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Abstract: Acute lung injury (ALI) is a respiratory failure disease associated with high mortality rates in
patients. The primary pathological damage is attributed to the excessive release of pro-inflammatory
mediators in pulmonary tissue. However, specific therapy for ALI has not been developed. In this
study, a series of novel ferulic acid-parthenolide (FA-PTL) and ferulic acid-micheliolide (FA-MCL)
hybrid derivatives were designed, synthesized, and evaluated for their anti-inflammatory activities
in vitro. Compounds 2, 4, and 6 showed pronounced anti-inflammatory activity against LPS-induced
expression of pro-inflammatory cytokines in vitro. Importantly, compound 6 displayed good water
solubility, and treatment of mice with compound 6 (10 mg/kg) significantly prevented weight loss and
ameliorated inflammatory cell infiltration and edema in lung tissue, as well as improving the alveolar
structure. These results suggest that compound 6 (((1aR,7aS,8R,10aS,10bS,E)-8-((dimethylamino)methyl)-
1a-methyl-9-oxo-1a,2,3,6,7,7a,8,9,10a,10b-decahydrooxireno[2′,3′:9,10]cyclodeca[1,2-b]furan-5-yl)methyl
(E)-3-(4-hydroxy-3-methoxyphenyl)acrylate 2-hydroxypropane-1,2,3-tricarboxylate) might be consid-
ered as a lead compound for further evaluation as a potential anti-ALI agent.

Keywords: parthenolide; micheliolide; ferulic acid; anti-inflammatory activity; acute lung injury

1. Introduction

Inflammation is a basic innate immune response to the disordered tissue homeostasis,
such as allergens, pathogens, damaged cells, infection or tissue damage [1]. Many diseases
arise from sites of infection and inflammation, including sepsis [2], atherosclerosis [3],
diabetes [4], obesity and cancers [5]. Among the many diseases associated with inflam-
mation, acute lung injury (ALI) is respiratory diseases with high mortality rates which is
caused by pneumonia, pulmonary contusion, severe sepsis, gastroesophageal reflux, shock,
transfusion, drug toxicity and acute pancreatitis [6]. In recent years, a series of studies have
unveiled that blocking inflammatory response was considered as an effective strategy for
treatment of ALI [7,8]. Although substantial progress has been achieved in the clinical
therapeutics of ALI, the mortality of ALI still remains at a high level due to the lack of
effective drug [9]. Thus, the discovery of novel and effective anti-inflammation agents for
the treatment of ALI is highly desirable.

Parthenolide (PTL), a natural germacrane sesquiterpene lactone derived from Fever-
few (Tanacetum parthenium L.), has demonstrated remarkable biological activities in cancer
cells [10–12]. It has also attracted considerable interest for its potential therapeutic effects
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in inflammatory diseases [13]. PTL has been shown to ameliorate colon inflammation in a
gut microbiota-dependent manner by improving Treg/Th17 balance, mediated through in-
creased production of microbiota-derived SCFAs in intestinal mucosa [14]. In addition, PTL
exhibits the ability to inhibit neuroinflammation, displaying potent anti-neuroinflammatory
activity and neuroprotective effects [15,16]. Interestingly, in vivo studies have demonstrated
that PTL attenuates bleomysion-induced pulmonary fibrosis by inhibiting the NF-κB/Snail
signaling pathway [17].

It is noted that PTL can be easily converted into micheliolide (MCL), a natural gua-
ianolide sesquiterpene lactone which was isolated from Michelia compressa and Michelia
champaca (Figure 1), in the presence of p-toluenesulfonic acid, with an excellent yield [18].
Compared with PTL, MCL has a more stable structure, improved pharmacokinetic profile
in vivo and similar promising anti-inflammatory and anti-tumor properties [19–21]. More-
over, primary lung fibroblasts derived from eight patients with IPF and eight age-matched
non-diseased controls (NDC) were treated with 0–10 µM ACT001, and results showed that
ACT001 inhibited IL-6 but not IL-8 production in unstimulated fibroblasts [22]. Although
tremendous advancements have been made in the field of sesquiterpenes lactones, poor
water solubility limited its clinical application.
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Figure 1. FA, PTL, MCL and their derivatives.

Ferulic acid (FA) is a naturally occurring phenolic acid abundant in corn, wheat, and
flax, exhibiting broad spectrum biological activities including anti-inflammatory [23], anti-
diabetic [24], anticancer [25], and cardioprotective activity [26]. A survey of the literature
reveals that ferulic acid contributes to the inhibition of the inflammatory responses in
LPS-induced RAW 264.7 macrophages through inactivation of NF-κB pathway [27]. As
typical examples, Nie and co-workers reported that ferulic acid could positively modulate
the inflammatory response to septic liver injury, dose-dependently increase the viability
of RAW264.7 cells and decrease the levels of pro-inflammatory factors [28]. Wu verified
that ferulic acid can alleviate lipopolysaccharide-induced acute lung injury through the
TLR4/NF-κB signaling pathway [29]. Despite the excellent anti-inflammatory activity
displayed by ferulic acid and sesquiterpene lactones, their limited water solubility and
bioavailability significantly restrict their clinical applications. A comprehensive investi-
gation is necessary to determine whether synthesizing hybrid molecules, leveraging the
synergistic effects of ferulic acid and sesquiterpene lactones, can enhance anti-inflammatory
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and anti-acute lung injury activities. Thus, we designed and synthesized a series of FA-
PTL, FA-MCL hybrids, and evaluated their anti-inflammatory activity and the ability
to ameliorate the acute lung injury induced by bleomycin (BLM) (Figure 1, compounds
1–6). Furthermore, compound 6 was further tested as a novel anti-inflammatory agent for
treatment of ALI in an animal model of ALI.

2. Results
2.1. Chemistry

The preparation of ferulic acid-parthenolide (FA-PTL) or ferulic acid-micheliolide
(FA-MCL) hybrids is illustrated in Schemes 1 and 2. As shown in Scheme 1, protection of
the hydroxyl groups in ferulic acid with tert-butyldimethylchlorosilane (TBSCl) afforded
compound 8 in 97% yield. Treatment of compound 8 with thionyl chloride gave crude
corresponding acyl chloride intermediate, which reacted with MCL to afford compound 9
in 30% isolated yield for two steps. Then, compound 1 was obtained by the removal of the
protecting group. Michael addition of compound 9 with dimethylamine hydrochloride at
room temperature gave compound 10 in 86% yield. Deprotection of compound 10 gave
compound 2 in moderate yield. Finally, the reaction of compound 2 with citric acid gave 5
in 77% yield.
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Scheme 1. Synthesis of compounds 1 and 5.

As shown in Scheme 2, MMB (11) was obtained by the allylic oxidation of PTL in the
presence of SeO2 and TBHP. The required compound 3 was prepared from MMB via Mit-
sunobu reaction. The compound 3 reacted with dimethylamine hydrochloride via Michael
addition, followed by mixture with citric acid to obtain salt 6. The Michael addition reaction
between MMB (11) and dimethylamine hydrochloride afforded compound 13 in excellent
yield. The resulting additive product 13 can be easily converted into azide 14, followed
by PPh3-promoted reduction of the azide functional group successfully gave compound
15. Ferulic acid reacted smoothly with allenone 17 via 1,4-addition/isomerization cascade
reaction to furnish compound 16 under mild conditions [30]. The reaction of compound 16
with amine 15 by aminolysis, gave compound 4 in a moderate yield.
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2.2. Assessment of Cytotoxicity

CCK-8 Cell Proliferation was used to confirm the non-cytotoxic dose of those deriva-
tives in RAW264.7 cells. However, IC50 values of those compounds show visible difference
in vitro (Table 1). Considering the safety of compound 6 in RAW264.7 cells, a follow-up
experiment was carried out at the concentration of 2 µM.

Table 1. IC50 of several anti-inflammatory compounds.

Entry Compounds MW IC50 (µM)

1 FA 194.19 >100
2 MCL 248.14 9.03 ± 0.16
3 PTL 248.32 5.35 ± 0.06
4 1 424.18 6.14 ± 0.09
5 2 469.25 19.58 ± 0.21
6 3 440.18 3.04 ± 0.08
7 4 484.26 38.39 ± 1.14
8 5 661.27 28.80 ± 0.21
9 6 677.25 6.95 ± 1.09

All values are the means of three independent experiments. MW, molecular weight; IC50, half maximal inhibitory
concentration.

2.3. Anti-Inflammation of Compounds in RAW264.7 Cells

Inflammatory factors, including TNF-α, IL-1β, and IL-6, are involved in and acceler-
ate inflammatory responses during inflammatory progression. In addition, iNOS (Nitric
oxide synthase)-derived monocytes contribute to macrophage recruitment in the lung,
and pulmonary-derived iNOS is detrimental during acute lung injury [31]. Moreover,
observations indicate that inhibiting iNOS can reduce inflammation in the early stages
of the bleomycin model of acute lung injury [32]. Therefore, the effective suppression
of inflammation is considered an effective marker for the treatment of inflammation. To
establish the efficacy of those compounds suppressing inflammatory procession, we tested
pro-inflammatory cytokines that are released from the RAW264.7 cells upon LPS stimu-
lation. Preliminary results showed that 1 and 3 could reduce the gene expression levels
of IL-1β, IL-6 and iNOS significantly compared with LPS stimulation in macrophages
(Figure 2). Noticeably, although FA-MCL hybrid 1 showed significant inhibitory in pro-
inflammatory cytokines, its corresponding Michael adduct 2 showed decreased activity
compared with compound 1. Similarly, neither the amide derivative of FA-PTL hybrid 4 or
5 (the prodrug of 2 containing citric acid) showed anti-inflammation activities.
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Figure 2. Anti-inflammation of 1–6 in RAW264.7 Cells. Expression of proinflammatory cytokines
in RAW264.7 cells use RT-PCR. Cells (1 × 106 cells/well) were seeded into 6-well plates and then
pro-treated with 1–6 for 2 h. Cells were then challenged with LPS (1 µg/mL) or medium alone for
6 h and Total RNA was extracted from cells with Trizol reagent. TNF-α: tumor necrosis factor-α;
IL-1β:Interleukin-1β; L-6: Interleukin-6. Data were analyzed by One-Way ANOVA. *: p < 0.05;
**: p < 0.01. ns: no significance.

Although compounds 1, 3, and 6 demonstrate comparable activities, compound
6 stands out with outstanding water solubility, a feature not present in compounds 1
and 3 (Table 2). Compound 6, the citrate salt of compound 12, is obtained through the
Michael reaction of compound 3 with dimethylamine. The use of Michael adducts can
serve to modulate the release rate of active drugs, thereby enabling better control over
the pharmacological effects of such compounds. For example, ACT001 is a salt that
can dissolve in the stomach (pH = 1–3). Subsequently, upon entering the intestines, as
the pH increases ACT001 converts to its prodrug form (DMAMCL), which is slowly
absorbed. After absorption into the bloodstream (pH = 7.4), the active ingredient MCL
is slowly released through a retro-Michael addition reaction. Through the combination
of slow absorption and slow release, the blood concentration of the active ingredient
can be controlled, thereby significantly increasing safety and oral bioavailability while
maintaining therapeutic efficacy. ACT001 has demonstrated favorable therapeutic effects
in various disease models, including brain tumors [19,33]. Similarly, compound 6 showed
the potential for decreasing the expression of proinflammatory cytokines IL-1β, IL-6 and
iNOS (Figures 1 and 2). We next detected the protein levels of TNF-α and IL-6 by ELISA
assay and found that 6 could also inhibit the release of pro-inflammatory cytokines in vitro
(Figure 3). Given that compound 6 had better overall properties than 1 and 3, it was chosen
for further exploration.
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Table 2. The aqueous solubility of compounds 1–6 a.

Compounds
Aqueous Solubility IC50 (µg/mL)

pH = 7.0

PTL 50
MCL 50

1 <10
2 <10
3 <10
4 <10
5 2500
6 2500

a: The assays were measured at least in duplicate.
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Figure 3. Protein levels of pro-inflammatory RAW264.7 Cells. RAW 264.7 cells were seeded into
12-well plates and then pro-treated with 6 for 6 h. Cells were then stimulated with LPS for 24 h.
After 24 h incubation, the supernatant were collected and stored at −20 ◦C. The levels of TNF-α
and IL-1β in the supernate were measured using the ELISA kit according to the manufacturer’s
instructions. (Left,middle) pictures show the protein levels of TNF-α and IL-1β. (Right) picture
shows the structure of compound 6. Data were analyzed using One-Way ANOVA. **: p < 0.01. ns: no
significance.

2.4. Compound 6 Mitigated the Inflammation of BLM-Induced Mice

To further confirm the anti-inflammation effect of compound 6 in vivo, we made
the acute-lung-injury model in C57/6j mice using bleomycin. Part weight gain was ob-
served in the control group as a function of time, and lung delivery of bleomycin (BLM,
2.5 mg/kg) caused a significant weight loss. In contrast, daily (i.p) treatment with com-
pound 6 (10 mg/kg) in mice with BLM-induced lung injury prevented the weight loss
significantly and mitigated the acute lung injury induced by BLM (Figure 4A,B). However,
treatment of 6 did not reverse the survival rate of BLM mice. Moreover, the effect of dexam-
ethasone and the compound 6 was not observed during the acute exudative phase (i.e., at
3–7 days) as we expected. To further investigate the protective effect of 6 by BLM-induced
ALI, the pathological changes in lung tissues were studied (Figure 5). The results of lung
H&E staining showed that there were a large number of inflammatory cell infiltrates in
the lung tissues of mice in the BLM group, accompanied by edema and destruction of the
alveolar structure. Compound 6 reduced inflammatory cell infiltration and edema in lung
tissue of mice, and improved alveolar structure. These results indicated that compound 6
significantly inhibited cell infiltration in lung tissue and had a good protective effect on
BLM-induced acute lung injury in mice.
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Figure 4. Effect of compound 6 on body weight and survival after bleomycin-induced acute lung
injury in mice. After bleomycin (4 mg/kg, 25 µL), mice were treated (i.p) daily with compound
6 (10 mg/kg, 100 µL) for 14 days. Body weight variations ((A), n = 12) and percentage (%) of
mouse survival ((B), n = 5–12) were compared between the four groups. (Values are means ± SEM,
** p < 0.01).
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Figure 5. Pathological image of the protective effect of compound 6 on the ALI mice. Pathological
image (×2, ×20) observation of mouse lung tissue sections stained with HE.

2.5. Transformation from Prodrug to Active Drug

The Michael addition reaction has emerged as an effective synthetic strategy to im-
prove the water solubility and pharmaceutical efficacy of active drug compounds [34].
For example, DMAPT is an adduct of parthenolide that exhibits a solubility more than
1000 times greater than its parent compound and has entered clinical trials in the United
Kingdom for the treatment of various hematological malignancies, including acute myeloid
leukemia (AML), acute lymphoblastic leukemia (ALL), and chronic lymphocytic leukemia
(CLL) [35]. In addition, the use of Michael addition products can also serve to modulate
the release rate of active drugs, thereby enabling better control over the pharmacological
effects of such compounds. Thus, the experiment of converting the prodrug compound (6)
into compound (3) was evaluated in a HEPES buffer solution with a pH of 7.4. Compound
6 rapidly releases compound 3 under these conditions. (Figure 6, T1/2 = 2 h). Aqueous
solubility of compounds 1–6 was also investigated, the results show that compounds
1–4 possessed worse solubility than parthenolide and micheliolide at pH 7.0. However,
salts 5 (Sol. = µg/mL, pH = 7.0) and 6 (Sol. = µg/mL, pH = 7.0) showed significantly
improved water solubility at pH 7.0, which was much greater than that of parthenolide
and micheliolide.
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3. Experimental Procedure and Methods
3.1. Chemistry

All reagents and solvent were commercially available at analytical grade and were
used as received. The used solvents were purified and dried according to common proce-
dures. High-resolution mass spectra (HRMS) were obtained with a FTICR-MS (Ionspec
7.0T) spectrometer (Lebrilla League, Davis, CA, USA). The 1H and 13C NMR spectra were
recorded on a Bruker AV 400 MHz spectrometer (Billerica, MA, USA) and calibrated by
using internal references and solvent signals CDCl3 (δH 7.26, δC 77.00), D2O (δH 4.80) and
DMSO-d6 (δH 2.50, δC 40) solution. The following abbreviations were used to explain mul-
tiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad). Flash
column chromatography was performed over silica gel 200−300 mesh, and the eluent was
a mixture of ethyl acetate (EA) and petroleum ether (PE) or a mixture of dichloromethane
(DCM) and Methanol (MeOH). High-resolution mass spectra (HRMS) were detected by
Q Exactive Focus LC-MS (Thermo, Waltham, MA, USA). HPLC data were recorded on
Shimadzu LC-20AT (Tokyo, Japan). For the 1H and 13C NMR spectra of compounds
(7, 9, 1, 10, 2, 5, 3, 12, 6, 13, 14, 15, 16, and 4), please see the supporting information
(Figures S1–S26).

3.1.1. Compound 9

(3aS,9R,9bS)-6,9-dimethyl-3-methylene-2-oxo-2,3,3a,4,5,7,8,9,9a,9b-decahydroazuleno[4,5-b]furan-
9-yl (E)-3-(4-((tert-butyldimethylsilyl)oxy)-3-methoxyphenyl)acrylate (9). To a solution of com-
pound 7 (5 mmol) in Toluene (2 mL) was added SOCl2 (2 mL) and DMF (a drop) at 0 ◦C
under N2 atmosphere. Then the mixture was stirred at 80 ◦C for 1 h. Removal of the organic
layer under vacuum gave crude acyl chloride.

To a solution of MCL (2.5 mmol) in anhydrous CH2Cl2 (5 mL) was added DIPEA
(5 mmol) at 0 ◦C under N2 atmosphere. Then the crude acyl chloride in anhydrous
CH2Cl2 (2 mL) was added dropwise at this temperature. The mixture was stirred at
room temperature for 6h. The reaction was quenched with saturated aqueous NH4Cl
and extracted with CH2Cl2 (3 × 15 mL). The combined organic layers were washed with
saturated brine, dried over Na2SO4, and concentrated to give an oily crude product, which
was purified on a silica gel column (hexanes: EtOAc = 10:1) to yield compound 9 as a
colorless oil. Yield: 30%; 1H NMR (400 MHz, CDCl3): δ = 7.66 (d, J = 15.9 Hz, 1H), 7.08–7.03
(m, 2H), 6.82 (d, J = 8.1 Hz, 1H), 6.27–6.20 (m, 2H), 5.48 (d, J = 3.1 Hz, 1H), 3.88–3.83 (m,
4H), 3.15 (d, J = 10.1 Hz, 1H), 2.75–2.70 (m, 1H), 2.63–2.57 (m, 1H), 2.51–2.46 (m, 1H), 2.28
(s, 3H), 2.23–2.09 (m, 1H), 2.04–1.95 (m, 1H), 1.73 (s, 3H), 1.62 (s, 1H), 1.59 (s, 3H), 0.98 (s,
9H), 0.16 (s, 6H). 13C NMR (100 MHz, CDCl3): δ = 170.4, 166.6, 151.1, 147.1, 144.7, 139.4,
131.6, 129.9, 128.6, 122.3, 120.9, 118.8, 117.4, 110.8, 88.4, 83.1, 57.3, 55.4, 49.9, 36.6, 34.9, 30.6,
25.9, 25.6, 24.2, 18.5, 18.4, −4.7. HRMS (ESI): m/z [M + H]+ calcd for C31H43O6Si: 539.2823;
found: 539.2821.
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3.1.2. Compound 1

(3aS,9R,9bS)-6,9-dimethyl-3-methylene-2-oxo-2,3,3a,4,5,7,8,9,9a,9b-decahydroazuleno[4,5-b]furan-
9-yl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate (1). To a solution of compound 9 (0.9 mmol)
in THF (3 mL) was added TBAF (1.8 mmol) at 0 ◦C. Then the reaction mixture was stirred
at room temperature for 40 min. The reaction was quenched with saturated ammonium
chloride solution and extracted with EtOAc (3 × 15 mL). The combined organic layers were
washed with saturated brine, dried over Na2SO4, and concentrated to give an oily crude
product, which was purified on a silica gel column (hexanes: EtOAc = 3:1) to yield com-
pound 1 as a yellow oil. Yield: 76%; 1H NMR (400 MHz, CDCl3): δ = 7.66 (d, J = 15.9 Hz,
1H), 7.09–7.07 (m, 2H), 6.89 (d, J = 8.7 Hz, 1H), 6.27–6.21 (m, 2H), 5.49 (d, J = 3.1 Hz, 1H),
3.92 (s, 3H), 3.86 (t, J = 10.1 Hz, 1H), 3.15 (d, J = 10.2 Hz, 1H), 2.75–2.70 (m, 1H), 2.63–
2.58 (m, 1H), 2.51–2.45 (m, 1H), 2.28 (s, 3H), 2.12–2.09 (m, 1H), 2.04–1.95 (m, 1H), 1.72 (d,
J = 1.8 Hz, 3H), 1.59 (s, 3H), 1.43–1.33 (m, 1H), 1.28–1.21 (m, 1H).13C NMR (100 MHz, CDCl3):
δ = 170.4, 166.6, 147.7, 146.7, 144.7, 139.5, 131.6, 129.9, 127.3, 123.1, 118.8, 117.0, 114.6, 109.6,
88.5, 83.1, 57.3, 55.9, 49.9, 36.7, 35.0, 30.6, 25.9, 24.2, 18.5. HRMS (ESI): m/z [M + H]+ calcd
for C25H29O6: 425.1959; found: 425.1957.

3.1.3. Compound 10

(3R,3aS,9R,9bS)-3-((dimethylamino)methyl)-6,9-dimethyl-2-oxo-2,3,3a,4,5,7,8,9,9a,9b-
decahydroazuleno[4,5-b]furan-9-yl (E)-3-(4-((tert-butyldiphenylsilyl)oxy)-3-methoxyphenyl)acrylate
(10). Compound 9 (0.6 mmol), K2CO3 (9 mmol) and Me2NH·HCl (4.8 mmol) were added
to dry DCM (5 mL) at room temperature and the resulting solution was stirred at this
temperature for 5 h. The solid in the mixture was filtered off, and the resulting solution
was concentrated under reduced pressure. The residue was dissolved in CH2Cl2, and then
washed with water. The organic layer was dried with Na2SO4 and concentrated under
reduced pressure. The residue was purified by column chromatography on silica gel using
ethyl acetate−petroleum ether as the eluent to give the desired product 10 as a yellow oil.
Yield: 86%; 1H NMR (400 MHz, CDCl3):δ = 7.66 (d, J = 15.9 Hz, 1H), 7.09–7.01 (m, 2H),
6.81 (d, J = 8.1 Hz, 1H), 6.24 (d, J = 15.9 Hz, 1H), 3.87–3.80 (m, 4H), 3.07 (d, J = 9.0 Hz, 1H),
2.74 (dd, J = 12.9, 4.8 Hz, 1H), 2.64–2.54 (m, 2H), 2.50–2.35 (m, 2H), 2.26 (s, 6H), 2.19–1.89
(m, 5H), 1.70 (s, 3H), 1.58 (s, 3H), 1.37–1.13 (m, 2H), 0.98 (s, 9H), 0.16 (s, 6H).13C NMR
(100 MHz, CDCl3): δ = 177.5, 166.6, 151.1, 147.1, 144.7, 131.9, 129.9, 128.7, 122.1, 120.9, 117.5,
111.1, 88.6, 82.5, 58.5, 56.9, 55.4, 51.5, 46.0, 45.9, 44.94, 36.8, 35.4, 30.4, 27.4, 25.7, 23.9, 18.6,
18.5, −4.6. HRMS (ESI): m/z [M + H]+ calcd for chemical formula: C33H50NO6Si: 584.3402;
found: 584.3399.

3.1.4. Compound 2

(3R,3aS,9R,9aS,9bS)-3-((dimethylamino)methyl)-6,9-dimethyl-2-oxo-2,3,3a,4,5,7,8,9,9a,9b-
decahydroazuleno[4,5-b]furan-9-yl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate (2). To a solu-
tion of compound 10 (0.6 mmol) in THF (3 mL) was added TBAF at 0 ◦C. Then the
reaction mixture was stirred at room temperature for 40 min. The reaction was quenched
with saturated ammonium chloride solution and extracted with EtOAc (3 × 15 mL). The
combined organic layers were washed with saturated brine, dried over Na2SO4, and con-
centrated to give an oily crude product, which was purified on a silica gel column (CH2Cl2:
MeOH = 20:1) to yield compound 2 as a yellow solid. Yield: 64%. mp: 139−141 ◦C. 1H
NMR (400 MHz, CDCl3):δ = 7.64 (d, J = 15.9 Hz, 1H), 7.06 (d, J = 8.6 Hz, 2H), 6.86 (d,
J = 7.7 Hz, 1H), 6.22 (d, J = 15.9 Hz, 1H), 3.90 (s, 3H), 3.84 (t, J = 10.1 Hz, 1H), 3.05 (d, J = 10.0
Hz, 1H), 2.74 (dd, J = 13.0, 4.9 Hz, 1H), 2.67–2.53 (m, 2H), 2.50–2.35 (m, 2H), 2.27–1.96 (m,
12H), 1.69 (s, 3H), 1.57 (s, 3H), 1.38–1.19 (m, 2H). 13C NMR (100 MHz, CDCl3): δ = 177.5,
166.7, 147.8, 146.8, 144.7, 131.9, 129.8, 127.1, 122.9, 116.9, 114.7, 109.8, 88.6, 82.5, 58.2, 56.9,
55.9, 51.4, 45.9, 44.9, 36.7, 35.3, 30.4, 27.3, 23.9, 18.5. HRMS (ESI): m/z [M + H]+ calcd for
chemical formula: C27H36NO6: 470.2537; found: 470.2538.
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3.1.5. Compound 5

(3R,3aS,9R,9aS,9bS)-3-((dimethylamino)methyl)-6,9-dimethyl-2-oxo-2,3,3a,4,5,7,8,9,9a,9b-
decahydroazuleno[4,5-b]furan-9-yl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate 2-hydroxypropane-
1,2,3-tricarboxylate (5). To a solution of compound 2 (1.0 mmol) in EtOAc (10 mL) was added
citric acid (1.0 mmol) at room temperature. Then the reaction mixture was stirred at room
temperature for 30 min. The white solid in the mixture was filtered off, and washed with
EtOAc to obtain compound 5. Yield: 77%. mp: 96−98 ◦C. 1H NMR (400 MHz, DMSO-d6):
9.58 (s, 1H), 7.57 (d, J = 15.8 Hz, 1H), 7.28 (d, J = 1.8 Hz, 1H), 7.08 (dd, J = 8.2, 1.8 Hz,
1H), 6.78 (d, J = 8.1 Hz, 1H), 6.31 (d, J = 15.8 Hz, 1H), 4.0–3.95 (m, 1H), 3.81 (s, 3H), 3.07
(d, J = 9.8 Hz, 1H), 2.83–2.76 (m, 3H), 2.65–2.49 (m, 4H), 2.48–2.28 (m, 8H), 2.27–2.00 (m,
5H), 1.95–1.87 (m, 1H), 1.68 (s, 3H), 1.49 (s, 3H), 1.36–1.29 (m, 1H). 13C NMR (100 MHz,
DMSO-d6): δ = 177.5, 176.9, 170.8, 166.4, 149.7, 148.4, 145.4, 132.1, 130.1, 126.2, 123.5, 116.4,
115.9, 111.6, 88.7, 82.2, 71.9, 57.4, 56.3, 56.1, 50.9, 45.4, 44.4, 43.6, 36.8, 35.2, 30.3, 26.8, 24.3,
21.2, 14.6. HRMS (ESI): m/z [M + H]+ calcd for chemical formula: C27H36NO13: 470.2537;
found: 470.2539.

3.1.6. Compound 3

((1aR,7aS,10aS,10bS,E)-1a-methyl-8-methylene-9-oxo-1a,2,3,6,7,7a,8,9,10a,10b-decahydrooxireno
[2′,3′:9,10]cyclodeca[1,2-b]furan-5-yl)methyl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate (3). To
a solution of MMB (5 mmol), Ferulic acid (7.5 mmol) and PPh3 (7.5 mmol) in anhydrous
THF (50 mL) was added DIAD (5 mmol) at room temperature under N2 atmosphere. The
reaction was stirred for 4h at room temperature. The reaction was quenched with saturated
ammonium chloride solution and extracted with EtOAc (3 × 30 mL). The combined organic
layers were washed with saturated brine, dried over Na2SO4, and concentrated. The crude
product was purified on a silica gel column (PE: EA = 2:1) to yield compound 3 as a yellow
solid. Yield: 55%; mp: 96−98 ◦C. 1H NMR (400 MHz, CDCl3) δ = 7.60 (d, J = 15.9 Hz, 1H),
7.05 (dd, J = 8.2, 1.8 Hz, 1H), 6.99 (d, J = 1.8 Hz, 1H), 6.91 (d, J = 8.2 Hz, 1H), 6.24 (dd,
J = 9.7, 6.2 Hz, 2H), 6.03 (s, 1H), 5.73 (t, J = 8.1 Hz, 1H), 5.55 (d, J = 3.2 Hz, 1H), 4.76 (d,
J = 12.5 Hz, 1H), 4.59 (d, J = 12.5 Hz, 1H), 3.92 (s, 3H), 3.87 (t, J = 9.3 Hz, 1H), 3.01 (m,
J = 9.1, 4.7 Hz, 1H), 2.90 (d, J = 9.4 Hz, 1H), 2.47–2.16 (m, 6H), 1.72–1.65 (m, 1H), 1.55 (s,
3H), 1.12 (t, J = 12.6 Hz, 1H).

3.1.7. Compound 12

((1aR,7aS,8R,10aS,10bS,E)-8-((dimethylamino)methyl)-1a-methyl-9-oxo-1a,2,3,6,7,7a,8,9,10a,10b-
decahydrooxireno[2′,3′:9,10]cyclodeca[1,2-b]furan-5-yl)methyl (E)-3-(4-hydroxy-3-methoxyphenyl)
acrylate (12). Compound 3 (1 mmol), K2CO3 (15 mmol) and Me2NH·HCl (8 mmol) were
added to dry DCM (10 mL) at room temperature and the resulting solution was stirred
at this temperature for 5 h. The solid in the mixture was filtered off, and the resulting
solution was concentrated under reduced pressure. The residue was dissolved in CH2Cl2,
and then washed with water. The organic layer was dried with Na2SO4 and concentrated
under reduced pressure. The residue was purified by column chromatography on silica
gel using ethyl acetate−petroleum ether as the eluent to give the desired product 12 as a
yellow oil. Yield: 96%; 1H NMR (400 MHz, CDCl3): δ = 7.62 (d, J = 15.9 Hz, 1H), 7.08 (dd,
J = 8.2, 1.8 Hz, 1H), 7.03–7.02 (m, 1H), 6.92 (d, J = 8.2 Hz, 1H), 6.30 (d, J = 15.9 Hz, 1H), 5.66 (t,
J = 8.0 Hz, 1H), 4.87 (d, J = 12.8 Hz, 1H), 4.66 (d, J = 12.9 Hz, 1H), 3.92 (s, 3H), 3.90–3.84 (m,
2H), 2.81 (d, J = 9.4 Hz, 1H), 2.78–2.74 (m, 1H), 2.64 (dd, J = 12.9, 5.7 Hz, 1H), 2.51–2.28 (m,
6H), 2.24 (s, 6H), 2.18–2.12 (m, 2H), 1.59–1.54 (m, 4H), 1.10 (t, J = 12.7 Hz, 1H). 13C NMR
(100 MHz, CDCl3) δ = 176.9, 166.8, 148.1, 146.8, 145.2, 135.9, 128.5, 126.8, 123.1, 114.9, 114.7,
109.3, 81.2, 66.2, 63.8, 59.8, 58.2, 55.9, 45.7, 44.4, 42.9, 36.9, 26.9, 24.5, 23.7, 17.9. HRMS (ESI):
m/z [M + H]+ calcd for chemical formula: C27H36NO7: 486.2486; found: 486.2485.

3.1.8. Compound 6

((1aR,7aS,8R,10aS,10bS,E)-8-((dimethylamino)methyl)-1a-methyl-9-oxo-1a,2,3,6,7,7a,8,9,10a,10b-
decahydrooxireno[2′,3′:9,10]cyclodeca[1,2-b]furan-5-yl)methyl (E)-3-(4-hydroxy-3-methoxyphenyl)
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acrylate 2-hydroxypropane-1,2,3-tricarboxylate (6). To a solution of compound 12 (1 mmol)
in EtOAc (10 mL) was added citric acid (1 mmol) at room temperature. Then the reac-
tion mixture was stirred at 70 ◦C for 8 h. The white solid in the mixture was filtered off,
and washed with EtOAc to obtain compound 6. Yield: 65%. 1H NMR (400 MHz, D2O):
δ = 7.49 (d, J = 15.9 Hz, 1H), 7.08 (d, J = 1.7 Hz, 1H), 7.01 (dd, J = 8.2, 1.6 Hz, 1H), 6.82 (d,
J = 8.2 Hz, 1H), 6.27 (d, J = 16.0 Hz, 1H), 5.56 (t, J = 8.0 Hz, 1H), 4.59 (d, J = 13.1 Hz, 1H),
4.43 (d, J = 13.0 Hz, 1H), 4.21 (t, J = 9.6 Hz, 1H), 3.78 (s, 3H), 3.45–3.39 (m, 1H), 3.28 (dd,
J = 13.2, 3.5 Hz, 1H), 3.16–3.06 (m, 1H), 2.92–2.84 (m, 7H), 2.79–2.63 (m, 4H), 2.38–2.12 (m,
4H), 2.09–1.95 (m, 4H), 1.76–1.70 (m, 1H), 1.49 (s, 3H), 1.16 (t, J = 7.2 Hz, 1H), 0.93 (t, J = 12.2
Hz, 1H). 13C NMR (100 MHz, D2O): δ = 177.8, 177.4, 174.0, 168.7, 148.2, 147.7, 146.2, 134.4,
129.5, 126.5, 123.2, 115.6, 114.2, 111.2, 82.2, 73.5, 66.6, 63.4, 62.7, 61.7, 55.8, 55.5, 43.4, 42.4,
41.3, 35.7, 24.9, 24.0, 22.9, 20.5, 16.6, 13.2. HRMS (ESI): m/z [M + H]+ calcd for Chemical
Formula: C27H36NO7: 486.2486; found: 486.2481.

3.1.9. Compound 13

(1aR,7aS,8R,10aS,10bS,E)-8-((dimethylamino)methyl)-5-(hydroxymethyl)-1a-methyl-2,3,6,7,7a,8,
10a,10b-octahydrooxireno[2′,3′:9,10]cyclodeca[1,2-b]furan-9(1aH)-one (13). MMB (3 mmol),
K2CO3 (45 mmol) and Me2NH·HCl (24 mmol) were added to dry DCM (25 mL) at room
temperature and the resulting solution was stirred at this temperature for 5 h. The solid in
the mixture was filtered off, and the resulting solution was concentrated under reduced
pressure. The residue was dissolved in CH2Cl2, and then washed with water. The organic
layer was dried with Na2SO4 and concentrated under reduced pressure. The residue was
purified by column chromatography on silica gel using ethyl acetate−petroleum ether as
the eluent to give the desired product 13 as a yellow oil. Yield: 95%; 1H NMR (400 MHz,
CDCl3): δ = 5.57 (t, J = 8.0 Hz, 1H), 4.09 (dd, J = 31.7, 13.1 Hz, 2H), 3.84 (t, J = 9.0 Hz, 1H),
2.81–2.78 (m, 1H), 2.74–2.68 (m, 1H), 2.65–2.55 (m, 1H), 2.49–2.23 (m, 6H), 2.23–2.20 (m, 7H),
2.14–2.07 (m, 2H), 1.62–1.54 (m, 1H), 1.51 (s, 3H), 1.06 (t, J = 12.8 Hz, 1H). 13C NMR (100
MHz, CDCl3): δ = 176.9, 140.8, 127.0, 81.4, 65.8, 63.9, 59.9, 57.5, 45.6, 44.0, 42.0, 36.9, 27.3,
25.6, 23.6, 17.8.

3.1.10. Compound 14

(1aR,7aS,8R,10aS,10bS,E)-5-(azidomethyl)-8-((dimethylamino)methyl)-1a-methyl-2,3,6,7,7a,8,10a,
10b-octahydrooxireno[2′,3′:9,10]cyclodeca[1,2-b]furan-9(1aH)-one (14). To a solution of com-
pound 13 (1 mmol) and DBU (2 mmol) in THF (10 mL) was added DPPA at room tempera-
ture. The reaction mixture was stirred at room temperature for 8h. Removal of the organic
layer under vacuum gave a yellow oil. Then the crude product was added to EtOAc
(10 mL)/H2O (10 mL) at room temperature. The reaction was extracted with EtOAc
(3 × 30 mL). The combined organic layers were washed with saturated brine, dried over
Na2SO4, and concentrated. The crude product was purified on a silica gel column (PE:
EA = 1:1) to yield compound 14 as a colorless oil. Yield: 65%. 1H NMR (400 MHz, CDCl3):
δ = 5.60 (t, J = 8.1 Hz, 1H), 3.95 (d, J = 13.2 Hz, 1H), 3.87–3.83 (m, 2H), 2.76–2.56 (m, 2H),
2.61–2.56 (m, 1H), 2.47–2.35 (m, 3H), 2.34–2.08 (m, 11H), 1.64–1.56 (m, 1H), 1.54 (s, 3H),
1.07 (t, J = 12.6 Hz, 1H).13C NMR (100 MHz, CDCl3): δ = 176.8, 135.7, 129.6, 81.0, 63.9, 59.8,
58.1, 55.4, 45.6, 44.1, 42.6, 36.9, 26.6, 24.4, 23.7, 17.8. HRMS (ESI): m/z [M + H]+ calcd for
chemical formula: C17H27N4O3: 335.2083; found: 335.2085.

3.1.11. Compound 15

(1aR,7aS,8R,10aS,10bS,E)-5-(aminomethyl)-8-((dimethylamino)methyl)-1a-methyl-2,3,6,7,7a,8,
10a,10b-octahydrooxireno[2′,3′:9,10]cyclodeca[1,2-b]furan-9(1aH)-one (15). To a solution of
compound 14 (0.4 mmol) in THF (3 mL) was added PPh3 (0.44 mmol) and H2O (45 µL).
The reaction mixture was stirred at room temperature overnight. Removal of the organic
layer under vacuum gave a yellow oil. The crude product was purified on a silica gel
column (DCM: CH2Cl2 = 6:1) to yield compound 15 as a colorless oil. Yield: 36%. 1H NMR
(400 MHz, CDCl3): δ = 5.50 (t, J = 7.9 Hz, 1H), 3.82 (d, J = 9.5 Hz, 1H), 3.45 (s, 1H), 3.33
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(d, J = 6.3 Hz, 1H), 2.80–2.71 (m, 2H), 2.57 (dd, J = 12.9, 6.5 Hz, 1H), 2.49 (s, 2H), 2.44–2.34
(m, 3H), 2.28–2.25 (m, 3H), 2.22 (s, 6H), 2.18–2.08 (m, 3H), 1.53 (s, 3H), 1.06 (t, J = 12.3 Hz,
1H).13C NMR (100 MHz, CDCl3): δ = 176.9, 141.2, 124.8, 81.2, 63.7, 60.0, 58.4, 45.7, 45.4,
44.3, 43.2, 37.1, 26.8, 24.6, 23.7, 17.9. HRMS (ESI): m/z [M + H]+ calcd for chemical formula:
C17H29N2O3: 309.2173; found: 309.2174.

3.1.12. Compound 16

(E)-4-oxo-4-phenylbut-2-en-2-yl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate (16). To a solution
of ferulic acid (1.1 mmol) in DCE (5 mL) was added allenone 17 (1 mmol) at room tem-
perature. The reaction mixture was allowed to stir at 80 ◦C until the allenone 17 was
fully consumed. The reaction mixture was purified by flash silica gel chromatography (PE:
EA = 5:1) to afford the compound 16 as a brown oil. Yield: 75%. 1H NMR (400 MHz, CDCl3):
δ = 7.95–7.92 (m, 2H), 7.74 (d, J = 15.9 Hz, 1H), 7.57–7.50 (m, 1H), 7.47–7.43 (m, 2H), 7.13–7.10
(m, 1H), 7.06 (d, J = 1.6 Hz, 1H), 6.95–6.90 (m, 2H), 6.36 (d, J = 15.9 Hz, 1H), 6.17–6.09 (m,
1H), 3.92 (s, 3H), 2.48 (d, J = 0.8 Hz, 3H); 13C NMR (100 MHz, CDCl3): δ = 190.4, 164.5,
164.2, 148.6, 147.3, 146.9, 138.7, 132.7, 128.5, 128.1, 126.4, 123.5, 114.9, 113.9, 113.3, 109.6,
55.9, 19.1.; HRMS (ESI): m/z [M + H]+ calcd for chemical formula: C20H18NaO5: 361.1046;
found: 361.1045.

3.1.13. Compound 4

(E)-N-(((1aR,7aS,8R,10aS,10bS,E)-8-((dimethylamino)methyl)-1a-methyl-9-oxo-1a,2,3,6,7,7a,
8,9,10a,10b-decahydrooxireno[2′,3′:9,10]cyclodeca[1,2-b]furan-5-yl)methyl)-3-(4-hydroxy-3-
methoxyphenyl)acrylamide (4). To a solution of compound 15 (2 mmol) in dry DMF
(10 mL) was added compound 16 at room temperature. The reaction mixture was al-
lowed to stir at room temperature until the compound 16 was fully consumed. The reaction
was quenched with brine and extracted with EtOAc (3 × 15 mL). The combined organic
layers were washed with saturated brine, dried over Na2SO4, and concentrated. The crude
product was purified on a silica gel column (DCM: CH2Cl2 = 15:1) to yield compound 4
as a yellow solid. mp: 132−134 ◦C. Yield: 50%. 1H NMR (400 MHz, DMSO-d6): δ = 9.40
(s, 1H), 8.00 (t, J = 5.8 Hz, 1H), 7.34 (d, J = 15.7 Hz, 1H), 7.13 (d, J = 1.8 Hz, 1H), 6.99 (dd,
J = 8.2, 1.8 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 6.49 (d, J = 15.7 Hz, 1H), 5.41–5.29 (m, 1H), 4.01
(t, J = 9.5 Hz, 1H), 3.90–3.84 (m, 1H), 3.80 (s, 3H), 2.72 (d, J = 9.5 Hz, 1H), 2.64–2.55 (m, 3H),
2.47–2.19 (m, 5H), 2.17 (s, 6H), 2.08–2.00 (m, 3H), 1.64–1.54 (m, 1H), 1.47 (s, 3H), 0.94–0.84
(m, 1H). 13C NMR (100 MHz, DMSO-d6): δ = 177.8, 165.7, 148.7, 148.3, 139.6, 138.3, 126.9,
124.1, 121.9, 119.3, 116.1, 111.2, 81.1, 63.7, 60.2, 58.7, 55.9, 45.9, 43.9, 42.8, 42.3, 37.4, 26.2, 24.9,
23.6, 17.9. HRMS (ESI): m/z [M + H]+ calcd for chemical formula: C27H37N2O6: 485.2646;
found: 485.2641.

3.1.14. Compound 18

(E)-N-(((1aR,7aS,8R,10aS,10bS,E)-8-((dimethylamino)methyl)-1a-methyl-9-oxo-1a,2,3,6,7,7a,
8,9,10a,10b-decahydrooxireno[2′,3′:9,10]cyclodeca[1,2-b]furan-5-yl)methyl)-3-(4-hydroxy-3-
methoxyphenyl)acrylamide 2-hydroxypropane-1,2,3-tricarboxylate (18). To a solution of com-
pound 4 (2.0 mmol) in EtOAc (20 mL) was added citric acid (2.0 mmol) at room temperature.
Then the reaction mixture was stirred at room temperature for 30 min. The white solid
in the mixture was filtered off, and washed with EtOAc to obtain compound 18. Yield:
70%. mp: 113−115 ◦C. 1H NMR (400 MHz, DMSO-d6): 9.42 (s, 1H), 8.02 (t, J = 5.7 Hz,
1H), 7.35 (d, J = 15.7 Hz, 1H), 7.13 (d, J = 1.8 Hz, 1H), 6.99 (dd, J = 8.2, 1.8 Hz, 1H), 6.79 (d,
J = 8.1 Hz, 1H), 6.49 (d, J = 15.7 Hz, 1H), 5.36 (t, J = 7.4 Hz, 1H), 4.06–3.98 (m, 2H), 3.93–3.88
(m, 1H), 3.80 (s, 3H), 3.78–3.73 (m, 1H), 2.79–2.62 (m, 4H), 2.62–2.54 (m, 1H), 2.51–2.49 (m,
2H), 2.47–2.32 (m, 3H), 2.28 (s, 6H), 2.25–2.21 (m, 1H), 2.05–2.02 (m, 3H), 1.66–1.55 (m, 1H),
1.47 (s, 3H), 0.95–0.82 (m, 1H). 13C NMR (100 MHz, DMSO-d6): δ = 177.63, 177.08, 170.82,
165.79, 148.74, 148.28, 139.68, 138.27, 126.88, 124.42, 122.02, 119.28, 116.13, 111.22, 81.21,
71.83, 63.56, 60.23, 58.22, 55.98, 45.59, 44.58, 43.74, 42.78, 42.41, 37.37, 26.13, 24.75, 23.65,
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21.24, 17.98, 14.57. HRMS (ESI): m/z [M + H]+ calcd for chemical formula: C27H37N2O6:
485.2646; found: 485.2643.

3.2. Cell Culture and Treatment

Mouse RAW264.7 macrophage were obtained from National Collection of Authen-
ticated Cell Cultures (Beijing, China) and were maintained at 37 ◦C and in a 5% CO2
atmosphere in Dulbecco’s modified Eagle’s medium (DMEM), added with 10% fetal bovine
serum (FBS) and 1% streptomycin–penicillin. Cell passage was limited in number to 15
times to avoid cell differentiation.

3.3. Cell Viability Assay

The toxicity of those compounds was determined by the CCK-8 assay. RAW264.7 cells
were seeded in a 96-well plate at a density of 2 × 105/mL and a volume of
100 µL/well. After incubation for 12 h at 37 ◦C, the cells were then incubated with com-
pounds at concentrations of 1.25, 2.5, 5, 10, 20, 40 and 80 µM for 24 h, followed by the
addition of 10 µL CCK-8 solution to each well, and the plates were further incubated for
2 h at 37 ◦C. The absorbance at a wavelength of 450 nm was measured using a microplate
reader (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

3.4. Isolation of Total RNA and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)

Total RNA was isolated using TRIzol reagent (Takara, Ōtsu-shi, Japan) and then tran-
scribed into cDNA using a transcriptor cDNA synthesis kit (TransGen Biotech, Beijing,
China) according to the manufacturer’s instructions. Quantitative real-time PCR was per-
formed with TransStart® Green qPCR SuperMix (TransGen Biotech, China). The conditions
for the real-time PCR reaction were as follows: 94 ◦C, 30 s; 94 ◦C, 5 s; 60 ◦C, 30 s; 40 cycles.
The primers for this research are listed in Supplementary Material Table S1.

3.5. Enzyme-Linked Immunosorbent Assay (ELISA)

TNF-α and IL-1β in the cell culture supernatant were measured using commercially
available ELISA kits (Biolegend, Waltham, MA, USA). Briefly, RWA264.7 cells were pre-
treated with compounds for 6 h and then cells were washed with cold PBS three times.
Next, fresh DMEM medium with LPS (1 µg/mL) was added into the plate. After 24 h,
cell culture supernate was collected and centrifuged for 10 min (12,000× g, 4 ◦C). TNF-α
and IL-1β were detected according to the manufacturer’s instructions. Specifically, the
plate was washed 4 times with 300 µL of 1× Wash Buffer before adding the samples. Next,
50 µL of cell culture supernate was added into the appropriate wells and then the plate
was incubated at room temperature for 2 h. After that, the plate was washed 4 times with
1× Wash Buffer, and 100 µL of Mouse TNF-α Detection Antibody solution was added into
the well and incubate at room temperature for 1 h. Wells containing mouse TNF-α should
turn blue in color. Finally, absorbance was read at 450 nm within 30 min.

3.6. Animals

C57BL/6J mice (male) were purchased from Vital River Laboratories (Beijing, China).
All procedures were conducted according to the Nankai University Guidelines on Animal
Care, and the experimental protocol was approved by the Institutional Animal Protection
Committee of the Nankai University (Tianjing, China, NO. 2022-SYDWLL-000342). Animals
were sheltered under standard conditions with food and water provided ad libitum. Exper-
iments were conducted on 8-week-old male mice, randomly divided into 4 groups: Control
(Con), ALI (bleomycin), Dex (dexamethasone) and compound 6. For bleomycin-induced
lung injury, mice were sedated, and a single dose of intratracheal bleomycin (4 mg/kg;
Selleckchem, Houston, TX, USA) in sterile PBS. 6 was administered daily for 14 days via
intraperitoneal injections (i.p) (100 µL/mouse of 10 mg/mL 6 in PBS). Dexamethasone
(2 mg/kg) was administered orally. The mice were monitored and their weight was mea-
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sured daily. After 14 days, the mice were killed with anesthetic overdose and exsanguinated
by cutting the abdominal aorta before the collection of lungs.

3.7. Mice Survival Rates and Body Weight

Body weight variations were calculated from the measured weights at each time
point (days 1–14), including before the sacrifice of the mice reaching the endpoints. To
avoid a potential bias by studying the animals with the better outcomes, animals reaching
endpoints were included in the calculation of the weight variation and survival rates.

3.8. Studies on the Release of Prodrugs into Active Drugs

A total of 10 mg of compound 6 was dissolved in 10 mL MeCN. A 0.5 mL volume
of compound 6 solution was placed in 49.5 mL of HEPES at pH 7.4. The tubes were
then incubated in a bath incubator at 37 ◦C. Samples were removed after 10 s, and the
concentration of compound 6 and 3 was analyzed by HPLC.

3.9. Aqueous Solubility Measurement

PTL, MCL and compounds 1–6 (0.1, 1, 10 mg) were dissolved in deionized water
(pH = 7.0) until the solution was clear. The assays were measured at least in duplicate.

4. Statistical Analysis

Each experiment was performed three times. One-Way ANOVA was performed to
analyze the significance level by GraphPad Prism 9.0 software. p < 0.05 was considered to
be statistically significant.

5. Conclusions

In conclusion, a series of ferulic acid-parthenolide (FA-PTL) or ferulic acid-micheliolide
(FA-MCL) hybrids were synthesized and evaluated for their anti-inflammation activities in
RAW264.7 cell lines. Compound 6 showed the potential activity against proinflammatory
cytokines in the RAW264.7 cell line with IC50 value of 6.95 µM, which demonstrated a
2-fold decline in cytotoxic effect compared to that of the parent compound 3. Moreover, it
was more soluble than the reference compound 3. The preliminary research into 6 indicated
that compound 6 could significantly reduce inflammation of RAW264.7 cells induced by
LPS. Further investigation revealed that compound 6 could significantly decrease the acute
lung injury induced by bleomycin. On the basis of these results, compound 6 might be
considered as a promising candidate for further evaluation as a potential anti-ALI drug.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29050936/s1. Figures S1–S26: the 1H and 13C NMR
spectra of compounds (7, 9, 1, 10, 2, 5, 3, 12, 6, 13, 14, 15, 16, and 4); Table S1: Primers for qRT-PCR.
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