state of knowledge, this review propels future research directions
by identifying potential topics for further investigation concerning the siloxane-tagged derivatives.
These derivatives are poised to be promising candidates for the next generation of highly efficient
ligands and catalysts.

Keywords: oxazoline; ferrocene; planar chirality; chiral ligands; catalyst recycling

1. Introduction

Ferrocene-type compounds have captivated the attention of organic chemists as ver-
satile chiral ligands and catalysts. The appeal lies not only in the ease of preparing poly-
substituted ferrocene compounds through electrophilic substitutions, leveraging the higher
electron density in the cyclopentadienyl (Cp) ring compared to benzene, but also in the
creation of “planar chirality” by introducing multiple substituents, breaking the symmetry
plane of ferrocene. This distinctive feature enhances the efficacy of ferrocene-based lig-
ands and catalysts in asymmetric catalysis transformations. Originating from independent
research in 1995 by Richards [1], Sammakia [2], and Uemura’s [3] groups, chiral ligands
based on the oxazoline ferrocene backbone have played a pivotal role in diverse transition
metal-catalyzed asymmetric reactions over the past three decades, ranging from academic
laboratory researches to industrial productions [4–6], with more than 600 publications and
patents attesting to their significance. Even today, chiral oxazoline phosphine ferrocene
ligands (FOXAPs) remain the preferred choice for many emerging reactions aimed at
achieving highly stereoselective products [7–22].

With the continued research of oxazoline ferrocene ligands, research on their structural
modification has also been ongoing (Figure 1). The first strategy is the exploration of sub-
stituent patterns. For instance, Hou developed a class of 1,1′-N,P bidentate ligands 1 from
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2001 [23]. The applications of these ligands have demonstrated that the established ligands
provide powerful stereo control on the corresponding chiral products in the aggregation of
Pd-catalyzed asymmetric reactions [24–26]. Alternatively, in 2002, based on the seminal
work from Patti’s group [27], Moyano and co-workers delivered the absolute configuration
of chiral 4-oxazoline ferrocene 2, and then examined the applicability in asymmetric allylic
alkylation of rac-(E)-1,3-diphenyl-2-propenyl acetate, which provided the target alkylated
product with 97:3 e.r. [28]. The second strategy is the exploration of donor groups. Several
donor groups have been introduced into the oxazoline ferrocene backbone to establish their
corresponding chiral ligands, which are utilized in various asymmetric mechanistically
different transformations. Notably, Richards recently proposed a novel synthetic scheme
for FOXAP ligands 3, which incorporates three chiral elements [29]. The strategy involves
the use of a “deuterium blocking group” to control the absolute configuration of planar
chirality [30] and a stepwise stereoselective synthesis of P-stereogenic diastereoisomers.
The catalytic results revealed that the phosphorus-based stereogenic center had a positive
influence on the enantioselectivity of the alkylated products in the presence of matched
elements of chirality. The third strategy is the exploration of oxazoline ferrocene backbone
modification. An example of structural modification was presented by Guiry, who reported
the synthesis of a series of novel chiral 5,5-gem-disubstituted oxazoline ferrocene ligands
4 [31,32]. The Zn-mediated enantioselective nucleophilic additions to aldehydes with the
generated ligands provided a wide range of secondary alcohols with yields up to 93% and
up to over 99% ee.
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Figure 1. Modified ligands from oxazoline metallocene skeleton.

In comparison, there are limited studies on the modification of chiral substituents in
oxazoline moieties. The chiral side chains in oxazoline are derived from simple chiral amino
alcohols. As a result, traditional chiral substituents in oxazoline ferrocene ligands are alkyl
groups (such as iso-propyl, tert-butyl, etc.) and aryl groups (such as phenyl and benzyl).
Functionalized substituents usually imply relatively complicated synthesis processes and
specialized starting materials. Richards’ group, who devoted their efforts on the research
on mono-substituted oxazoline metallocene ligands 5, established a straightforward five
steps for chiral N,P-ligand from (S)-Serine methyl ester [33,34]. In 2016, Liu reported the
preparation scheme of desired uncommon chiral amino alcohol from commercial available
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L-tyrosine in five continuous reactions, which was designed as a crucial substrate for
MeO-PEG-supported chiral oxazoline carbinol ferrocene ligand 6 [35].

In particular, the design of the side chain of the oxazoline ring has been identified as a
crucial aspect in achieving highly efficient catalysts. The steric bulkiness generated by chiral
oxazoline side chains imparts planar chiral ferrocene derivatives with high diastereoselectivity
and rigid hindrance for prochiral substrates. This property has proven instrumental in directed
ortho-metallation processes and transition metal-catalyzed asymmetric reactions, resulting
in satisfactory stereoselective outcomes. Amidst this context, tunable siloxane-substituted
oxazoline ferrocenes 7 have emerged as promising candidates for the next generation of highly
efficient ligands and catalysts. Their tunability and potential for further derivatization offer
exciting possibilities for applications in emerging reactions requiring precise steric resistance.
In the last decade, tunable siloxane-substituted oxazoline ferrocenes have demonstrated im-
pressive results in various transition metal-catalyzed asymmetric transformations, solidifying
their potential in advancing catalytic methodologies.

While critical reviews on chiral oxazoline ferrocene ligands exist, most focus on
classical ligands with traditional chiral substituents [36–40]. This brief review seeks to
consolidate the knowledge on chiral siloxane-substituted oxazoline ferrocenes, shedding
light on their achievements in asymmetric reactions and paving the way for potential
developments in this specialized class of compounds.

2. Synthetic Strategies of Siloxane-Substituted Oxazoline Ferrocene Ligands
2.1. Enantiopure Siloxane-Substituted Oxazoline Ferrocenes

The development of efficient methods to obtain optically pure oxazoline ferrocene
compounds is crucial for achieving highly diastereoselective planar chiral ligands through
direct ortho-metallation of ferrocene. In our recent review, we comprehensively summarized
the synthesis methods for 2-oxazoline ferrocene derivatives [40]. Currently, three indepen-
dent strategies for synthesizing siloxane-substituted oxazoline ferrocenes are discussed in
this article, illustrated in the following reaction schemes.

In 2000, Aït-Haddou and Balavoine’s group reported a facile cyclization method for
oxazoline ferrocene on a large scale (Scheme 1) [41]. The starting material, chiral β-hydroxyl
ferrocene amide 8, is prepared by the condensation of ferrocenyl carbonyl chloride with a
slight excess of (1S,2S)-2-amino-3-phenyl-1,3-dipropanediol. It is then treated with TsCl and
a catalytic amount of DMAP to yield the oxazoline ferrocene analogue 9 in an excellent yield
of 95%. Before investigating the effectiveness of the oxazoline fragment in diastereoselective
ortho-lithiation, the free hydroxyl group on the side chain of the oxazoline unit is protected
by TBSCl in DMF, resulting in the desired siloxane-substituted oxazoline ferrocene 10 with
a yield of 95%.
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Sammakia, recognized as one of the pioneers in the application of chiral oxazoline-
substituted ferrocene-type ligands, proposed an alternative route for silyl-protected oxazoline
ferrocene (Scheme 2) [2]. Chiral β-hydroxyl ferrocene amides 11 are prepared through the
condensation of ferrocenyl carbonyl chloride and (S)-serine methyl ester hydrochloride. Sub-
sequent silylation of the hydroxyl group of 12 by TBSCl precedes the reduction procedure
of the ester group to avoid the formation of an achiral cyclization product. The desired
silyl-protected oxazoline ferrocene 13 is then prepared from 12 in a ring-closure process by the
treatment of TsCl and trimethylamine, yielding 64% after flash chromatography purification.
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Scheme 2. Synthesis of siloxane-substituted oxazoline ferrocene by Sammakia’s group.

Richards and co-workers presented a direct process for chiral oxazoline ring formation
(Scheme 3) [33,34]. The establishment of oxazoline metallocenes 14 is performed from
the serine-derived β-hydroxy amides 11 using 1.1 equivalents of DAST at −78 ◦C for 1 h,
followed by the addition of anhydrous K2CO3, resulting in the corresponding products
in almost quantitative yield. Subsequently, Zhou reported a synthetic route extension of
14 with a reduction of the carboxylic ester group by LiAlH4 in ether and a subsequent
silylation of the produced hydroxyl group with TBSCl in anhydrous THF. The target
siloxane-substituted oxazoline ferrocene (S)-13, outlined as an enantiomeric isomer in
Sammakia’s work, is finally achieved as a red viscous liquid in 90% yield in two steps
(Scheme 3, Path A) [42]. Moreover, the chiral side chain of the oxazoline fragment was
then extended by Zhou’s subsequent work as 13b and 13c with good conversion (Scheme 3,
Path B).
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2.2. Synthesis of Planar Chiral Oxazoline Ferrocene Derivatives

Planar chiral 1,2-disubstituted ferrocene-type compounds stand out as the most pre-
ferred ligands in research focused on their applications in asymmetric transformations.
Consequently, the preparation schemes of these planar chiral ferrocenes, which yield highly
stereochemical outcomes, have garnered attention from various organic chemistry research
groups. Chiral oxazoline groups have proven to be accessible directing groups for estab-
lishing 1,2-disubstituted ferrocenes through a diastereoselective direct ortho-metallation
(DoM) procedure. Sammakia reported a dramatic diastereoselectivity of planar chiral
products, achieving an over 500:1 diastereoisomer ratio upon the addition of N,N,N′,N′-
tetramethylethylenediamine (TMEDA) [43]. The DoM procedure with chiral oxazoline
moieties has been theoretically supported by several experimental and computational
results [44–46]. However, in comparison to conventional chiral oxazoline ferrocenes, the
DoM procedures with enantiopure siloxane-substituted oxazoline ferrocenes as starting
materials remain challenging but intriguing topics in current research.
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2.2.1. Sulfur and Phosphine Ligands

Aït-Haddou and colleagues investigated the possibility of diastereoselective ortho-
functionalization using oxazoline ferrocenes as substrates, bearing two stereogenic cen-
ters [41]. The deprotonation reaction was conducted with 1.3 equivalents of RLi at −78 ◦C
in THF for 2 h, followed by the addition of selected electrophiles (Scheme 4). Results
demonstrated high diastereoselectivities exceeding 95:5 d.r. of 15a in the absence of addi-
tional additives, while OMe group was attached to the side chain of oxazoline. Notably,
when utilizing siloxane-substituted oxazoline ferrocene derivatives, the diastereoselectiv-
ity of 15b increased to 99:1 due to enhanced steric hindrance established by the siloxane
moiety. The researchers concluded that N,S- and N,P-ligands could be generated using the
same procedure by varying the electrophilic reagents, offering versatility in subsequent
asymmetric reactions.
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However, recent research has unveiled a decrease in diastereoselectivity during the 
DoM process when a bulky substituent is present on the oxazoline chiral side chain. In 
the treatment of siloxane-substituted oxazoline ferrocene (S)-13c, the conversion of 
(S,Rp)-16c was regarded as only 75%, and a significant reduction in diastereoselectivity 
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Zhou explored the facile preparation of planar chiral siloxane-substituted oxazoline
phosphine ferrocene ligand from the readily generated ferrocene compounds through a
standard diastereoselective direct ortho-metallation (DoM) procedure [42]. Enantiopure
(S)-13 was treated with a slight excess of n-BuLi under −78 ◦C with the addition of TMEDA
in ether for 2 h. The preferred electrophile PPh2Cl was then added, and the mixture
was allowed to stir overnight. The designed ligand (S,Rp)-16a was obtained in 89% yield
after purification through column chromatography. In their subsequent work, the identical
method was employed to synthesize ligand (S,Rp)-16b, introducing a larger steric hindrance
on the chiral side chain of the oxazoline fragment (Scheme 5) [47].
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However, recent research has unveiled a decrease in diastereoselectivity during the
DoM process when a bulky substituent is present on the oxazoline chiral side chain. In the
treatment of siloxane-substituted oxazoline ferrocene (S)-13c, the conversion of (S,Rp)-16c
was regarded as only 75%, and a significant reduction in diastereoselectivity was observed
(d.r. = 4.5:1, Scheme 6). The hypothesis put forward suggests that the excessively bulky
substituent may decelerate the lithiation reaction rate and diminish regioselectivity during
the lithiation process.
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2.2.2. Bisphosphine Ligands

In 2019, Dai reported groundbreaking work on the chiral bisphosphine oxazoline fer-
rocene derivative with a siloxane substituent group [48]. In contrast to the synthesis method
of mono-phosphine ligands 16, this study successfully synthesized the 1,2′-bisphosphine
ferrocene compound using 1-bromo-1′-carboxyferrocene as the starting material (Scheme 7).
The oxazoline ring formation followed Richards’ synthesis process, with the hydroxyl fer-
rocene amide (S)-18 participating in the cyclization reaction under the treatment of DAST.
The side-chain modification of the oxazoline moiety adopted Zhou’s scheme, leading to
the successful synthesis of siloxane-substituted oxazoline ferrocene (S)-19. Prior to the
directed ortho-lithiation process, a phosphonation reaction was carried out on the lower Cp
ring at the preset bromine atom, resulting in the formation of 1,1′-N,P-oxazoline ferrocene
derivative (S)-22. The analytically pure oxazoline bisphosphine ferrocene (S,Rp)-23 was
finally generated in six steps with an overall yield of 32% from the starting material. The
presented bisphosphine ferrocene compound is considered a potential ligand for transition
metal-catalyzed asymmetric allylic alkylation and Heck reactions.
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The authors also explored the possibility of obtaining the desired product from enan-
tiopure oxazoline ferrocene (S)-13a through a stepwise lithiation process reported by
Kumada for the establishment of 1,2′-bisphosphine ferrocene ligands BPPFA from Ugi’s
amine [49]. However, under the standard stepwise lithiation process conditions, the ap-
pearance of the 2,5-bisphosphine product (S,Rp)-24 demonstrated the failure to obtain the
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desired product due to the possible simultaneous N-directed and O-directed ortho-lithiation
induced by oxazoline as a chiral auxiliary (Scheme 8).
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2.2.3. Hydroxyl Ligands (Catalysts)

Our research group has recently presented an innovative synthesis scheme for siloxane-
substituted hydroxyl oxazoline ferrocene compounds [50]. Classical hydroxyl oxazoline
ferrocene compounds are widely employed as chiral ligands, demonstrating excellent
results in various Zn-catalyzed enantioselective nucleophilic additions to aldehydes [39].
Catalytic findings have revealed that the chiral side-chain structure of oxazoline ferrocene,
the type of coordinative carbinol groups, and the absolute planar chiral configuration of the
participating ligands play crucial roles in determining the stereoselectivity of the optically
active products. In this research report, the structure of siloxane-substituted ligands has
been effectively tailored, leading to the preparation of ligands (S,Sp)-25 and (S,Rp)-26 with
distinct chiral side-chain substituents, carbinol groups, and planar chirality, as listed in
Figure 2.
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Notably, a novel series of N,O,O-tridentate ligands can be easily synthesized from
chiral oxazolinyl hydroxyl ferrocene ligands (S,Sp)-25 with siloxane substitution (Scheme 9).
The desilylation reaction was executed by reacting the synthesized siloxane-substituted
oxazoline ferrocene compounds with 5.0 equivalents of TBAF in THF at 0 ◦C under an
inert atmosphere. The desired desilylated compounds (Sp)-27 were obtained in high
yield for most products. Our laboratory is currently exploring the application of siloxane-
substituted N,O-ligands 25 and 26 and their corresponding desilylated N,O,O-ligands 27 in
enantioselective nucleophilic additions and alkynylation to aldehydes.
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3. Applications of Siloxane-Substituted Oxazoline Ferrocene Ligand in Transition
Metal-Catalyzed Reactions
3.1. Pd-Catalyzed Asymmetric Allylic Alkylation

Aït-Haddou and colleagues employed the synthesized bidentate oxazoline ferrocene
compounds (S,S,Rp)-15 as chiral ligands in a palladium-catalyzed allylic alkylation re-
action [41]. This reaction involved the use of rac-1,3-diphenylprop-2-enyl acetate as the
substrate and dimethyl malonate as the nucleophile (Scheme 10). The Pd complex cata-
lysts were generated in situ from the readily prepared ligands and bis[(η-allyl)palladium
chloride]. The asymmetric allylic substitution took place smoothly in dichloromethane at
36 ◦C using this Pd complex catalyst. Notably, when employing S,N-bidentate oxazoline
ferrocene ligand (S,S,Rp)-15c, the catalytic reaction yielded alkylation products with high
enantioselectivity and almost quantitative yields. This held true regardless of whether
NaH or BSA/KOAc was used as an additive to generate the dimethyl malonate anion. The
researchers also explored the use of corresponding P,N-type ligand (S,S,Rp)-15b under
the same catalytic conditions, which resulted in competitive chemical yields but slightly
decreased enantioselectivity in the chiral alkylation products.
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3.2. Cu-Catalyzed [3 + 2] 1,3-Dipolar Cycloaddition

The FOXAP compounds have proven to be effective ligands in transition metal-
catalyzed [3 + 2] 1,3-dipolar cycloaddition of azomethine ylides, facilitating the synthesis
of enantioenriched pyrrolidines with high stereoselectivity [51–58]. Furthermore, recent
investigations have explored the potential of siloxane-substituted oxazoline phosphine
ferrocenes as alternative ligands in this cycloaddition. In a pioneering study by Zhou’s
group in 2015, chiral siloxane-tagged ligands, exemplified by ligand (S,Rp)-16a, were evalu-
ated as a candidate ligand for the Cu(I)-catalyzed cycloaddition of azomethine ylides with
nitroalkenes [42]. The resulting cycloadduct exo-29a was obtained in 74% yield with an
89:11 d.r. and nearly 97% enantiomeric excess (Scheme 11).

Molecules 2024, 29, 968 9 of 17 
 

 

azomethine ylides with nitroalkenes [42]. The resulting cycloadduct exo-29a was obtained 
in 74% yield with an 89:11 d.r. and nearly 97% enantiomeric excess (Scheme 11). 

 
Scheme 11. Cu(I)-catalyzed [3 + 2] 1,3-dipolar cycloaddition with nitroalkenes. 

Zhou’s group proposed a practical strategy for synthesizing chiral exo-selective 
pyrrolidine-2,4,4-tricarboxylate derivatives through Cu(II)-catalyzed [3 + 2] 1,3-dipolar 
cycloaddition of azomethine ylides with alkylidene malonates in the presence of silox-
ane-substituted ligands (S,Rp)-16 [47]. Optimizing the reaction conditions led to the 
model reaction providing the cyclization product with high yield and excellent enanti-
oselectivity (up to 99% ee). The optimized conditions involved 4 mol% catalyst loading, 
10 mol% K2CO3 as the additive base, and DCM as the solvent at 0 °C (Scheme 12). The 
study expanded the scope of reaction substrates, successfully preparing enantioselective 
pyrrolidines exo-30 with different substituents, exhibiting enantioselectivity ranging from 
78 to 99% ee under the optimized conditions. Importantly, the stable results obtained in 
the gram-scale preparation of exo-30a (Figure 3, 95% yield with 99.2% ee) indicated its 
potential industrial applicability as a chiral Cu complex system. 

 
Scheme 12. Cu(OAc)2-catalyzed [3 + 2] 1,3-dipolar cycloaddition with alkylidene malonates. 

 
Figure 3. Catalytic result and X-ray structure of exo-30a. Copyright 2015 WILEY-VCH Verlag 
GmbH & Co. KGaA, Weinheim. 

Scheme 11. Cu(I)-catalyzed [3 + 2] 1,3-dipolar cycloaddition with nitroalkenes.



Molecules 2024, 29, 968 9 of 17

Zhou’s group proposed a practical strategy for synthesizing chiral exo-selective pyrrolidine-
2,4,4-tricarboxylate derivatives through Cu(II)-catalyzed [3 + 2] 1,3-dipolar cycloaddition of
azomethine ylides with alkylidene malonates in the presence of siloxane-substituted lig-
ands (S,Rp)-16 [47]. Optimizing the reaction conditions led to the model reaction providing
the cyclization product with high yield and excellent enantioselectivity (up to 99% ee). The
optimized conditions involved 4 mol% catalyst loading, 10 mol% K2CO3 as the additive
base, and DCM as the solvent at 0 ◦C (Scheme 12). The study expanded the scope of reac-
tion substrates, successfully preparing enantioselective pyrrolidines exo-30 with different
substituents, exhibiting enantioselectivity ranging from 78 to 99% ee under the optimized
conditions. Importantly, the stable results obtained in the gram-scale preparation of exo-30a
(Figure 3, 95% yield with 99.2% ee) indicated its potential industrial applicability as a chiral
Cu complex system.
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Chiral poly-substituted pyrrolidine derivatives containing a trifluoromethyl unit with
a quaternary stereogenic center can be synthesized using similar catalytic systems [59].
The trifluoromethyl group is valuable in medicinal and agrochemistry due to its abil-
ity to modify the properties of target molecules. Zhou’s group used glycine imidate and
β-trifluoromethyl nitroalkenes as substrates and observed that the target products, 4-nitro-3-
(trifluoromethyl)-pyrrolidine-2-carboxylates exo-31, could be obtained by using the catalyst
generated in situ from Cu(CH3CN)4ClO4 with the readily presented siloxane-substituted
oxazoline phosphine ferrocene (S,Rp)-16b in DCM at 0 ◦C for 8 h (Scheme 13). The results
of extended scope on reaction substrates indicate that chiral pyrrolidine compounds con-
taining quaternary stereogenic centers can be synthesized with excellent stereoselectivity
in most cases. The availability of easily accessible substrates and the potential bioactivity
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of enantioenriched trifluoromethylated pyrrolidine derivatives make this methodology
particularly useful in medicinal and organofluorine chemistry.
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In a recent advancement, Zhou’s group presented an enhanced method for obtain-
ing chiral pyrrolidine-2,3,4-tricarboxylates through enantioselective [3 + 2] 1,3-dipolar
cycloaddition of azomethine ylides [60]. Initial screening involving diethyl fumarate as the
dipolarophile yielded unsatisfactory results. The stereoselectivity of the target product, chi-
ral pyrrolidine derivatives, was substantially improved by substituting diethyl maleates for
diethyl fumarates. The Cu(II) complex, consisting of Cu(OAc)2 and the siloxane-substituted
ligand (S,Rp)-16b, facilitated the generation of the desired exo-cycloadduct with excellent
outcome (up to 96% yield, 99:1 d.r., and 96% ee). Further exploration of substrate reactions
revealed that the position of the substituent on the phenyl group of the azomethine ylide
significantly influenced both catalytic activity and stereoselectivity. The pyrrolidine-2,3,4-
tricarboxylate compounds exo-32 were obtained with the highest stereoselectivity of 99:1
d.r. and 99% ee, underscoring the success of this improved methodology (Scheme 14).
This development not only enhances the efficiency of the enantioselective cycloaddition
process but also provides valuable insights into the impact of substrate modifications on
the reaction outcomes.
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3.3. Cu-Catalyzed Self-Michael Reaction

Zhang reported an innovative synthesis of chiral dimeric chromene derivatives cat-
alyzed by Cu(II) salts using the precursor 2-[(3-cyano-2H-chromen-2-ylidene)amino]acetates
in a self-Michael addition reaction [61]. This method results in the formation of imino-
chromene derivatives 33 with remarkable fluorescence properties, making them highly
suitable for applications as optical whitening agents, laser dyes, and fluorescent probes in
the medical field. Efforts to achieve enantioselective formation of the Michael addition with
the siloxane-tagged FOXAP ligand (S,Rp)-16b led to the synthesis of 2-imino-chromene
dimers with enantiomeric excess ranging from 89% to 97% (Scheme 15). This highlights the
potential of the siloxane-substituted ligands in enabling the controlled and enantioselective
synthesis of chiral chromene derivatives with desirable fluorescence properties.
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3.4. Further Derivation of Siloxane-Substituted Oxazoline Ferrocenes

As discussed in Section 2.2.3, siloxane-substituted oxazoline phosphine ferrocene
ligands can undergo a subsequent desilylation process (Scheme 16). The resulting hydroxyl
group can be further functionalized with ionic groups, enhancing the solubility of chiral
ionic-tagged ligands and their corresponding transition metal complexes in polar solvents,
particularly ionic liquids. This advancement offers a sustainable approach for the recovery
of expensive and environmentally unfriendly transition metal complexes in asymmetric
catalytic reactions.
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In 2015, Zhang introduced an innovative recyclable ionic-tagged ferrocene-ruthenium
catalyst system for the asymmetric hydrogenation of aromatic ketones (Scheme 17) [62].
The study revealed that the newly developed ferrocene-oxazoline phosphine ligand (S,Rp)-
35, incorporating a quaternary ammonium ion group, exhibited outstanding catalytic
performance in the hydrogenation reaction, yielding high product yields (up to 99%) and
enantioselectivity (up to 99.7% ee).
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phase for the chiral catalyst, facilitating the recovery of ionic-tagged transition metal
complexes. Catalytic results demonstrated that the stereoselectivity of the chiral alcoholic
product could be enhanced to 99.9% ee with the involvement of the ionic liquid. The
asymmetric reduction of the catalyst remained effective for at least six runs with a minimum
of 92.2% ee for product 37a (Table 1). Mass spectrometry analysis of the catalyst anion
after the sixth run confirmed the stability of the anionic group of chiral ligand. This
approach highlights the potential for sustainable and efficient recycling in asymmetric
catalytic processes.

Table 1. Selected example of recycled catalysts in asymmetric hydrogenation a.

Chiral Product Run Yield % ee %
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3 97 97.8
4 84 93.4
5 73 92.5
6 67 92.2

a catalytic reaction condition: substrate (1 mmol) concentration of 0.5 M in solvent and KOH (0.1 mmol) as base
under 2 MPa of H2, 30 ◦C, 12 h, substrate/catalyst = 200:1.

In the same year, Zhou introduced a scheme for synthesizing imidazolium-labelled
oxazoline–phosphine–ferrocene ligands (S,Rp)-36 (labeled as FimiOXAP) [42]. Commenc-
ing with siloxane-substituted oxazoline ferrocene (S,Rp)-16a, these imidazolium-tagged
ligands were successfully obtained through a three-step sequential reaction. Meanwhile,
five distinct ligands with varying anions were prepared by anion exchange. Subsequently,
this class of chiral ligands found successful application in Cu(I)-catalyzed enantioselec-
tive [3 + 2] 1,3-dipolar cycloaddition of azomethine ylides with nitroalkenes (Scheme 18).
In-depth studies into the reaction mechanism led to the conclusion that the electrostatic
interaction of the charged ionic groups in the side chain of oxazoline can further enhance
the stereoselectivity of the resulting optically active cycloadducts exo-29.
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Remarkably, these ligands (S,Rp)-36, along with their corresponding transition metal
complexes, exhibited excellent solubility in ionic liquids owing to the incorporation of
ionophilic groups in the chiral ligand structure. Leveraging this unique property, the
cycloaddition reaction smoothly progressed under the combined system of an ionic liquid
and an organic solvent. Notably, the chiral complex catalyst displayed easy recyclability,
maintaining robust conversion and enantioselectivity of exo-29b even after four consecutive
runs (Table 2). This pioneering approach showcases the potential of ionic tagging for
enhancing stereoselectivity and facilitating recyclability in asymmetric catalysis.
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Table 2. Selected example of catalyst recycling in asymmetric 1,3-dipolar cycloaddition a.

Chiral Product Run Yield % d.r. (exo:endo) ee % (exo)
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a catalytic reaction condition: glycine imino ester (0.1 mmol), nitroalkene (0.11 mmol) in 1 mL of DCM/[Bmim]PF6
as solvent and DIPEA (0.01 mmol) as base, 0 ◦C, 12 h, substrate/catalyst = 10:1. Chiral ligand = (S,Rp)-36.

4. Summary and Outlook

In this brief review, we present the research achievements related to siloxane-substituted
oxazoline ferrocene compounds in the past decade. The discussion on synthetic pro-
cesses has unveiled several independent methodologies for crafting precursors of these
compounds. Unlike conventional oxazoline ferrocene compounds, this section presents
extended synthetic routes involving intricate substrates. Fortuitously, the effective syn-
thetic strategies devised by researchers pave the way for their extensive derivatization and
large-scale applications. Furthermore, the DoM procedure emerges as an indispensable
pathway for obtaining highly stereoselective planar chiral ligands. The chemical inertness
and substantial steric hindrance of the siloxane group empower the construction of ortho-
functionalized ferrocene products with remarkable diastereoselectivity, even in the absence
of additional additives. Siloxane-substituted oxazoline ferrocene ligands have transcended
mono-phosphine ligands, venturing into the synthesis of unsymmetrical bisphosphine
ligands and planar chiral N,O-catalysts.

On another front, siloxane-substituted oxazoline phosphine ferrocenes have proven
to be highly effective ligands across mechanistically diverse transformations, yielding
products with impressive stereoselectivity. In the realm of Cu-catalyzed [3 + 2] 1,3-dipolar
cycloaddition of azomethine ylides, more than 70 chiral poly-substituted pyrrolidine deriva-
tives have been synthesized with outstanding stereoselectivity. The consistent outcomes on
a gram scale underscore the potential industrial applicability of Cu complex catalysts. Posi-
tive results in asymmetric allylic alkylation and Michael reactions further underscore the
broad and practical applications of siloxane-substituted oxazoline phosphine ferrocenes.

A noteworthy development is the production of a series of ionic-tagged chiral ligands
through further functionalization of the oxazoline side chain, implemented in recoverable
catalytic systems. In the arena of asymmetric catalysis, these ionic-tagged catalysts exhibit
comparable, if not superior, catalytic efficacy compared to traditional FOXAP ligands.
The solubility of these ligands in ionic liquids facilitates the recovery of expensive and
environmentally unfriendly transition metal complexes, marking a notable advancement
in sustainable catalytic processes.

While the recent advancements in siloxane-substituted oxazoline ferrocene ligands have
shown promise in transition metal-catalyzed asymmetric reactions, there remains substantial
room for improvement and further exploration in this field. Addressing the following aspects
could pave the way for enhanced applications and innovative developments:

1. Optimizing Steric Hindrance: Siloxane-substituted oxazoline ferrocene ligands, with
their tunable side-chain structure, provide superior steric hindrance compared to conven-
tional oxazoline ferrocene ligands. This characteristic is particularly valuable in the prepa-
ration of pharmaceutical fragments or natural products requiring precise steric hindrance.
Future research could focus on exploiting this flexibility to achieve optimal stereoselective
results in challenging synthesis processes.

2. Functionalization and Solubility Enhancement: The derivatization of chiral siloxane-
substituted oxazoline ferrocene compounds opens avenues for further functionalization as
chiral ligands and catalysts. Incorporating ionophilic or hydrophilic groups into the chiral
side chain can enhance the solubility of these ligands and their corresponding transition
metal complexes in ionic liquids or pure water. This advancement could lead to transition
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metal-catalyzed asymmetric reactions conducted in environmentally friendly solvents,
aligning with green chemistry principles.

3. Unique Catalytic Properties: The electron-rich siloxane group’s ability to attract elec-
trophilic reagents and repel nucleophiles presents an intriguing challenge and opportunity.
Understanding and harnessing this unique property could offer valuable insights into opti-
mizing reaction conditions and improving stereoselectivity. Further research is essential
to unravel the implications of the siloxane-substituted oxazoline ferrocene’s distinctive
catalytic behavior.

Our research group is actively exploring these subjects, aiming to contribute to the
ongoing progress in the synthesis and application of siloxane-substituted oxazoline fer-
rocene compounds. As we delve deeper into these investigations, we anticipate uncovering
new possibilities and refining existing methodologies for more sustainable and efficient
asymmetric catalysis.
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BSA N,O-bis(trimethlysilyl)acetamide
d.r. diastereoselectivity ratio
DAST diethylaminosulphur trifluoride
DCM dichloromethane
DIPEA N,N-diisopropylethylamine
DMAP 4-(dimethylamino)pyridine
DMF N,N-dimethylformamide
ee enantiomeric excess
FOXAP oxazoline phosphine ferrocene (ligands)
IL ionic liquids
o-Tol 2-methylphenyl
PEG polyethylene glycol
rt room temperature
TBAF tetrabutylammonium fluoride
TBS tert-butyldimethylsilyl
TEA triethylamine
THF tetrahydrofuran
TMEDA N,N,N′,N′-tetramethylethylenediamine
TMS trimethylsilyl
TsCl tosyl chloride
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