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Abstract: Repurposing is a universal mechanism for innovation, from the evolution of feathers to
the invention of Velcro tape. Repurposing is particularly attractive for drug development, given
that it costs more than a billion dollars and takes longer than ten years to make a new drug from
scratch. The COVID-19 pandemic has triggered a large number of drug repurposing activities. At
the same time, it has highlighted potential pitfalls, in particular when concessions are made to the
target product profile. Here, we discuss the pros and cons of drug repurposing for infectious diseases
and analyze different ways of repurposing. We distinguish between opportunistic and rational
approaches, i.e., just saving time and money by screening compounds that are already approved
versus repurposing based on a particular target that is common to different pathogens. The latter
can be further distinguished into divergent and convergent: points of attack that are divergent share
common ancestry (e.g., prokaryotic targets in the apicoplast of malaria parasites), whereas those
that are convergent arise from a shared lifestyle (e.g., the susceptibility of bacteria, parasites, and
tumor cells to antifolates due to their high rate of DNA synthesis). We illustrate how such different
scenarios can be capitalized on by using examples of drugs that have been repurposed to, from, or
within the field of anti-infective chemotherapy.

Keywords: drug research and development; drug repurposing; drug repositioning; drug target;
infectious disease; neglected tropical disease; chemotherapy

1. Repurposing in Nature

Repurposing is a ubiquitous mechanism in Nature. It plays a significant role in the
process of evolution that involves the adaptation of existing biological structures, functions,
or traits to serve new or additional purposes [1]. Illustrative examples are feathers, which
originally evolved for insulation and were later repurposed for flight [2]; the repurposing
of the reptilian jaw to the mammalian auditory ossicles [3]; and the repurposing of the
primary cilium of opisthokonts as a sensory organelle [4]. Repurposing also involves
modifying the structure and activity of existing enzymes to perform novel or enhanced
functions, harnessing the versatility and catalytic power of enzymes for applications
beyond their original roles. This is exemplified by transceptors, proteins that possess
both transport and sensing functions [5], and also by the moonlighting functions of many
enzymes [6]. In Plasmodium vivax, the glycolytic enzyme aldolase also induces the motility
of the parasite and plays a crucial role in host cell invasion [7]. Moreover, gene duplication
events followed by functional divergence can lead to the emergence of new or expanded
functions. For instance, the evolution of hemoglobin paralogues from a single ancestral
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globin gene allowed for oxygen transport in both respiratory and muscular tissues, and
oxygen transport from mother to fetus [8].

Chemical repurposing also occurs in Nature, whereby naturally occurring compounds,
originally evolved for one function, are subsequently utilized for different functions in
biological systems. This process allows for the adaptation and exploitation of pre-existing
chemical resources to serve novel biological roles. Secondary metabolites are a typical
example. They are produced by organisms to serve as chemical defenses against predators,
competitors, or pathogens, and have frequently been repurposed for other functions such as
signaling, communication, or symbiotic interactions, allowing for versatility and ecological
adaptability [9]. Chemical repurposing also includes the repurposing of proteinogenic
amino acids as neurotransmitters (e.g., glycine, glutamate, and aspartate), as well as the
repurposing of DNA for neutrophil extracellular traps (NETs), chromatin structures that
can trap and kill bacteria, fungi, and protozoa as a first-line defense against pathogens [10].
Thus, repurposing is a natural strategy for innovation.

2. Repurposing in Drug Development

Repurposing is also imperative in the process of invention of human technology, in
particular with respect to drug development. Since the development of a new drug is
lengthy and expensive, repurposing (i.e., finding new uses for existing drugs) is a strategy
that offers an attractive shortcut between the bench and the clinic, particularly where the
resources for R&D are limited [11–14]. The very origin of chemotherapy lies in repurposing:
quinine’s repurposing as an antimalarial drug marked one of the earliest instances of drug
repurposing. The alkaloid extracted from the bark of the Cinchona tree had been used for
centuries by indigenous populations in South America to treat fevers and shivering [15].
In the 17th century, quinine was introduced to Europe and became the primary treatment
for malaria [16]. The unique case of the antimalarial quinine represented a milestone
in the history of drug discovery where the drug (quinine) was discovered before the
differentiation and elaboration of the disease itself [17].

In the late 19th century, Paul Ehrlich discovered that certain synthetic dyes used in the
emerging textile industry preferentially stained pathogens over their host cells. If selective
staining is possible, he reasoned, so must selective chemotherapy be. Building upon this
work, Ehrlich and his colleague Sahachiro Hata developed salvarsan, an arsenic-based com-
pound, as a treatment for syphilis. Salvarsan represented one of the earliest examples of a
chemotherapeutic agent used to target a specific pathogen [18]. Methylene blue, a synthetic
dye commonly used in various applications, was repurposed as an antimalarial drug and
used for the treatment of malaria [19]. A few years later, and based on Ehrlich’s work on try-
panocidal dyes, suramin was introduced for the treatment of African trypanosomiasis [20].
Suramin was later repurposed for onchocerciasis [21]. The sulfonamides, p-aminobenzoic
acid analogs that block folate synthesis by inhibiting dihydropteroate synthase, originated
from the red dye prontosil [22]. These historical examples illustrate how the repurposing of
synthetic dyes led to the discovery and development of anti-infective drugs that formed the
foundation of modern chemotherapy. They highlight the early understanding that certain
chemicals, originally designed for non-medical purposes, selectively bind to pathogens,
opening a therapeutic window for the treatment of infectious diseases.

Here, we focus on anti-infective chemotherapy (helminths, protozoa, bacteria, and
viruses). We recapitulate the pros and cons of chemotherapeutic repurposing and then
illustrate the two principal strategies, opportunistic vs. rational repurposing, with case
stories of molecules that have been repurposed to, from, or within the field of anti-infective
chemotherapy.

3. Pros of Drug Repurposing

Instead of starting from scratch with a new compound, drug repurposing leverages the
knowledge, safety profiles, and established manufacturing processes of already approved
or investigational drugs. This offers several advantages.
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3.1. Saving Time and Money

The repurposing of drugs which have already undergone safety testing and regulatory
approval in humans can save substantial time and resources compared to developing
compounds de novo [23]. Starting from known bioactives, ideally with a known mode of
action (with the caveat that the target might turn out to be a different one in the repurposed
application), and known PK and ADME profiles, this may allow to bypass the initial stages
of drug development, including preclinical toxicology studies and phase I clinical trials [24].
The average costs for developing a new drug are more than one billion dollars [25], and
the time from discovery to application usually exceeds ten years [26]. Therefore, the
repurposing of existing drugs is a highly attractive option to save money and shorten the
time it takes from bench to clinic [27].

3.2. Expanding Therapeutic Opportunities to Address Unmet Medical Needs

Drug repurposing widens the range of therapeutic options available by identifying
new indications for drugs that have already proven effective in different disease contexts.
This approach capitalizes on the growing understanding of disease mechanisms and the po-
tential for off-target effects of drugs, enabling the exploration of unanticipated therapeutic
benefits [28]. The success stories of repurposed drugs, such as sildenafil (Viagra) repur-
posed for erectile dysfunction from its original use as an antihypertensive, and thalidomide
repurposed for multiple myeloma from its initial indication as a sedative, highlight the
transformative potential of drug repurposing [29]. Additionally, drug repurposing offers
the possibility of finding effective treatments for diseases with limited or no approved
therapies. This is particularly prominent in certain disease categories such as rare diseases,
neglected tropical diseases (NTDs), and cancer [30].

4. Cons of Drug Repurposing

While the advantages of drug repurposing are obvious, there are also some drawbacks
and pitfalls that need to be taken into consideration before venturing on a repurposing
campaign.

4.1. Limited Specificity and Efficacy

The rational starting point towards a new drug is the definition of the target product
profile (TPP), i.e., the properties a new therapy must have to make the desired impact.
However, repurposed drugs may not be perfectly aligned with the TPP in the new context,
be it with regard to pharmacodynamics, pharmacokinetics, toxicity, formulation, price, or
stability. Thus, starting from a given molecule that is to be repurposed, rather than from
a given TPP, involves the temptation to compromise on optimal use (the “Birmingham
screwdriver”). Thus, chemotherapeutic repurposing not directed by a TPP might lead to a
suboptimal outcome or limited therapeutic benefit [31].

4.2. Risk of Failure and Adverse Effects

The repurposed drug may not demonstrate the desired efficacy or safety profile in the
new context, leading to treatment failures or adverse effects. The lack of preclinical and
clinical data specific to the new indication increases the uncertainty associated with repur-
posing. This risk can even jeopardize the primary use when toxicity becomes apparent only
during the alternative use [32]. One example was the clinical development of pafuramidine
as a first oral drug to treat human African trypanosomiasis (HAT). In spite of promising
results from a clinical phase II trial [33], the development of pafuramidine was stopped for
toxicity issues that had only come up during a prolonged regimen tested in phase I with
the aim of repurposing pafuramidine for Pneumocystis jirovecii infection.

4.3. Lack of Intellectual Property Protection

Repurposing existing drugs often involves the use of off-patent or generic drugs.
This limits the potential for exclusivity and intellectual property protection, which can
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discourage pharmaceutical companies from investing in repurposing efforts, as they may
not see significant financial return [29].

5. Challenges of Drug Repurposing for Infectious Diseases

Developing new drugs for infectious diseases involves particular challenges that
impact the drug discovery and development process [34]. Some of the key challenges are
described in the following paragraphs.

5.1. Complexity of Pathogens and Lack of Comprehensive Understanding of Pathogen–Host
Interactions

The diverse mechanisms of infection and complex host–pathogen interactions make it
challenging to identify suitable drug targets for anti-infective agents [35]. Many pathogens,
including viruses, bacteria, protozoa, and nematodes, acquire high genetic diversity
through mutation and recombination [36]. This genetic variability can lead to the emer-
gence of drug-resistant mutants, making it difficult to develop drugs that effectively target
all variants of the pathogen. Thus, continuous efforts are required to stay ahead of emerg-
ing resistance mechanisms [37]. Some pathogens, like Neisseria spp. or Plasmodium spp.,
undergo antigenic variation, where they change their surface proteins to evade the host’s
immune response. This constant adaptation can hinder the identification of stable drug
targets and vaccine candidates [38]. Other pathogens, like Trypanosoma cruzi, Mycobacterium
tuberculosis, or herpes viruses, can establish latent or persistent infections, becoming dor-
mant in the host’s cells and evading immune detection [39,40]. Curing such infections
requires drugs that target the pathogen during both active and dormant phases. Some
bacteria, like Pseudomonas aeruginosa and Staphylococcus aureus, can form biofilms that en-
hance drug resistance and impede drug penetration, making it challenging to eliminate
infections [41].

5.2. Shortage of Effective Animal Models

Animal models that accurately mimic human infections are crucial for preclinical
testing, but developing appropriate models for certain infectious diseases can be difficult.
This can be due to involvement of complex host–pathogen interactions that are difficult
to model accurately [42]. The lack of appropriate predictive models can impede drug
development, as it becomes challenging to understand the disease mechanisms and assess
the efficacy of potential drugs [43]. A breakthrough in antimalarial drug R&D was the
establishment of a NOD-SCID mouse model for infection with Plasmodium falciparum
that was suitable for drug efficacy testing [44].

5.3. High Risk of Clinical Failure

Clinical trials for anti-infectives often face high attrition rates due to insufficient ef-
ficacy, safety concerns, or challenges in patient recruitment [45]. Moreover, challenges in
conducting clinical trials and follow-up in resource-limited settings and a lack of appropri-
ate surrogate endpoints for infectious diseases contribute to the high failure rates [46].

5.4. Limited Market Incentives

Developing new therapies for infectious diseases is expensive, and the return on
investment is lower compared to chronic diseases prevalent in developed countries, which
discourages investment in infectious disease drug development [47]. This is partially due to
the fact that infectious diseases predominantly affect low-income populations and may not
provide sufficient financial incentives for pharmaceutical companies to invest in research
and development [48].

6. Successful Examples of Drug Repurposing

In spite of all these challenges, a number of drugs have been successfully repurposed
to provide new, effective treatments for infectious diseases [49]. Table 1 shows examples
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of molecules that were repurposed to the field of anti-infective chemotherapy from other
indications. Such inbound repurposing to infectious diseases mainly happened from the
field of cancer chemotherapy. This is explainable by the fact that parasites and tumor
cells have a lot in common—first and foremost, a fast proliferation, which necessitates a
high rate of nucleotide synthesis and cell division, and brings about a higher metabolic
activity and the generation of radicals (Table 2). Thus, antifolates are used for the therapy
of cancers, parasitoses, and bacterial infections. Antifolates are drugs that interfere with the
synthesis of dTMP from dUMP, where folate acts as the methyl group donor [50,51]. An-
other common target in pyrimidine synthesis is dihydroorotate dehydrogenase (DHODH),
which is being pursued in anticancer [52] and antimalarial [53] drug development. Also,
proteasome inhibitors show chemotherapeutic potential against tumor cells [54] as well as
parasites [55,56].

Table 1. Inbound repurposing of drugs to the field of infectious diseases.

Molecule Original Purpose Envisaged New Purpose

Cisplatin Cancer Antibacterial
Eflornithine Cancer Human African trypanosomiasis
Gallium nitrate Cancer Pseudomonas aeruginosa
Miltefosine Cancer Leishmaniasis
Mitomycin C Cancer Microbial persisters
Niclosamide Snail control Antibacterial, antiviral, antifungal
Thalidomide Morning sickness, soporific Leprosy
Toremifene Cancer Bacterial biofilm

Table 2. Similarities between parasites and tumor cells, and how they can be exploited as drug targets.

Shared Property Emerging Target/MoA Drug

High rate of cell division Microtubule spindle Mebendazol
Fast rate of DNA synthesis Topoisomerase Quinolones
High demand of nucleotides Pyrimidine synthesis Antifolates, DHODH inhibitors
High rate of protein turnover Proteasome Proteasome inhibitors
High metabolic rate Glycolysis Antimycin A
Enhanced redox metabolism Activation of prodrugs Artemisinin
Cellular signaling pathways Protein kinases Sunitinib

Many anticancer drugs are active against parasites, e.g., taxol and vinblastine against
malaria parasites [57], or etoposide, methotrexate, and doxorubicin against trypanoso-
matids [58–60]. However, the TPPs of anticancer drugs are not the same as those of
anti-infectives; they differ in particular regarding the final product’s cost-of-goods and
safety. Risks and adverse reactions that may be acceptable during cancer therapy are not
for infectious diseases such as malaria.

The molecules in Table 3 have been repurposed within the field of anti-infective
chemotherapy, from one pathogen to another. This is favored if the two pathogens are
phylogenetically close. A frequent scenario is the repurposing of veterinary drugs to
human medicine to treat infections by parasitic nematodes. Indeed, all the drugs currently
in human use have originally been developed as veterinary anthelminthics. In this context,
it is relevant to note that human infections with gastrointestinal or filarial nematodes are
neglected, whereas the related diseases in livestock and pet animals are not. A comparison
of the closely related Onchocerca volvulus and Dirofilaria immitis should suffice. The former
causes the neglected tropical disease river blindness, while the latter is the dog heartworm,
for which the American Heartworm Society recommends the year-round prophylactic
treatment of all dogs in the United States [61].
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Table 3. Drug repurposing within the field of infectious diseases.

Molecule Original Purpose Envisaged New Purpose

Albendazole Veterinary helminthoses Human helminthoses
Amphotericin B Antifungal Leishmaniasis
Artemether Malaria Schistosomiasis
Clindamycin Antibacterial Malaria
Closantel Anthelmintic MRSA
Doxycycline Antibacterial Filariasis, malaria
Fosmidomycin Antibacterial Malaria
Ivermectin Veterinary helminthoses Human helminthoses
Levamisole Anthelmintic Colon cancer
Nifurtimox Chagas disease HAT
Paromomycin Antibacterial Leishmaniasis
Pentamidine African trypanosomiasis Balamuthiasis, leishmaniasis
Posaconazole Antifungal Chagas disease
Sulphonamides Antibacterial Malaria
Suramin African trypanosomiasis Onchocerciasis, antiviral
Telacebec Tuberculosis Buruli ulcer, leprosy

Drug repurposing is also possible between phylogenetically distant pathogens. An-
tifungals, for instance, can be repurposed against Trypanosoma and Leishmania because
both, fungi as well as trypanosomatids, have ergosterol as the sterol component of their
membranes and not cholesterol [62]. Several antibiotics have been repurposed to eukary-
otic parasites that contain essential prokaryotic endosymbionts (e.g., Wolbachia in filarial
nematodes) or remnants thereof (e.g., the apicoplast in malaria parasites).

7. Opportunistic Drug Repurposing for Infectious Diseases

With ‘opportunistic’ we refer to the serendipitous or accidental discovery of a new
activity of an existing drug against a specific infectious pathogen that usually emerges
from phenotypic screening campaigns [63]. It makes use of the advantages of repurposing
without having a particular mode of action in mind or a prior knowledge of a validated
molecular target, which is the case for most of the antiparasitic drugs that are available
today [64]. There have been several examples that demonstrate the power of opportunistic
repurposing for hit and early lead identification, up to providing new treatment options. For
instance, the screening of the NIH library of approved molecules against various pathogens
has identified clomiphene and toremifene (selective estrogen receptor modulators) as potent
inhibitors of Zaire ebolavirus infection in vitro and in vivo [65]. The response appeared not
to be associated with estrogen signaling, but rather with an off-target effect where the
compounds interfere with viral entry and likely affect the triggering of fusion [65]. Another
example is the inhibition of Zika virus proliferation, and of virus-induced cytopathic effects,
in glial cell lines and human astrocytes by the macrolide antibiotic azithromycin [66].
The antiarthritic metallodrug auranofin exhibits potent antileishmanial activity [67] and
macrofilaricidal activity through the inhibition of the redox enzymes thioredoxin reductase
and thioredoxin glutathione reductase [68].

Some phenotypic screenings were customized for a particular TPP, such as the screen-
ing of compounds known to permeate the blood–brain barrier, aiming to identify potential
treatments for late-stage HAT, when the trypanosomes have invaded the patient’s cere-
brospinal fluid [69,70]. Moreover, opportunistic repurposing has also been considered for
disease-targeted collections. For instance, the Malaria Box is a collection of compounds
assembled by the Medicines for Malaria Venture (MMV) to support drug discovery against
malaria [71]. While the primary focus obviously is malaria, some of the compounds have
also been screened against other pathogens to explore their potential as broad-spectrum
antiparasitic agents. This has returned potent hits against kinetoplastids [72], toxoplas-
mosis [73], amoebiasis [73], candidiasis [74], schistosomiasis [75], echinococcosis [76], and
several other diseases [77].
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8. Rational Drug Repurposing for Infectious Diseases

Rational repurposing utilizes the knowledge of the evolutionary relationship or the
lifestyle of pathogens to identify vulnerable points of attack that are common to several
pathogens but absent from their hosts. By understanding the shared biological mechanism
or target among different pathogens, drugs that have been developed for one may be used
for another. Based on the evolutionary origin of the shared point of attack, this can be
further classified into divergent and convergent.

8.1. Divergent Target/Mode of Action

Divergent drug targets have a common ancestry, and they are present in several
pathogens but absent in the human host. Typical examples are the enzymes of the non-
mevalonate pathway (the MEP/DOXP pathway) for the synthesis of isopentenyl pyrophos-
phate (IPP) from pyruvate and glyceraldehyde-3-phosphate. This pathway is absent from
animals, which use the mevalonate pathway to synthesize IPP from three molecules of
acetate. IPP is the precursor of isoprenoids and thus essential for cell function. The MEP
pathway is utilized by many bacteria, including pathogens such as Salmonella and Mycobac-
terium; it is also present in cyanobacteria and in the chloroplast of plants [78,79]; and it
occurs in the apicoplast, the plastid-like non-photosynthetic organelle of apicomplexan
parasites such as Plasmodium spp. and Toxoplasma gondii [80]. This apicoplast is the result
of a secondary endosymbiosis, where a heterotrophic eukaryote has engulfed a red algal
ancestor, retaining it as a plastid [81,82]. The production of IPP by the apicoplast is es-
sential for the survival of P. falciparum inside red blood cells [83–85], which explains why
antibiotics that target apicoplast functions possess antimalarial activity. A good example is
fosmidomycin, a natural compound from Streptomyces spp. [86–88] that inhibits the rate-
limiting enzyme of the MEP pathway, 1-deoxy-D-xylulose-5-phosphate reductoisomerase
(DXR) [79,89–91]. Thanks to the fact that fosmidomycin had already been tested in humans
as an antibiotic, it could be readily repurposed for antimalarial combination therapy [92].

The finding that both plants and malaria parasites have an evolutionary link to
cyanobacteria may explain the antimalarial activity of herbicides: glyphosate, a well-
characterized inhibitor of the shikimate pathway [93], the microtubule inhibitors dini-
troaniline and phosphorothioamidate [94], and the inhibitors of serine hydroxymethyl-
transferase [95]. This concept was chemically explored by screening commercial herbicides
against P. falciparum [96]. Repurposing the other way around, where antimalarial lead
compounds could offer a starting point for the discovery of new herbicides, has also been
suggested [97,98].

Another example for the divergent mode of action is the repurposing of antibiotics
for filarial pathogens based on their action against Wolbachia [99]. Wolbachia is a type of
endosymbiotic bacterium that resides in the cells of many filarial parasites, including those
responsible for lymphatic filariasis and onchocerciasis [100]. The presence of Wolbachia is
crucial for the survival and reproduction of these parasites by providing essential nutrients
and metabolites; Wolbachia also modulates the host’s immune response and contributes to
inflammatory pathologies associated with filarial infection [101]. Targeting Wolbachia offers
a unique opportunity to disrupt the symbiotic relationship between the bacterium and the
nematode, leading to parasite sterility, death, and clearance [102]. Several antibiotics have
been identified as effective in targeting Wolbachia within filarial parasites [103]. The most
extensively studied is doxycycline, which acts by inhibiting protein synthesis in Wolbachia,
leading to its clearance from the host cells [104]. Other antibiotics with activity against
Wolbachia include minocycline, rifampicin, azithromycin, and corallopyronin A [105,106].
Clinical trials and field studies have demonstrated the efficacy of antibiotics, particularly
doxycycline. The treatment resulted in a decrease in microfilariae (the larval stages of the
parasite) in the blood, a lower adult worm viability, and a reduced transmission of the
parasite by the insect vectors. Moreover, the treatment has been associated with an improve-
ment in lymphedema and other disease-related symptoms [107,108]. Thus, combining
antibiotics with standard antifilarial drugs, such as ivermectin or diethylcarbamazine, has
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shown promising effects in reducing worm burden and microfilarial load in patients and
also allows for a shorter treatment regimen [109].

Nitroimidazoles are broad-spectrum antimicrobials for micro- and anaerobic pathogens.
They are prodrugs that cause damage through the formation of radicals in a cascade of
redox reaction [110], which begins with the reduction of the nitro group. This requires a
reductase plus an electron donor of sufficiently low redox potential. Unlike their aerobic
host, micro- and anaerobic pathogens in the mammalian gut possess a specific enzyme,
pyruvate:ferredoxin reductoisomerase (PFOR), which plays a key role in prodrug activation.
PFOR reduces the nitro group of nitroimidazoles such as metronidazole or tinidazole [111].
The presence of oxygen in the environment competes with nitroimidazoles, leading to a
decrease in the reductive activation of the drug and an increase in the catalytic recycling
of the activated drug [112]. Originally, nitroimidazole drugs were primarily used to treat
infections by Bacteroides spp., Clostridium spp., and anaerobic streptococci. Subsequently,
they were repurposed against Helicobacter pylori [113]. In addition, they are effective against
protozoan parasites, including Giardia intestinalis, Trichomonas vaginalis, and Entamoeba his-
tolytica [114–116], which also possess PFOR genes. Metronidazole is the first-line treatment
for trichomoniasis and amoebiasis; it is also being used for giardiasis, but threatened by the
emergence of drug resistance [117]. In trypanosomatids, nitro-drugs such as benznidazole,
nifurtimox, or fexinidazole are reductively activated by type-I nitroreductase [118–120],
another redox enzyme that is absent from mammalian cells.

8.2. Convergent Target/Mode of Action

Convergent targets are shared among different species due to convergent evolution,
where pathogens from separate lineages have independently evolved similar traits or
strategies to adapt to similar micro-environments and challenges in their hosts [121]. Thus,
convergent targets reflect a different evolutionary origin, but the same life-style. For
instance, all parasites that consume hemoglobin have to deal with free heme and iron
that are released, generating reactive oxygen species (ROS) and reactive nitrogen species
(RNS) [122]. During their intraerythrocytic development, malaria parasites break down
large amounts of hemoglobin. Also, the blood fluke Schistosoma mansoni resides in the
human bloodstream and feeds on erythrocytes. During the feeding process, the parasite re-
leases proteolytic enzymes to degrade host hemoglobin, leading to radical production [123].
The production of radicals in malaria or schistosomiasis contributes to the pathogenesis of
the diseases, causing oxidative damage and triggering an immune response in the host,
leading to inflammation and tissue damage [124]. However, parasites also possess an effi-
cient antioxidant defense mechanism through the glutathione- and thioredoxin-dependent
systems [125]. The induction of oxidative stress, either through the production of reactive
oxygen species (ROS) or the disruption of redox homeostasis in the infected erythrocyte, is
a key mechanism of action for several antimalarial drugs (e.g., chloroquine, artemisinin,
and atovaquone) [126,127]. The repurposing of antimalarials to schistosomiasis is based on
the rationale that both parasites degrade hemoglobin [128,129]. Clinical trials of artemether
against S. mansoni showed promising results [130].

In the context of biofilm formation, where the protective environment hinders the
effective treatment of both tumors and bacterial infections, convergent targets can offer a
promising avenue for intervention (Table 2). One such compound that illustrates the con-
cept of convergent targeting is toremifene. Toremifene, initially developed as an estrogen
receptor modulator for breast cancer treatment [131], has shown potential in disrupting
bacterial and fungal biofilms. In bacterial biofilms, toremifene can disrupt the structural
integrity of the matrix and enhance the susceptibility of bacteria to conventional antibi-
otics [132]. This class of selective estrogen receptor modulators, the triphenylethylenes, has
shown a wide range of activity against medically important human pathogens, including
bacteria, fungi, parasites, and viruses [133].
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9. Repurposing of Anti-Infectives to Other Fields

It is clear from the examples discussed above that most cases of repurposing happened
from the economically larger towards the smaller market, e.g., from cancer chemotherapy
to that of parasitic infections. However, the repurposing of antiparasitic drugs has also
been pursued, in particular with the COVID-19 pandemic (which, however, has also shown
some of the pitfalls of repurposing [134,135]; also see Cons above).

9.1. Antiparasitics against COVID-19

The best known case is the use of the antimalarials chloroquine and hydroxychloro-
quine in the treatment of COVID-19-associated pneumonia [136,137]. Studies have demon-
strated that chloroquine exhibited significant efficacy in suppressing viral replication,
displaying an effective concentration (EC90) value of 6.90 µM [138]. This was a case of
rational repurposing based on chloroquine’s established mechanism of action that involves
obstructing virus infection through the elevation of endosomal pH and the disruption of
the glycosylation of the cellular receptor for SARS-CoV-2. It is also speculated that the
immunomodulatory properties of the drug could augment the antiviral effect in vivo [138].
In contrast, the outcome of clinical trials was controversial. Many large randomized
controlled trials showed no mortality benefit of chloroquine or hydroxychloroquine for
hospitalized COVID-19 patients [139–141]. Finally, in June 2020, the United States’ Food
and Drug Administration revoked the authorization for emergency use of chloroquine and
hydroxychloroquine to treat COVID-19 patients [142].

Probably the oldest antiparasitic drug still in use today, suramin, demonstrated the
inhibition of SARS-CoV-2 replication and possibly acts on early steps of the replication
cycle, preventing the binding or entry of the virus [143]. Suramin was shown to be a
potent inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), blocking
the binding of RNA to the enzyme, and was found to be 20-fold more potent than remde-
sivir [144]. Suramin had been shown to inhibit RNA-dependent DNA polymerase (reverse
transcriptase) already in 1979 [145]. Clinical studies to support an effectiveness of suramin
against COVID-19 are lacking.

Nitazoxanide, an antiparasitic drug for diarrhea and enteritis triggered by Cryptosporid-
ium spp. and G. intestinalis of known antiviral activity [146], inhibited SARS-CoV-2 replica-
tion in Vero E6 cells at a low micromolar concentration [138,147]. However, the resolution
of symptoms in patients did not differ between nitazoxanide- and placebo-treated groups
after 5 days of therapy [148]. The antiparasitic drug ivermectin is an additional example
of the COVID-19 repurposing efforts [149]. The antiviral potential of ivermectin had been
recognized in an opportunistic repurposing screen of randomly selected bioactives for the
inhibition of importin αβ-mediated nuclear import [150]. Ivermectin was subsequently
shown to inhibit the replication of HIV and Dengue virus [151], and it also inhibited SARS-
CoV-2 replication in cell cultures [152]. However, clinical studies revealed that treatment
with ivermectin did not result in a lower incidence of hospital admissions or of prolonged
emergency department observation among outpatients with an early diagnosis of COVID-
19 [153]. The repurposing attempts for COVID-19 underline the importance of making sure,
before going to clinical trials, that not only the activity and tolerability of a drug candidate
match the new TPP, but also its pharmacokinetics and pharmacodynamics.

9.2. Repurposing to Other Fields

The repurposing of antiparasitics to fields other than infectious diseases has also
occurred; examples are shown in Table 4. Suramin, originally developed for Nagana
and sleeping sickness, was tested for the treatment of cancers and autism [154], and it
might also have potential for snakebite [155]. Azithromycin, a macrolide antibiotic, has
shown anti-inflammatory properties and has improved lung function in patients with cystic
fibrosis. Used as an adjunct therapy, it reduced pulmonary exacerbations [156]. Dapsone,
an antibiotic primarily used for leprosy and certain infectious diseases, has been repurposed
for inflammatory bowel disease (IBD), particularly in Crohn’s disease and ulcerative colitis,
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due to its anti-inflammatory properties [157]. However, the potential selection for resistant
gut microbiota is of concern when repurposing antibiotics to treat chronic diseases.

Table 4. Outbound repurposing of drugs from the field of infectious diseases.

Molecule Original Purpose Envisaged New Purpose

Allopurinol Leishmaniasis Gout
Artemisinin Malaria Cancer
Eflornithine African trypanosomiasis Hirsutism
Ivermectin Anthelminthic Mosquito control
Minocycline Antibacterial Neurodegenerative disorders
Pentamidine African trypanosomiasis Cancer
Suramin African trypanosomiasis Cancer, snake bite, autism

In the field of vaccines, the Mycobacterium bovis Bacillus Calmette et Guérin (BCG)
vaccine was originally developed in 1921 as a vaccine against active tuberculosis. The BCG
vaccine later proved to possess activity against bladder cancer—due to its immunogenicity,
and possibly also due to cytotoxic effects on tumor cells [158]. The exact mechanisms
mediating the antitumor effect of the BCG vaccine remain to be elucidated [159,160]. Even
so, the BCG vaccine has become an important adjuvant therapy for the treatment of high-
risk non-muscle invasive bladder cancer, reducing the risk of cancer progression and
recurrence [161].

The cosmetic industry has also benefited from drug repurposing. Botulinum toxin,
or Botox, is a notable example that revolutionized the field of cosmetic enhancement.
Botulinum toxin, a neurotoxic protein produced by the bacterium Clostridium botulinum,
was initially investigated for its therapeutic effects in various medical conditions, such
as muscle spasms, strabismus (crossed eyes), and cervical dystonia. By inhibiting the
release of acetylcholine, botulinum toxin reduces the repetitive facial muscle contractions
that lead to the formation of wrinkles, allowing the skin to appear smoother [162,163].
Eflornithine (difluoromethyl ornithine) is an inhibitor of ornithine decarboxylase, the
first and rate-limiting enzyme in polyamine biosynthesis. Eflornithine had originally been
developed as an anticancer agent and was subsequently repurposed to become the standard
treatment of late-stage West African human trypanosomiasis (gambiense HAT). Based on
the serendipitous discovery that eflornithine treatment leads to hair loss [164,165], it is now
also being used in a crème to prevent the unwanted growth of facial hair, marketed as
Vaniqa [166].

10. Future Directions in Drug Repurposing for Infectious Diseases: Artificial
Intelligence (AI) and Machine Learning (ML)

Advanced computational methods, such as AI and ML, are currently exploited to accel-
erate drug discovery and repurposing [167]. These technologies enable the analysis of the
large datasets emerging from genomics, proteomics, chemoinformatics, and clinical data,
to identify potential repurposing candidates and predict drug–target interactions [168,169].
This data-driven approach utilizes computational algorithms that can consider drug–drug
as well as disease–disease similarities, and the similarity between target proteins, chemical
structures, and gene expression profiles [170,171]. In addition, AI and ML can help to prior-
itize drug candidates, optimize dosing, and identify novel drug combinations for infectious
diseases. Regarding drug repurposing, AI-based tools have been utilized to accelerate drug
discovery in the COVID-19 pandemic [172,173]. Recently, deep learning-guided discovery
enabled the identification of abaucin as a new antibiotic molecule with highly selective
activity against the Gram-negative bacterium Acinetobacter baumannii [174]. Overall, AI
and ML are revolutionizing drug repurposing for infectious diseases by leveraging data
analysis, prediction models, and optimization techniques. These technologies have the
potential to identify effective treatments more rapidly, helping to address urgent medical
needs during outbreaks and improving the output of drug discovery pipelines.
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