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Abstract: Moutan Cortex (MC) is a traditional Chinese medicine that contains abundant medic-
inal components, such as paeonol, paeoniflorin, etc. Paeonol is the main active component of
MC. In this study, paeonol was extracted from MC through an ultrasound-assisted extraction
process, which is based on single-factor experiments and response surface methodology (RSM).
Subsequently, eight macroporous resins of different properties were used to purify paeonol from
MC. The main components of the purified extract were identified by ultra-performance liquid
chromatography–quadrupole–time of flight–mass spectrometry (UPLC-Q-TOF-MS/MS). The results
indicate the optimal parameters are as follows: liquid-to-material ratio 21:1 mL/g, ethanol concen-
tration 62%, ultrasonic time 31 min, ultrasonic temperature 36 ◦C, ultrasonic power 420 W. Under
these extraction conditions, the actual yield of paeonol was 14.01 mg/g. Among the eight tested
macroporous resins, HPD-300 macroporous resin was verified to possess the highest adsorption
and desorption qualities. The content of paeonol increased from 6.93% (crude extract) to 41.40%
(purified extract) after the HPD-300 macroporous resin treatment. A total of five major phenolic
compounds and two principal monoterpene glycosides were characterized by comparison with
reference compounds. These findings will make a contribution to the isolation and utilization of the
active components from MC.

Keywords: Moutan Cortex; paeonol; extraction; purification; macroporous resin; UPLC-Q-TOF-MS/MS

1. Introduction

The peony (Paeonia suffruticosa Andr.) is a perennial deciduous shrub in the genus
Paeonia of the buttercup family. It is native to Asia, Europe, and North America, and is
widely cultivated in China and Japan [1]. It not only has good ornamental value, but it also
has medicinal value. Moutan Cortex (MC), as the main medicinal part, is the dry root bark
of the peony, and is one of the most important herbs in traditional Chinese medicine [2].
MC was first published in the Shennong’s Herbal Classic of Materia Medica [3] and performs a
variety of medicinal functions, such as anti-inflammatory [4], antioxidant [5], anti-bacterial,
anti-cancer [6], and anti-diabetes [7]. There are many components isolated from MC, mainly
including phenols and phenolic glycosides, monoterpenes, and their glycosides, sterols,
flavonoids, coumarins, polysaccharides, and organic acids, etc. It was revealed that paeonol
and paeoniflorin are considered as the staple bioactive components of MC [8].

Paeonol has been regarded as an important index to evaluate the quality of MC in
the Pharmacopoeia of People’s Republic of China. Pharmacological evidence demonstrates
that paeonol has bacteriostatic, anti-inflammatory [9], antioxidant [10], anti-tumor [11],
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antiatherosclerosis [12], neuroprotective [13], and anti-diabetic effects [14]. There are
abundant resources of MC in China, but most of them are not fully utilized, except for
some of them being exported as medicinal materials or used for prescriptions, resulting in a
waste of resources. The price of natural paeonol is several times that of chemical synthetic
products, and the demand exceeds the supply in the international market [15]. In view of
the beneficial pharmacological activities and growing market demand for paeonol, it is
of interest to develop a simple and effective process for the extraction and purification of
paeonol from MC.

Conventional extraction procedures, such as steam distillation extraction [16], de-
coction extraction, and organic solvent extraction, have been applied to isolate paeonol
from MC, but these methods suffer from deficiencies including low extraction rates and
long extraction durations. These shortcomings have led to the consideration of emerging
technologies such as supercritical fluid extraction [17] and ultrasound [18]. Although
supercritical fluid extraction has less toxic and high extraction efficiency properties [19], it
requires expensive equipment and is not suitable for mass production. Ultrasound-assisted
extraction is a green technology that has been applied for phenolic compound extraction be-
cause of its low cost, low time consumption, high yield, and ability to minimize the damage
to the extracted components [20,21]. Ethanol, as a green solvent, is a promising solvent that
has been used for extracting bioactive compounds due to its many advantages, including
operational safety, high purity, and renewability. Additionally, it can reduce greenhouse
gas emissions [22]. Thus, ultrasound-assisted ethanol extraction is a suitable technique
for the extraction of paeonol. Natural phenolic compounds are usually purified by resin
adsorption [23], recrystallisation, column chromatography [24], high-speed counter-current
chromatography [25], preparative high-performance liquid chromatography [26], etc. At
present, the purification methods of paeonol are mainly focused on recrystallization and
high-speed countercurrent chromatography [27]. Recrystallisation is a traditional purifi-
cation method with high solvent requirements. HSCCC is a classic separation technique
based on the liquid–liquid partition principle, which has been used in the separation of
natural active compounds [28,29]. However, it is subject to special demands on technique,
resulting in longer operating recycling, a large amount organic solvent consumption, and
high costs [30]. Macroporous adsorption resin is a type of organic polymeric absorbent
with physicochemical properties that are inexpensive, readily available, and have excel-
lent selectivity [23]. Comparatively, the macroporous resin adsorption method seems to
be the most suitable method due to its low cost, low solvent consumption, and environ-
ment friendliness [23,31]. At present, it has been widely applied for the purification of
bioactive components, such as flavonoid [32–34], polyphenol [35–40], and monoterpene
glycoside [41–43]; however, there is no report on using macroporous adsorption resin to
purify paeonol from MC.

Research methods on the chemical constituent analysis of MC has been extensively
reported, and includes liquid chromatography–diode array detector–electrospray mass
spectrometry (LC-DAD-ESIMS) [44], high-performance liquid chromatography–diode ar-
ray detector (HPLC-DAD), inductively coupled plasma–mass spectrometry (ICP-MS) [45],
etc. Accumulating evidence has suggested that ultra-performance liquid chromatography–
quadrupole–time of flight–mass spectrometry (UPLC-Q-TOF-MS/MS) is an excellent tech-
nique for qualitative analysis of multiple components in complex mixtures due to its supe-
rior performance, high resolution, high sensitivity, fast scanning speed, and wide dynamic
range, coupled with the efficient separation capability and speed of ultra-performance
liquid chromatography (UPLC) [46]. In addition, there have been various applications for
the screening of bioactive compounds of MC [47,48], the evaluation of quality markers [49],
the chemical fingerprinting of paeonol [45], and the quantitative determination of herbal
medicines [50]. However, due to the fact that the identified compounds were prepared by
means of an organic solvent in these reports, there were derivatives, geometric isomers,
and more than a hundred compounds [5]. This is not conducive to the qualitative analysis
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of the bioactive components. Up to now, there have been no reports about the identification
of the bioactive components from MC extract by UPLC-Q-TOF-MS/MS.

This study was carried out with the purpose of developing a simple and environment-
friendly process for the enrichment of paeonol and identifying the active composition of
MC extract for further research in pharmacological activity. In this study, a crude MC extract
enriched paeonol was produced by an ultrasound-assisted ethanol method. Subsequently,
the purification of the MC extract was investigated using the macroporous resin absorption
method. Both the extraction and the purification process were optimized. Eventually,
UPLC-Q-TOF-MS/MS was used for the first time to analyze the main components of the
MC extract. These findings will provide a theoretical basis for the effective development
and utilization of MC resources.

2. Results and Discussion
2.1. Extraction of Paeonol from MC
2.1.1. Effects of the Various Factors on the Extraction Yield of the Paeonol

In general, appropriately increasing the liquid-to-material ratio could dissolve the
components more effectively, resulting in improving the extraction yield [51]. As exhibited
in Figure 1A, the paeonol yield increased with the increasing liquid-to-material ratio,
ultimately reaching a maximum of 20:1 mL/g. When the liquid-to-material ratio was
greater than 20:1, the yield of paeonol slowly decreased. These results may be due to the
increase of the extraction solvent making the contact area between the solid and liquid
phases increase significantly, and the mechanical effect of the ultrasound increasing the
cell permeability, leading to a faster diffusion ratio; thus, the yield of paeonol gradually
increased. When the liquid-to-material ratio increased to a certain value, the yield of
paeonol decreased. It may be that a certain proportion of the solvent had completely
dissolved the paeonol, and further increasing the liquid-to-material ratio will lead to the
dissolution of more impurities and affect the dissolution of paeonol [52]. Considering the
factors of energy consumption and the subsequent workload, 20:1 was selected as the ideal
liquid-to-material ratio in the response surface methodology (RSM) experiments.
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Figure 1. The effects of liquid-to-material ratio (A), ethanol concentration (B), ultrasonic time (C), 
ultrasonic temperature (D), and ultrasonic power (E) on the extraction yield of paeonol. The values 
Figure 1. The effects of liquid-to-material ratio (A), ethanol concentration (B), ultrasonic time (C),
ultrasonic temperature (D), and ultrasonic power (E) on the extraction yield of paeonol. The values
are expressed as means ± SD (n = 3). Different lowercase letters (a, b, c, d, and e) in the same figure
indicate statistically significant differences (p < 0.05).



Molecules 2024, 29, 622 4 of 22

As exhibited in Figure 1B, the yield of paeonol initially increased and then decreased
as the ethanol concentration increased; the highest paeonol yield occurred at the ethanol
concentration of 60%. This might be due to the fact that the polarity of the 60% ethanol was
the closest to that of the paeonol, which rendered the paeonol more easily dissolvable [53].
According to the similarity and compatibility [54], when the polarity of the paeonol was
similar to that of the ethanol solution, the solubility of paeonol was the highest. When the
ethanol concentration was below 60%, the polarity of the ethanol solution increases, leading
to decrease in the dissolution of paeonol, while when the ethanol concentration was greater
than 60%, the polarity of the ethanol solution decreases, which was not conducive to the
dissolution of paeonol. Accordingly, 60% was selected as the ideal ethanol concentration in
the RSM experiments.

Ultrasound has the effect of cavitation and fragmentation, which can accelerate the
leaching of active components and shorten the time of ethanol extraction. It was shown, as
evidenced in Figure 1C, that the yield of paeonol initially increased and then decreased with
the prolonging of the ultrasound time, eventually reaching a maximum at 30 min. The cavi-
tation effect of ultrasound, to some extent, could increase the contact surface area between
the solid phase and the liquid phase, resulting in an increased yield of paeonol [20,55].
However, the yield of paeonol decreased when the ultrasonic time exceeded 30 min, which
may be attributed to the loss of paeonol with the evaporation of water vapor, along with
the extension of the ultrasonic time [15]. Accordingly, 30 min was selected as the ideal
ultrasound time in the RSM experiments.

As depicted in Figure 1D, the paeonol yield firstly increased and then decreased as
the temperature raised, and the optimum values were reached when the temperature was
35 ◦C. Appropriately increasing the temperature accelerates the movement of the solvent
and solute molecules, which favors the release of paeonol from the raw material to the
solvent and promotes diffusion. However, excessive temperatures caused the paeonol to
be thermally oxidized, resulting in a decline in the extraction yield [55,56]. These results
indicate that the extraction temperature had a significant positive effect on the paeonol yield
when it was below 35 ◦C. Therefore, 35 ◦C was appropriate for the ultrasound temperature.

As displayed in Figure 1E, different ultrasound powers ranging from 240 W to 480 W
were tested. The yield of paeonol increased first and then decreased with the increase of
ultrasound power, and peaked at 420 W. The result was in accordance with other reports
for the extraction of phenolic compounds [53]. This might be responsible for the increase
of the mass transfer ratio of paeonol with high ultrasonic power [57]. Therefore, it was
determined that the ultrasonic power of 420 W should be utilized.

2.1.2. Response Model Establishment and the Variance Analysis

Based on the results of the single-factor experiments, the liquid-to-material ratio (A),
ethanol concentration (B), ultrasonic time (C), ultrasonic temperature (D), and ultrasonic
power (E) were taken as the influencing factors of the response surface test in accordance
with the design principle of the Box–Behnken central combination test (Table 1).

Table 1. Response surface test factors and horizontal design.

Factors
Level

−1 0 1

Liquid-to-material ratio/mL/g 15 20 25
Ethanol concentration/% 40 60 80

Ultrasonic time/min 20 30 40
Ultrasonic temperature/◦C 30 35 40

Ultrasonic power/W 360 420 480

The paeonol yield (mg/g) of the extraction process was set as a response value of the
design experiments. A Box–Behnken Design (BBD) of five factors and three levels was
conducted. The results are shown in Table 2.
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Table 2. Experimental design and response value of Box–Behnken.

Run A B C D E Extraction Yield (mg/g)

1 15 40 30 35 420 7.43 ± 0.52
2 25 40 30 35 420 8.52 ± 0.44
3 15 80 30 35 420 8.27 ± 0.51
4 25 80 30 35 420 9.41 ± 0.14
5 20 60 20 30 420 9.63 ± 0.02
6 20 60 40 30 420 9.86 ± 0.08
7 20 60 20 40 420 8.93 ± 0.56
8 20 60 40 40 420 10.16 ± 0.41
9 20 60 30 35 360 7.39 ± 0.23

10 20 80 30 35 360 8.26 ± 0.44
11 20 40 30 35 480 8.23 ± 0.17
12 20 80 30 35 480 8.81 ± 0.21
13 15 60 20 35 420 8.43 ± 0.48
14 25 60 20 35 420 9.55 ± 0.19
15 15 60 40 35 420 8.84 ± 0.64
16 25 60 40 35 420 10.43 ± 0.71
17 20 60 30 30 360 8.36 ± 0.23
18 20 60 30 40 360 8.29 ± 0.12
19 20 60 30 30 480 8.82 ± 0.16
20 20 60 30 40 480 9.66 ± 0.05
21 20 40 20 35 420 8.32 ± 0.19
22 20 80 20 35 420 10.33 ± 0.22
23 20 40 40 35 420 9.84 ± 0.87
24 20 80 40 35 420 10.01 ± 0.45
25 15 60 30 30 420 7.98 ± 0.33
26 25 60 30 30 420 9.34 ± 0.06
27 15 60 30 40 420 8.54 ± 0.45
28 25 60 30 40 420 10.19 ± 0.10
29 20 60 20 35 360 8.27 ± 0.25
30 20 60 40 35 360 8.53 ± 0.33
31 20 60 20 35 480 9.32 ± 0.47
32 20 60 40 35 480 9.38 ± 0.11
33 15 60 20 35 360 7.87 ± 0.80
34 25 60 40 35 360 8.05 ± 0.44
35 15 60 30 35 480 7.22 ± 0.56
36 25 60 30 35 480 9.84 ± 0.14
37 20 40 30 30 420 9.23 ± 0.73
38 20 80 30 30 420 8.53 ± 0.40
39 20 40 30 40 420 9.09 ± 0.44
40 20 80 30 40 420 10.78 ± 0.02
41 20 60 30 35 420 13.67 ± 0.01
42 20 60 30 35 420 12.98 ± 0.09
43 20 60 30 35 420 12.18 ± 0.04
44 20 60 30 35 420 13.01 ± 0.11
45 20 60 30 35 420 13.74 ± 0.08
46 20 60 30 35 420 12.22 ± 0.16

2.1.3. Response Surface Analysis

The analysis of variance (ANOVA) of the Box–Behnken was carried out by Design-
Expert 13.0 software (Stat-Ease Inc., Minneapolis, MN, USA). As shown in Table 3, the
model was significant (p < 0.0001). The F value of the lack-of-fit item was 0.22, and the p-
value was 0.9936 (p > 0.05), suggesting that the model fits well and can explain the variation
in the response. The regression coefficient R2 of the model was 0.9633, indicating that the
model could explain 96.33% of the total changes in the response values, and the value of
R2

Adj was 0.9339, indicating that there was a good correlation between the equation and the
selected independent variables. Moreover, the primary terms (A, B, C, D, E), the interaction
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terms (AE, BD, BC), and the quadratic terms (A2, B2, C2, D2, E2) had significant effects on
the yield of paeonol (p < 0.05).

Table 3. ANOVA of Box–Behnken.

ANOVA Source Sum of Squares df Mean Square F-Value p-Value

Model 112.37 20 5.62 32.81 <0.0001 ***
A 7.09 1 7.09 41.40 <0.0001 ***
B 2.52 1 2.52 14.72 0.0008 ***
C 1.36 1 1.36 7.96 0.0092 ***
D 0.8978 1 0.8978 5.24 0.0307 *
E 2.15 1 2.15 12.53 0.0016 **

AB 0.0006 1 0.0006 0.0037 0.9523
AC 0.0552 1 0.0552 0.3225 0.5752
AD 0.0090 1 0.0090 0.0527 0.8203
AE 1.49 1 1.49 8.69 0.0068 **
BC 0.8464 1 0.8464 4.94 0.0355 *
BD 1.43 1 1.43 8.34 0.0079 **
BE 0.0210 1 0.0210 0.1228 0.7290
CD 0.2500 1 0.2500 1.46 0.2382
CE 0.0900 1 0.0900 0.5256 0.4752
DE 0.2070 1 0.2070 1.21 0.2820
A2 46.00 1 46.00 268.66 <0.0001 ***
B2 37.61 1 37.61 219.64 <0.0001 ***
C2 17.78 1 17.78 103.87 <0.0001 ***
D2 24.41 1 24.41 142.58 <0.0001 ***
E2 56.97 1 56.97 332.74 <0.0001 ***

Residual 4.28 25 0.1712
Lack of fit 2.01 20 0.1005 0.2212 0.9936
Pure error 2.27 5 0.4542
Cor total 116.65 45

R2 = 0.9633 R2
Adj = 0.9339 C.V.% = 4.37

Notes: Level of significance: * p < 0.05, ** p < 0.01, *** p < 0.001.

After regression fitting, the quadratic regression model of the response value on each
factor was as follows:

Y = 12.97 + 0.67A + 0.4B + 0.29C + 0.24D + 0.37E + 0.013AB + 0.12AC + 0.048AD + 0.61AE − 0.46BC
+ 0.60BD − 0.073BE + 0.25CD − 0.15CE + 0.23DE − 2.3A2 − 2.08B2 − 1.43C2 − 1.67D2 − 2.55E2.

The response surface plots of the quadratic regression equation were obtained using
Design Expert 13.0 software. Figure 2 depicts the response surface plots reflected by the
interaction between any two variables on the paeonol yield. In the response surface plot,
the steeper the surface plot, the more obvious the interaction between the variables. As
shown in Figure 2, the interaction terms (AE) had the most significant effect on the yield of
paeonol, followed by BD and BC, and other interaction terms (AB, AC, AD, BE, CD, CE,
DE) were not significant, which were consistent with the ANOVA in Table 3.
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two changed variables were liquid-to-material ratio and ethanol concentration (A); liquid-to-material
ratio and ultrasound time (B); liquid-to-material ratio and ultrasound temperature (C); liquid-to-
material ratio and ultrasound power (D); ethanol concentration and ultrasound time (E); ethanol
concentration and ultrasound temperature (F); ethanol concentration and ultrasound power (G);
ultrasound temperature and ultrasound time (H); ultrasound time and ultrasound power (I); and
ultrasound temperature and ultrasound power (J).

2.1.4. Optimal Conditions and Model Validation

Based on the results above, the optimal extraction conditions of paeonol from MC
were obtained: the liquid-to-material ratio was 20.81:1 mL/g, the ethanol concentration was
61.96%, the ultrasound time was 30.98 min, the ultrasound temperature was 35.52 ◦C, and
the ultrasound power was 425.48 W. Under these conditions, the model predicted that the
yield of paeonol was 13.68 mg/g. Considering the limitations of that actual operation, the
process parameters were modified as follows: liquid-to-material ratio, 21:1 mL/g; ethanol
concentration, 62%; ultrasonic time, 31 min; ultrasonic temperature, 36 ◦C, and ultrasonic
power, 420 W. A verification assay was carried out based on the conditions above: the
actual yield of paeonol was 14.01 mg/g, which was close to the predicted value, and the
relative standard deviation was 2.36%. There was no significant difference between the two
conditions, indicating that the obtained model could be used for the extraction of paeonol
from MC. Under the optimal conditions, the extraction rate of paeonol reached 93.82%.

The results of the ultrasound-assisted ethanol extraction were compared with other
studied extraction methods. The research of Zhuo Chen et al. [56] concluded that the
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total yield of paeonol and paeoniflorin from MC by ultrasound-assisted deep eutectic
solvents (DESs) extraction was 9.279 mg/g under the optimal process. A study conducted
by Yinshi Sun et al. [27] noted that supercritical fluid extraction was used to extract paeonol
from Cynanchum paniculatum (Bge.) Kita. Under the optimized conditions of 15 MPa,
55 ◦C, 1.5 h, and repeating the process 10 times, the extraction rate of paeonol reached
72.02%. Fengli Chen et al. [58] developed a novel approach for the extraction of paeonol by
microwave irradiation using an ionic liquid as the reaction medium. The yield of paeonol
was 10.52 mg/g under the following optimum conditions: 20 mL/g liquid–solid ratio,
25 min microwave irradiation time, 700 W microwave irradiation power. Compared
with the process parameters of the extraction methods above, ultrasound-assisted ethanol
extraction is more efficient, and can obtain a higher yield of paeonol in a shorter time. It is
simpler than other extraction technologies and does not require repeated extractions.

2.2. Purification of Paeonol from MC by Macroporous Resin Adsorption
2.2.1. Screening of Macroporous Resins

Generally, the adsorption properties of macroporous resin are mainly associated with
the polarity and structure of the resin, such as pore size and specific surface area [38,39].
The polarity, specific surface area, and pore size of the eight resins can be derived from
Table S1 (Supplementary Materials). According to the principle of similarity and com-
patibility, the resin of lower polarity had a better adsorption capacity for low polar and
non-polar substances [35]. As shown in Figure 3, the adsorption capacity, adsorption ratio,
desorption ratio, and recovery ratio of eight macroporous resins were investigated. The
adsorption ratio of paeonol on HPD-300 and HPD-100 macroporous resins was promi-
nently higher (85.77% and 83.49%, respectively) than those of other weakly polar and polar
resin, indicating that hydrophobic interactions of the hydrophobic groups of paeonol may
occur on the non-polar resin. The adsorption capacity of HPD-300 macroporous resin was
slightly higher than that of HPD-100 resin, which was attributed to the larger surface area
of HPD-300 macroporous resin providing more binding sites. Furthermore, the desorption
ability of HPD-300 was significantly higher than that of HPD-100, indicating that paeonol
was more easily desorbed from the resin with a large specific surface area and pore size [15].
The results are consistent with the findings reported by previous research [23]. Thus, the
HPD-300 macroporous resin was selected to purify paeonol from MC, followed by the
optimization of the purification condition.
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2.2.2. Static Adsorption and Desorption Tests

The static adsorption kinetics curve of paeonol on HPD-300 macroporous resin is
shown in Figure 4A. When the adsorption time was within 0–5 h, the adsorption ratio of
the HPD-300 macroporous resin on paeonol increased with the extension of time, and the
adsorption ratio of paeonol was the largest at 5 h. There was no significant difference in
the adsorption ratio of HPD-300 macroporous resin on paeonol after 5 h (p > 0.05), which
indicates that the adsorption equilibrium was reached at 5 h. The adsorption ratio was
the highest at 5 h. Therefore, the static adsorption time of HPD-300 macroporous resin on
paeonol should be around 5 h. As shown in Figure 4B, the desorption ratio of paeonol in
the eluate increased first and then tended to be stable with the increase of time, and there
was no significant difference in the desorption ratio when it reached 4 h (p > 0.05). It can be
concluded that the desorption equilibrium was reached at 4 h. Hence, the static desorption
time should be about 4 h.
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Figure 4. Kinetic curve of static adsorption (A) and desorption (B) of paeonol on HPD-300 macrop-
orous resin. Lowercase letters indicate significant differences (p < 0.05).

As shown in Figure 5, the effect of the initial paeonol concentration, pH value, and
ethanol concentration on the static absorption and desorption of HPD-300 macroporous
resin were studied. The influence of the initial paeonol concentration on static absorp-
tion is shown in Figure 5A. The adsorption capacity rose as the sample concentration
increased when the paeonol concentration was less than 1.0 mg/mL, which was due to the
fact that when the paeonol concentration was low, the number of active sites associated
with paeonol increased as the sample concentration rose [59]. When the concentration of
paeonol exceeded 1 mg/mL, the adsorption capacity no longer increased. This might be
responsible for high concentrations of paeonol causing the resin to be plugged [60]. Taking
this into account, the optimal concentration was determined to be 1.0 mg/mL. As shown in
Figure 5B, the adsorption capacity of paeonol under a weak acid condition was higher than
that under a neutral condition, and the maximum value was reached at pH 4. When the
pH was higher than 4, the adsorption capacity decreased with the increase of pH, which
may be attributed to the dissociation of the phenolic hydroxyl group to form H+ and the
corresponding anions at a higher pH, which made them adsorb on the HPD-300 macrop-
orous resin through electrostatic interactions and reduced the affinity of adsorption [31].
This result was similar to a previous report that in high pH solutions, phenolic compo-
nents are not susceptible to being absorbed by the resin due to the ionization reaction [36].
Therefore, the pH value of the loading solution was set at about 4 in the following ratio
experiments. In order to choose the appropriate desorption solution, elution tests were
performed using different concentrations of ethanol solutions. As exhibited in Figure 5C,
the desorption ratio increased significantly with the increasing ethanol concentration and
reached the maximum when the ethanol concentration reached 70%. It was suggested that
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high concentration of the ethanol solution promoted the desorption of paeonol from MC by
the HPD-300 macroporous resin. Due to the fact that ethanol reduced the polarity of water
and promoted the desorption of paeonol arose from the disruption of the hydrogen bond
between the paeonol and the macroporous resin, paeonol was continuously eluted with
increasing ethanol concentration [31]. This result also indicates that 70% ethanol was most
closely related to the paeonol’s polarity. Hence, a 70% ethanol solution was considered in
the subsequent experiments.
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2.2.3. Dynamic Adsorption and Desorption Tests

The flow rate is the main factor affecting the adsorption ratio of resin in the dynamic
adsorption process. When the paeonol concentration in the effluent reaches 1/10 of the
paeonol concentration in the loading solution, it is considered to be the leakage point.
When the leakage point occurs, the loading is stopped, and it is considered to be the best
loading volume [34]. Figure 6 shows the effect of different loading flow rates on paeonol
adsorption by HPD-300 macroporous resin. As seen in Figure 6A, the lower the loading
flow rate, the later the leakage point appeared, which indicates that a low loading flow rate
was more conducive to the adsorption of paeonol from MC with HPD-300 macroporous
resin. As the loading flow rate increased, the concentration of paeonol increased. When
the flow rate was 2.5 mL/min and 3.0 mL/min, the paeonol was not fully adsorbed by the
inner surface of the resin and flowed out of the column with the permeate. Additionally,
the leakage point appeared in advance, leading to poor absorption. Although the low flow
rate was beneficial to improve paeonol adsorption by HPD-300 macroporous resin, the
delay of the leakage point would cause low production efficiency. After a comprehensive
analysis, the optimal loading flow rate was identified as 2.0 mL/min. Under this condition,
the loading volume was 180 mL.

As can be seen in Figure 6B, different volumes of 70% aqueous ethanol were used
to study the effect of the elution flow rate on the desorption of HPD-300 macroporous
resin. It was obvious that the faster the elution flow rate, the earlier the peak time of the
dynamic curve and the more obvious the trailing. It was clear that the desorption curves
showed narrow and sharp outlines without the trailing phenomenon at flow rates of 1.0 and
1.5 mL/min. The concentration of paeonol in the effluent was larger, which meant that
the elution effect was better. The peak shape was relatively wide, the tailing phenomenon
was significant at the higher flow rate, and the concentration of paeonol in the effluent was
low. These results might be attributed to the fact that the lower flow rate facilitated the
interactions between the eluent and the paeonol in the resin, and a higher flow rate failed
to sufficiently dissolve paeonol in the resin column [30]. The elution time and the amount
of ethanol were taken into account: a 1.5 mL/min flow rate was adopted for desorption,
and the eluting volume was set as 140 mL.
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Therefore, the optimal purification conditions of paeonol from MC using HPD-300
macroporous resin were as follows: the sample concentration, 1.0 mg/mL; the sample
pH, 4; the ethanol concentration of the eluent, 70%; the loading flow rate, 2.0 mL/min; the
sample volume, 180 mL; the elution flow rate, 1.5 mL/min; the elution volume, 140 mL.
Under these conditions, the purity of the paeonol in the extract increased from 6.93%
to 41.40%.

2.3. Compositional Analysis of MC Extract

The chemical compositions of the MC extract were analyzed by UPLC-Q-TOF-MS/MS.
Good chromatographic resolution was obtained by gradient elution with 0.1% (v/v) aque-
ous formic acid water and methanol as the mobile phase. Since the main chemical com-
ponents in MC are phenols and phenolic glycosides, monoterpenes and their glycosides,
and other compounds with great differences in UV absorptions, the wavelength of 254 nm,
which has the most chromatographic peaks, was chosen. In this experiment, positive
and negative ion modes were employed for full-scan detection, and the total ion chro-
matograms, HPLC chromatograms (λ = 254 nm), in positive and negative ion modes are
shown in Figure 7. Seven chemical constituents were preliminarily confirmed using the
method of quasi-molecular ion peak and characteristic fragment ions, combined with
the discovered chemical components of the MC extract, a comprehensive analysis of the
retention time, relative molecular mass, fragment ion information of each compound, and
comparing with the literature data, which included gallic acid, paeonolide, paeonol, and
other compounds of the MC extract. The results of the UPLC-Q-TOF-MS/MS analysis for
each peak are shown in Table 4.

Table 4. UPLC-Q-TOF-MS/MS analysis of MC extract.

No. Retention Time (min) Compound Formula M.W. Select Ions Quasimol-
Ecular Ion (m/z)

Fragment Ions
(m/z)

1
7.48

Gallic acid C7H6O5 170
[M + H]+ 171 127

7.43 [M − H]− 169 125

2
22.80 Oxypaeoniflorin C23H28O12 496

[M + Na]+, [M + K]+ 519 332, 275, 189
23.48 [M − H]− 495 137

3
29.46

Paeonolide C20H28O12 460
[M + Na]+, [C9H10O3 + H]+ 483 167

29.53 [M − H]− , [M + HCOO]− ,
[M − C9H10O3 − H]− 505 459, 293

4
32.30

Paeonol C9H10O3 166 [M + H]+ 167
97

32.63 165, 125

5
37.45

Paeoniflorin C23H28O11 480
[M + Na]+ 503 179, 280

37.59 [M + HCOO]− 525 327, 177, 195
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Table 4. Cont.

No. Retention Time (min) Compound Formula M.W. Select Ions Quasimol-
Ecular Ion (m/z)

Fragment Ions
(m/z)

6
39.44 Ethyl gallate C9H10O5 198

[M + H]+ 199 171, 109
39.34 [M − H]− , [M − 2H]2− 197 317, 169

7
57.77 Pentagalloylglucose C41H32O26 940

[M + Na]+, [M – C7H6O5]+ 963 771, 171, 127
57.70 [M – H]− , [M – 2H]2− 939 469, 169, 125

As indicated in the MS2 spectra in the positive and negative ion modes (Figures S1–S7),
peak 1 showed the [M − H]− ion at m/z 169.0137. The fragment ion at m/z 125.0236
was generated by the loss of a carboxyl, whose molecular formula was determined as
C7H6O5, with a molecular mass of 170 Da. Peak 1 was identified as gallic acid, which was
in accordance with the findings of a previous study [61]. Peak 2 displayed the [M − H]−

ion at m/z 495.1503; its molecular formula was definitely inferred as C23H28O12 from the
[M + Na]+ ion at m/z 519.1485 and [M + K]+ ion at m/z 535.1225. Compared with the
reference compound, it was deduced to be oxypaeoniflorin [62]. Peak 3 showed [M + Na]+

at m/z 483.1487 with a presumed molecular formula of C20H28O12. In the negative ion
mode, there were fragment ions m/z 459.1499, indicating that compound 3 exhibited the
[M − H]− ion at m/z 459.1499, and the loss of paeonol (C9H10O3) gave rise to the fragment
at m/z 293.0866, suggesting a paeonol derivative. The m/z 505.1558 is associated with the
acquisition of a molecule of the carboxyl groups. Thus, this compound was tentatively
assigned as paeonolide. Such identification of paeonolide was in agreement with a previous
report [62]. Because the carbonyl and enoyl groups in paeonol readily form intramolecular
hydrogen bonds, it is difficult for paeonol to negatively ionize under acidic conditions [50].
In the positive ion mode, compound 4 displayed the [M + H]+ ion at m/z 167.0706, which
was observed to be stable and abundant with fewer fragment ions in the negative ion mode.
Thus, peak 4 was characterized as paeonol. The molecular formula of peak 5 was designed
as C23H28O11 from the [M + Na]+ at m/z 503.1547. The fragment ion at m/z 525.1609
might arise owing to the presence of a molecule of formic acid (45 Da) in the negative MS2

experiment since formic acid was used in the mobile phase. Taking the MS2 m/z 449.1446
and m/z 327.1078 into consideration, there was a consecutive loss of CH3O and the benzoyl
group, resulting in the generation of the fragment ion [M − CH3O − C7H6O2]− at m/z
327.1078. Based on the analysis above, peak 5 was unambiguously deduced as paeoniflorin.
The identification of paeoniflorin was consistent with a previous report [61]. Compared
with peak 1, the fragment ions at m/z 171.0287 and m/z 169.0136 were observed, which
indicated that compound 6 was a derivative of gallic acid. Peak 6 exhibited [M − H]− and
[M + H]+ ions at m/z 197.0451 and 199.0610, corresponding to the molecular formula of
C9H10O5. Thus, this compound was verified as ethyl gallate [62]. Peak 7 had a molecular
ion peak at m/z 963 showing [M + Na]+ with a presumed relative molecular mass of
940, and the molecular ion peak obtained a hydrogen ion and lost a molecule of gallic
acid, suggesting the chemical formula of C41H32O26. The doubly charged ion [M − 2H]2−

was readily detected in abundance under ESI source conditions. The detection of an ion
at m/z 469.0517 is likely attributed to the presence of ion [M − 2H]2− [46,62]. Thus, in
negative ion mode, the fragment ions at m/z 939.1118 and m/z 469.0517 contributed to
the loss of hydrogen and [M − 2H]2− ion. After a comparison with previous research,
peak 7 was confirmed to be pentagalloylglucose [48]. The chemical structures of seven
compounds and the deduced fragment pathways of gallic acid, paeonolide, paeoniflorin,
and pentagalloylglucose are displayed in Figure 8.
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Figure 7. Analysis of MC extract by HPLC/MS: total ion current plots in liquid chromatograph (A),
positive ion mode (B), and negative ion mode (C). Notes: Numbers 1–7 in Figure (A) indicate gallic
acid (1), oxypaeoniflorin (2), paeonolide (3), paeonol (4), paeoniflorin (5), ethyl gallate (6), and
pentagalloylglucose (7), respectively.
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3. Materials and Methods
3.1. Reagents and Materials

The MC was provided by Heze Hua Rui Petroleum Co., Ltd., (Heze, China). The
ethanol was supplied by Kaitong Chemical Reagent Co., Ltd., (Tianjin, China). The HPD-
300 macroporous resin was provided by Beijing Solaibao Technology Co., Ltd., (Beijing,
China), and the other resins were provided by LanXiao Technology New Material Co., Ltd.,
(Xi’an, China). The chromatographic methanol was obtained from Oceanpak Alexative
Chemical Co., Ltd., (Gothenburg, Sweden).

3.2. Determination of Paeonol from MC
3.2.1. Conditions of HPLC

The paeonol quantification was achieved by HPLC. Before the HPLC analysis, standard
solutions of paeonol and the extract were filtered by 0.45 µm membranes. HPLC separation
of the target analytes was performed with an Inertsil ODS-SP (5 µm, 4.6 × 250 mm (UP))
chromatographic column. Ultrapure water (A) and chromatographic methanol (B) were
used as the mobile phase. Gradient elution conditions: 0–10 min, 40–60% B; 10–20 min,
60–80% B; 20–30 min, 80–100% B. The injection volume was 10 µL, the flow rate was
0.8 mL, and the column temperature was 30 ◦C. The detection wavelength was 274 nm.
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3.2.2. Plotting of Standard Curves

The paeonol standard was precisely weighed at 5.0 mg, placed in 10 mL volumetric
flasks, dissolved with methanol, and shaken well to obtain a paeonol standard solution
with a concentration of 0.5 mg/mL. A series of paeonol standard solutions (5, 10, 15, 20,
25 µg/mL) were prepared by removing 0.1, 0.2, 0.3, 0.4, and 0.5 mL of the paeonol standard
solution with a pipette and adjusting the volume precisely to 10 mL with a methanol
solution. The standard curve was drawn with the peak area y as the vertical coordinate
and the paeonol concentration x as the horizontal coordinate. The regression equation of
paeonol was y = 84,218x – 10,221, R2 = 0.9996.

3.3. Extraction Process of Paeonol from MC
3.3.1. Single-Factor Experiments

Single-factor experiments were performed to determine the optimal range of each
variable. After the MC was washed with deionized water, it was dried to a moisture
content of 10% in a constant temperature drying oven at 45–50 ◦C, pulverized, and sieved
(60–80 mesh). A quantity (1.0 g) of the MC powder was accurately weighed and mixed
with 20 mL 60% ethanol solution before the ultrasonic-assisted extraction at 30 ◦C and
a power of 300 W for 30 min using an ultrasound processor (Ultrasonic Instrument Co.,
Ltd., Kunshan, China). Then, the crude extract was filtered and analyzed by HPLC. The
concentration of paeonol from the MC extract was determined in accordance with the
regression equation in Section 3.2.2, and the yield of paeonol was calculated according to
the following Equation (1):

Extraction yield of paeonol (mg/g) = CV/1000 M (1)

where C is the paeonol concentration (µg/mL); V is the extraction liquid volume (mL); and
M is the sample weight (g).

According to the conditions above, the single factor experiments were conducted by
changing one of the factors: ethanol concentration (from 20% to 100%), liquid-to-material
ratio (from 10:1 to 30:1 mL/g), ultrasound time (from 10 to 50 min), ultrasound temperature
(from 30 to 50 ◦C), and ultrasound power (from 240 to 480 W).

3.3.2. Box–Behnken Design

On the basis of the single-factor experiments, a five-factor and three-level experiment
design was carried out according to the BBD to optimize the extraction process of paeonol
from MC.

3.4. Purification Process of Paeonol from MC
3.4.1. Pretreatment of Macroporous Resin

The crude paeonol-enriched extract, obtained under the optimal conditions of the
BBD, was concentrated by a rotary evaporator to a certain concentration and subjected to
further purification using macroporous resin.

All the resins were pretreated referring to the method of previous study [26]. In brief,
the resins were immersed overnight in anhydrous ethanol and flushed with deionized
water to be ethanol-free, then immersed in a 5% NaOH solution (w/v) for 4 h and washed
by deionized water until the pH of the filtrate reached neutral. They were then soaked
in a 5% HCl solution (w/v) for 4 h and flushed with deionized water to make them pH
value-neutral before the experiments.

3.4.2. Screening of Macroporous Resins

The MC crude extract was dissolved with deionized water, and the concentration of
paeonol was 0.8 mg/mL. A quantity (1.0 g) of the different types of macroporous resins
(LSA-900C, HPD-100, HPD-300, AB-8, S-8, D-101, NKA-9, HPD-826) that had been pre-
treated were mixed with 25 mL MC crude extract (0.8 mg/mL) in 50 mL conical flasks. All
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the flasks were put in a constant temperature shaker (120 rpm) and shaken for 24 h at 25 ◦C.
Following the absorption equilibrium, the resins were filtered, and the content of paeonol
in the solutions was determined by HPLC after adsorption equilibrium.

After adsorption saturation, the different types of macroporous resins were washed
with distilled water until the surface of resin had no residual MC extract, and the surface
water of the macroporous resins was sucked up with filter paper. Subsequently, the resins
were desorbed with 25 mL of 50% aqueous ethanol solution in a constant temperature water
bath shaker (120 rpm) for 24 h at 25 ◦C. After desorption, the concentration of paeonol was
measured. The adsorption capacity, adsorption ratio, desorption ratio, and recovery ratio
were calculated according to the following Equations (2)–(5):

Adsorption capacity (mg/g)

Qe = (C0 − C1) V0/M (2)

Adsorption ratio (%)
Qd = [(C0 − C1)/C0] × 100 (3)

Desorption ratio (%)

D = [C2V2/(C0V0 − C1V1)] × 100 (4)

Recovery ratio (%)
R = (C2V2/C0V0) × 100 (5)

where Qe (mg/g) is the adsorption capacity at adsorption equilibrium; C0 and C1 (mg/mL)
are the initial and equilibrium concentrations of paeonol in the solutions, respectively; V0
(mL) is the volume of the crude extract; M (g) is the weight of the resin; V1 (mL) is the
volume of the crude extract after adsorption; C2 (mg/mL) is the concentration of paeonol
in the desorption solution; V2 (mL) is the volume of the desorption solution; and R (%) is
the recovery ratio.

3.4.3. Static Adsorption and Desorption Tests

The adsorption and desorption static experiments were carried out as follows. A
quantity (1.0 g) of pretreated HPD-300 macroporous resin and 25 mL of the sample solution
with a concentration of 0.8 mg/mL for paeonol were added into conical flasks (50 mL), and
the flasks were continually shaken at 120 rpm for 12 h at a constant temperature (25 ◦C).
During this period, 100 µL of the sample solution was taken every hour, and the paeonol
concentrations were determined by HPLC. The adsorption ratios were calculated, and the
adsorption kinetic curve was plotted.

When adsorption equilibriums were reached, the macroporous resins were washed
with deionized water. A mixture of 25 mL 50% ethanol solution and macroporous resin
after adsorption equilibrium were shaken at 120 rpm at 25 ◦C for 12 h after adsorption
equilibrium. The paeonol concentration was measured in 100 µL of the supernatant
every hour. The desorption ratios of HPD-300 macroporous resin were measured, and
the desorption kinetic curve was plotted. Under the same pH conditions, seven crude
MC solutions with different initial paeonol concentrations (0.1, 0.2, 0.4, 0.6, 0.8, 1.0, and
1.4 mg/mL) were employed to investigate the effect of the paeonol concentration on the
adsorption process. The effect of pH on static absorption was researched by adjusting the
pH from 2 to 8. Static desorption tests were developed with an ethanol eluent at different
concentrations in a range of 20–100% (v/v).

3.4.4. Dynamic Adsorption and Desorption Tests

Dynamic adsorption and desorption tests were carried out on a glass column
(0.6 cm × 50 cm) with pretreated HPD-300 macroporous resin (10.0 g). The absorption
process was performed by loading a paeonol solution according to the optimal conditions
and changing the sample flow rate (1.0, 1.5, 2.0, 2.5, and 3.0 mL/min). A fraction collector
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was used for collecting the eluent solution. Approximately 10 mL eluent was collected in
each tube, and every two tubes were combined to determine the concentration of paeonol
by HPLC. The dynamic adsorption curves were plotted at the five flow rates. The optimal
sample volume and flow rate were determined according to the dynamic adsorption curve.

After adsorption equilibrium, the adsorption column was firstly washed with deion-
ized water, and then desorbed with ethanol solution. The elution process was performed
with a 70% ethanol solution and at the elution flow rates of 1.0, 1.5, 2.0, 2.5, and 3.0 mL/min.
The effluent was analyzed by HPLC, and the dynamic desorption curve was plotted. The
optimal eluent volume and elution flow rate were determined according to the dynamic
desorption curve.

The effluent containing paeonol was collected, further concentrated, and dried under
a vacuum to calculate the purity of the paeonol.

3.5. Identification of MC Extract
3.5.1. Preparation of Sample Solution

Purification of the MC extract was carried out according to the optimal purification
conditions. The effluent containing paeonol was concentrated in a rotary evaporator at
45 ◦C to obtain the MC concentrated liquid. It was then diluted with a 50% ethanol (HPLC
grade) aqueous solution and filtered through 0.22 µm membrane filters for UPLC-Q-TOF-
MS/MS analysis.

3.5.2. Conditions of UPLC-Q-TOF-MS/MS

The UPLC analysis was performed with a Nexera UPLC system (Shimadzu, Ky-
oto, Japan) equipped with an Agilent ZORBAX Eclipse Plus C18 (4.6 × 250 mm, 5 µm)
chromatographic column and an autosampler coupled with a PDA detector.

The mobile phases consisted of 0.1% (v/v) formic acid in water (A) and methanol
(B), and the gradient program was configured as follows: 0–10 min, 15–20% B; 10–20 min,
20–30% B; 20–23 min, 30–32% B; 23–30 min, 32–35%; 30–35 min, 35%; 35–40 min, 35–40%;
40–50 min, 40–50%; 50–60 min, 50–60%; 60–80 min, 60–80%. The wavelength of detection
was 254 nm, and the flow rate was 0.8 mL/min with the column temperature at 30 ◦C and
the injection volume as 10 µL. The mass spectrometry analysis conditions were as follows:
ion source, ESI; capillary voltage, +4.0 kV/−3.0 kV; atomization gas flow rate, 3.0 L/min;
dryer temperature, 250 ◦C; nebulizer gas (N2) pressure, 2 × 105 Pa; drying gas flow rate,
10.0 L/min; scanning range of m/z 50–1500.

3.6. Statistical Analysis

The data were presented as mean ± standard deviation (SD) and evaluated by one-
way analysis of variance, followed by Duncan’s multiple-range tests. The difference
was considered to be statistically significant if p < 0.05. All the statistical analyses were
conducted by SPSS 26.0 (Chicago, IL, USA). All the charts were created by GraphPad Prism
9.0 (GraphPad Software Inc, San Diego, CA, USA).

4. Conclusions

In this study, paeonol was extracted from MC using an ultrasound-assisted ethanol
extraction process. Based on the single-factor experiments and BBD, the optimum ex-
traction conditions were obtained as follows: liquid-to-material ratio, 21:1 mL/g; ethanol
concentration, 62%; ultrasonic time, 31 min; ultrasonic temperature, 36 ◦C; and ultrasonic
power, 420 W. Under these conditions, the yield of paeonol reached 14.01 mg/g. The
optimal purification conditions were gained using HPD-300 macroporous resin: the sample
concentration, 1.0 mg/mL; the sample pH, 4; the ethanol concentration of the eluent, 70%;
the loading flow rate, 2.0 mL/min; the sample volume, 180 mL; the elution flow rate,
1.5 mL/min; and the elution volume, 140 mL. The purity of paeonol reached 41.40%
(5.97 times higher than that of the crude extract), indicating that macroporous resin adsorp-
tion was an effective purification method. Seven compounds were identified by qualitative
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analysis of the main components from the MC extract, including gallic acid, oxypaeoniflorin,
paeonolide, paeonol, paeoniflorin, ethyl gallate, and pentagalloylglucose. This indicates
that the MC extract was not only rich in phenolic compounds, but also rich in monoterpene
glycosides. How to comprehensively utilize these active components while extracting and
purifying paeonol remains to be further researched. These results will provide a theoretical
basis for deep processing and utilization of MC.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29030622/s1, Table S1: Chemical and physical properties
of different macroporous resins; Figure S1: The mass spectrum of peak 1: positive ion mode (a);
negative ion mode (b); Figure S2: The mass spectrum of peak 2: positive ion mode (a); negative ion
mode (b); Figure S3: The mass spectrum of peak 3: positive ion mode (a); negative ion mode (b);
Figure S4: The mass spectrum of peak 4: positive ion mode (a); negative ion mode (b); Figure S5: The
mass spectrum of peak 5: positive ion mode (a); negative ion mode (b); Figure S6: The mass spectrum
of peak 6: positive ion mode (a); negative ion mode (b); Figure S7. The mass spectrum of peak 7:
positive ion mode (a); negative ion mode (b).
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