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Abstract: In this paper, the green synthesis of isoeugenol methyl ether (IEME) from eugenol by
O-methylation and isomerization is completed using a one-step green process. In the methylation
reaction, dimethyl carbonate (DMC) was used as a green chemistry reagent instead of the traditional
harmful methylation reagents, in accordance with the current concept of green chemistry. The phase
transfer catalyst (PTC) polyethylene glycol 800 (PEG-800) was introduced into the isomerization
reaction to break the barrier of difficult contact between solid and liquid phases and drastically reduce
the reaction conditions by shortening the reaction time and reducing the alkalinity of the reaction
system. The catalytic systems for the one-step green synthesis of IEME were screened, and it was
shown that the catalytic system “K2CO3 + PEG-800” was the most effective. The effects of reaction
temperature, n(DMC):n(eugenol) ratio, n(PEG-800):n(eugenol) ratio, and n(K2CO3):n(eugenol) ratio
on eugenol conversion, IEME yield, and IEME selectivity were investigated. The results showed that
the best reaction was achieved at a reaction temperature of 140 ◦C, a reaction time of 3 h, a DMC drip
rate of 0.09 mL/min, and n(eugenol):n(DMC):n(K2CO3):n(PEG-800) = 1:3:0.09:0.08. As a result of
the conversion of 93.1% of eugenol to IEME, a yield of 86.1% IEME as well as 91.6% IEME selectivity
were obtained.

Keywords: green chemistry; DMC; phase transfer catalyst; polyethylene glycol 800; one-step synthesis

1. Introduction

It is estimated that global demand for flavors and fragrances in 2013 amounted to USD
16 billion. Most of these flavors and flavor compounds are obtained through chemical tech-
niques, with only a small portion of the demand being met through microbial sources [1].
The green synthesis of flavor and fragrance compounds has proved popular and is widely
cited [2]. Phenolic ethers are widely used compounds that dominate the food and cosmetic
industries due to their unique properties in flavors and fragrances [3]. Isoeugenol methyl
ether (IEME), as a phenolic ether flavoring, is an important phenolic ether green monomer
flavoring that is also used as a food additive and flavor enhancer [4]. Meanwhile, IEME
has no adverse effects on the skin or internal organs in pathology studies and therefore
can be widely used in daily toiletries [5]. Currently, IEME preparation processes are all
biologically derived from various essential oils, but IEME is not currently available for
commercial use due to its extraction process, which does not meet market demands [6,7].

The chemical preparation of IEME from eugenol involves two experimental steps,
namely O-methylation and allylbenzene isomerization reactions.

1.1. O-Methylation

O-methylation of phenolic compounds is an important synthetic method in organic
chemistry and has high applicability in the synthesis of fragrances [8]. The hydroxyl group
of phenol reacts with a methylation reagent and undergoes an O-methylation reaction
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to form aryl methyl ethers [9]. Methylation reactions are carried out using a wide range
of methylation reagents, such as dimethyl sulphate, methyl halide, methanol, etc. [10].
High toxicity, environmental pollution, and low reaction efficiency are the disadvantages
of the methylation reagents listed above [11,12]. In recent years, dimethyl carbonate
(DMC) has been reported as an environmentally sustainable compound and a new type
of green chemical material [13]. It can be used as a non-toxic solvent, an effective fuel
additive, and a synthetic intermediate in a variety of medical, pharmaceutical, and chemical
applications [14]. Furthermore, DMC is an environmentally friendly alternative to highly
toxic and hazardous compounds and is often used as a substitute for dimethyl sulfate and
halogenated hydrocarbons in phenol-ether O-methylation reactions [15,16]. O-methylation
of phenol using DMC has been reported using alkali base, tertiary amina, phosphonium
salts, basic zeolites, alumina, and alumina–silica as base catalysts [17,18].

1.2. Allylbenzene Isomerization

The isomerization reaction of 2-propenylbenzene to 1-propenylbenzene (as presented
in Figure 1) has been used in a wide range of applications in flavors and fragrances,
cosmetics, pharmaceuticals, and materials chemistry, as well as a synthetic intermediate
to manufacture complex products [19,20]. For most of the isomerization reactions, strong
bases such as potassium hydroxide (KOH) or sodium hydroxide (NaOH) are usually used
as catalysts [21]. However, when a base is used as a catalyst for an isomerization reaction,
the conditions are usually more severe, requiring high temperatures and a longer reaction
time. Despite the fact that the allylbenzene isomerization reaction condition is demanding,
it is still of great academic and industrial importance, providing an efficient and economical
route to the synthesis of chemical compounds [22].
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Multiphase reactions are always difficult to conduct, owing to the immiscibility of the
phases. However, with the help of an amphiphilic agent, which is soluble in both aqueous
and organic phases, such reactions are now possible [23]. The phase transfer catalyst (PTC)
allows transferring substances from one system to another in a chemical reaction between
the two non-miscible, heterogeneous systems, which itself has both functional sites to get
solubilized in both systems [24]. Typical PTCs are quaternary ammonium salts, crown
ethers, quaternary phosphonium salts, etc. [25,26]. Exploring the discovery that polyethy-
lene glycol (PEG) is inexpensive, has minimal impact on humans and the environment,
and can replace crown ethers as PTCs [27]. PEG has excellent biocompatibility, exhibits
high activity in liquid–solid phase catalysis, and has good complexation with metal base
ions [28,29]. PEG provides better water solubility and simpler post-processing than several
other PTCs [30]. It has been reported that phenolic compounds can be O-methylated with
DMC with various PTCs, such as crown ether (18-Crown-6), PEG, tetrabutylammonium
bromide, etc. [31].

In this experiment, a green and efficient one-step synthesis of IEME was investigated.
DMC, as a green chemical reagent, was used to replace the toxic and harmful traditional
O-methylation reagent to make the synthesis route clean and environmentally friendly.
Subsequently, the catalytic system for the one-step green synthesis of IEME was screened
by comparing different combinations of catalyst and PTC to test their efficiency. Finally,
the conditions of the reaction were optimized by testing various factors, including reaction
temperature, catalyst dosage, PTC dosage, and DMC drip rate.
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2. Results and Discussion
2.1. Catalytic System Categories

A one-step green synthesis of IEME with different combinations of catalysts and PTCs
was examined in terms of eugenol conversion, yield, and selectivity of IEME. The one-
step synthesis of IEME reaction conditions was as follows: the reaction temperature was
160 ◦C, the reaction time was 3 h, the DMC drip rate was 0.09 mL/min, and the ratio of
reactants was n(eugenol):n(DMC):n(catalyst):n(PTC) = 1:4:0.1:0.1. The experimental results
are shown in Table 1.

Table 1. Comparison of IEME yield and selectivity over different catalytic system.

Catalytic System Catalyst Eugenol
Conversion (%) IEME Yield (%) IEME

Selectivity (%)

Inorganic catalyst

KOH 42.1 35.2 83.6
KF 11.5 7.4 64.3

K2CO3 89.7 10.9 12.2
CH3COOK 7.4 0.6 8.1

Na2CO3 65.2 3.3 5.0
NaOH 34.7 24.6 70.8

Inorganic catalyst
and PTC

K2CO3 + 18-Crown-6 88.2 78.6 89.1
KOH + 18-Crown-6 45.6 40.1 87.9

K2CO3 + TBAB 80.7 65.6 81.3
K2CO3 + PEG-400 84.2 71.3 84.7
K2CO3 + PEG-600 88.9 77.6 87.3
K2CO3 + PEG-800 92.6 86.1 93.0

Reaction conditions: reaction temperature 160 ◦C, reaction time 3 h, DMC drip rate 0.09 mL/min, ratio of reactants:
n(eugenol):n(DMC):n(catalyst):n(PTC) = 1:4:0.1:0.1.

DMC as a methylation reagent can be directly selected from metal hydroxides, metal
carbonates, etc., as catalysts [32]. The inorganic substances, such as KOH, KF, K2CO3,
CH3COOK, Na2CO3, and NaOH, were used as catalysts for the one-step green synthesis
of IEME. As shown in Table 1, the properties of these catalysts greatly influenced the
experimental results. When KF, K2CO3, CH3COOK, and Na2CO3 were used as catalysts,
the magnitude of basicity as judged by pKa was found to be greater for K2CO3, which
had a better effect on the conversion of eugenol, reaching 89.7%. However, the effect of
these catalysts on IEME yield and selectivity was minimal. It is worth mentioning that
the selectivity of IEME seems to be the highest when strong bases, KOH and NaOH, are
used as catalysts, reaching 83.6% and 70.8%, respectively. The main reason for this is
because a more basic catalyst has a greater potential for facilitating isomerization reactions.
However, the conversion of eugenol is low when using this kind of catalyst due to the
fact that in the presence of strong bases, eugenol forms phenolic salts, which impede the
methylation reaction [33]. In conclusion, the catalyst is more favorable for the conversion
of eugenol when it is weakly basic, which means that it provides a favorable environment
for O-methylation. A catalyst that exhibits a strong base nature favors IEME yield and
selectivity, which means that this type of catalyst facilitates the isomerization reaction [34].

As can be seen from Table 1, the addition of different types of PTCs resulted in a
significant increase in the yield and selectivity of IEME. A noteworthy detail is that when
comparing different catalytic systems such as “KOH + 18-Crown-6”, we found that the
“KOH + 18-Crown-6” catalytic system did not have a significant effect on the conversion
of eugenol, which was due to the fact that KOH, as a strong alkali catalyst, had less effect
on O-methylation. This phenomenon suggests that the addition of PTC has no effect on
the O-methylation reaction, but for the “K2CO3 + 18-Crown-6” catalytic system, the effect
of PTC is quite obvious, resulting in a substantial increase in the yield and selectivity of
IEME. Subsequently, different classes of PTCs were examined, such as crown ether, TBAB,
and PEG series. By comparison, we have learned that the addition of PTCs improves
the yield and selectivity of IEME and facilitates the isomerization reaction. Further, PEG
series PTCs provided the best catalytic results in terms of conversion of eugenol, yield
and selectivity of IEME, convenience of post-experimental treatment, and price. During a
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comparison of PEG-400, PEG-600, and PEG-800 under the same experimental conditions,
it was found that PEG-800 (eugenol conversion: 92.6%, IEME yield: 86.1%, and IEME
selection: 93.0%) was superior to PEG-400 and PEG-600 in terms of eugenol conversion,
IEME yield, and selectivity under the same experimental conditions. It is because PEG-800
has a larger molecular weight and longer molecular chains, which can be folded into helical
and free-sliding chains, making it better able to complex with K+. This phenomenon is
consistent with the experimental phenomenon that K2CO3 is completely soluble in PEG-800
at 130 ◦C, whereas higher temperatures are required for PEG-400 and PEG-600. Therefore,
“K2CO3 + PEG-800” was chosen as the catalytic system for the one-step green synthesis of
IEME from eugenol.

2.2. Single-Factor Influence

In this experiment, K2CO3 was used as the basic catalyst and PEG-800 was used as
the PTC to investigate the effects of reaction temperature, the proportion of n(eugenol):
n(K2CO3):n(eugenol):n(PEG-800) and DMC drip rate on the eugenol conversion, yield of
IEME, and selectivity of IEME.

2.2.1. Effect of Reaction Temperature on Reaction

The effect of different reaction temperatures on the product yield was investigated by
stipulating n(eugenol):n(DMC):n(K2CO3):n(PEG-800) = 1:4:0.09:0.08, and the experimental
results were as follows:

As can be seen from Figure 2, the eugenol conversion and IEME yield were significantly
affected by the reaction temperature. Firstly, as the reaction temperature increased from
120 ◦C to 140 ◦C, the eugenol conversion increased from 48.6% to 93.1%. Meanwhile, the
IEME yield increased significantly (from 37.2% to 86.0%) with the reaction temperature.
This is attributed to the activity of DMC, which is most active at temperatures between
130 and 140 ◦C [35]. As the reaction temperatures continue to rise between 140 ◦C and
160 ◦C, this results in a significant decrease in eugenol conversion (52.5%) and IEME yield
(48.7%). This is due to the fact that DMC has a boiling point of 90 ◦C. If the reaction
temperature is higher than 140 ◦C, the DMC will volatilize and not be able to react with the
eugenol in the system, resulting in lower eugenol conversion and IEME yield [15]. However,
the IEME selectivity showed an opposite trend with reaction temperature. With increasing
temperature, the IEME selectivity continued to increase and remained in equilibrium after
a reaction temperature above 140 ◦C. This phenomenon supports previous studies that
found that high temperatures favor isomerization of allyl groups [21].

2.2.2. Effect of n(Eugenol):n(K2CO3) Ratio on the Reaction

The effect of different amounts of K2CO3 on the yield of the products was investigated
by stipulating n(eugenol):n(DMC):n(PEG-800) = 1:4:0.09, and the experimental results were
as follows:

Figure 3 shows the effect of catalyst K2CO3 dosage on eugenol conversion, IEME
yield, and selectivity. When the proportion of n(K2CO3):n(Eugenol) increased from 0.03 to
0.09, the eugenol conversion, IEME yield, and selectivity increased dramatically with the
increase in proportion. The eugenol conversion yield reached 92.2%, while the IEME
yield and selectivity were as high as 85.7 and 93.0%, respectively. However, it is worth
mentioning that the eugenol conversion and IEME yield showed a decreasing trend as the
proportion of n(K2CO3):n(eugenol) increased from 0.09 to 0.15, resulting in the eugenol
conversion and IEME yield decreasing to 74.7% and 71.1%, respectively. This is due to the
fact that weak base conditions favors O-methylation reactions in the presence of DMC [36].
However, the anomaly was observed, i.e., the IEME selectivity continued to increase as
the proportion of n(K2CO3):n(eugenol) was increased, despite the eugenol conversion and
IEME yield decreasing. This is due to the increase in this proportion, which leads to an
increase in the basicity of the reaction system. The isomerization reaction is favored by a
strong base [21].
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2.2.3. Effect of n(Eugenol):n(PEG-800) Ratio on the Reaction

The reaction temperature for the one-step green synthesis of IEME was set at 140 ◦C.
The effect of different dosages of PEG-800 on the product yield was investigated by stipu-
lating n(eugenol):n(DMC):n(K2CO3) = 1:4:0.09. The experimental results were as follows:

As shown in Figure 4, the eugenol conversion decreased by increasing the proportion
of n(PEG-800):n(eugenol). This was caused by the addition of PEG-800, which increased the
viscosity of the reaction system, resulting in reduced contact between DMC and reducing
eugenol conversion. The proportion of n(PEG-800):n(eugenol) increased from 0.04 to 0.12,
the eugenol conversion decreased from 93.7% to 78.9%, and the IEME yield increased from
24.6% to 74.2% with the proportion increasing. However, the IEME selectivity continued
to increase with the addition of PEG-800, i.e., the IEME selectivity increased to 94% when
the proportion of n(PEG-800):n(eugenol) was increased to 0.12. This is due to the fact
that in the presence of the PEG-800, the inorganic catalyst K2CO3 dissolves from the solid
phase into the PEG-800 to form a liquid phase, which increases the chance of contact with
eugenol methyl ether, which is also in the liquid phase. Thus, increasing the chance of the
isomerization reaction occurring. It resulted in an increase in the IEME yield followed by
a decrease. As the proportion of n(PEG-800):n(eugenol) increased from 0.04 to 0.08, the
IEME yield showed an increasing trend, reaching a maximum of 83.8%. Subsequently, as
the proportion of n(PEG-800):n(eugenol) continued to increase, the IEME yield reduced to
71.2% when the proportion reached up to 0.12.
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A phenomenon that also deserves to be noticed is that the IEME yield and selectivity
are not significant when the conversion of eugenol is high, with the proportion of n(PEG-
800):n(eugenol) equal to 0.04, which demonstrates that the isomerization reaction is not
significant under these conditions. However, as the proportion of n(PEG-800):n(eugenol)
increased from 0.04 to 0.08, the IEME yield and selectivity increased. We deduce that the
presence of PEG-800 greatly affected the isomerization reaction.
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2.2.4. Effect of n(Eugenol):n(DMC) Ratio on the Reaction

The effect of different DMC dosages on the product yield was investigated by stipu-
lating n(eugenol):n(K2CO3):n(PEG-800) = 1:0.09:0.08, and the experimental results were
as follows:

As we know from Figure 5, the proportion of n(DMC):n(Eugenol) directly affected the
eugenol conversion. The eugenol conversion increased from 36.4% to 91.8% as the propor-
tion of n(DMC):n(Eugenol) increased from 2 to 4. As the proportion of n(DMC):n(Eugenol)
continued to increase, the conversion of eugenol and the IEME yield fluctuated up and
down around 93.0% and 80%, respectively. However, the IEME selectivity has been main-
tained at around 83–85% as the proportion of n(DMC):n(Eugenol) varies. In conclusion,
the proportion of n(DMC):n(Eugenol) had no significant effect on the IEME yield and
selectivity but a more significant effect on the eugenol conversion.
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2.2.5. Effect of DMC Drip Rates on the Reaction

The effect of different drip rates of DMC on the IEME yield and selectivity was investi-
gated by stipulating n(eugenol):n(K2CO3):n(PEG-800) = 1:0.09:0.08, and the experimental
results were as follows:

As we investigated the effects of various factors on the conversion of eugenol, the
IEME yield, and selectivity throughout the experiment, we learned that the drip rates of
DMC had a significant impact on the reaction when we examined the effects of different
factors. As we can see from Figure 6, when the drip rates of DMC increased from 0.05 to
0.13 mL/min, the conversion of eugenol and the yield and selectivity of IEME were
significantly enhanced. An understanding of the reasons for this trend can be gained
from the experimental phenomena. When the drip rate of DMC was excessively fast, it
would make the reaction temperature lower and not reach the temperature required for
the one-step synthesis reaction condition. At the same time, the excessively fast dripping
rate of DMC would lead to the by-product methanol not being removed from the reaction
system in time, which would inhibit the O-methylation reaction, thus affecting the continuous
occurrence of the subsequent reaction. A consistently lowered DMC drip rate did not have
any significant effect on the conversion of eugenol, yield, or selectivity of IEME but rather
increased the cost of IEME production. So that the DMC drip rate is optimal at 0.09 mL/min.
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3. Experimental Section
3.1. Materials

Eugenol (99%), Dimethyl Carbonate (DMC), Polyethylene Glycol 600 (PEG-600), and
PEG-800 were purchased from Sahn Chemical Technology (Shanghai) Co. Ltd. (Shanghai,
China) Polyethylene Glycol 400 (PEG-400) was purchased from McLean Biochemical Tech-
nology Co. (Shanghai, China). Additionally, Potassium Carbonate (K2CO3), Potassium
Hydroxide (KOH), Potassium Fluoride (KF), Potassium Acetate (CH3COOK), Sodium Car-
bonate (Na2CO3), Sodium Hydroxide (NaOH), and Ethyl Acetate (EtOAc) were purchased
from Sinopharm.

3.2. Methods
3.2.1. Synthesis Process

The one-step process for the synthesis of IEME via the green chemical reagents DMC
and PTC (PEG-800) is shown in Figure 7. A 250 mL three-necked flask equipped with
a distillation column, thermometer, dropping funnel, and magnetic stirrer was used to
conduct the experiment (as presented in Figure 8). Appropriate amounts of alkali catalyst
K2CO3 and PTC PEG-800 were first added to a three-neck flask and preheated until K2CO3
was completely dissolved in PEG-800. The reaction reagent, eugenol, was then added
to a three-necked flask. An external thermometer, distillation column, dropping funnel
and condenser tubes were installed into the experimental setup while ensuring that it
was gas-tight. Before the drop-wise addition of the DMC reagent, N2 was vented at
atmospheric pressure to prevent the oxidation of eugenol. After the eugenol was heated to
a preset temperature and stirring was carried out, DMC was added slowly and dropwise
to allow full contact between the DMC and eugenol during the O-methylation process. It
is important to note that there are two concerns regarding the experimental phenomenon.
During the reaction, CO2 will be produced as a by-product, which will bubble up and be
absorbed in the calcium hydroxide solution. Another phenomenon is that methanol is
produced as a by-product, which inhibits eugenol O-methylation. Detaching methanol from
the reaction system favors the reaction and improves the utilization of DMC. Considering
the boiling points of DMC (90–91 ◦C) and methanol (64.8 ◦C), the utilization of DMC
was improved by using a distillation column to separate methanol from DMC, which
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condensed and continued to react with eugenol. Finally, the O-methylation reaction is
complete when bubbles are no longer observed, and the reaction is maintained at 140 ◦C
for 0.5 h. After the reaction, the acidity of the solution was adjusted by 0.1 mol/L dilute
hydrochloric acid to make the pH less than 7. The solution was extracted three times with
ethyl acetate, and the organic reagents were dissolved in ethyl acetate. The organic phase
was subsequently washed three times with distilled water. A dispensing funnel is used to
separate and obtain the organic phases of a solution. The organic solvent was evaporated
under reduced pressure to obtain the product, and the sample was analyzed to calculate
the eugenol conversion, IEME yield, and selectivity. The sample was analyzed by gas
chromatography (GC).
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3.2.2. GC Analysis

A GC-9720 GC equipped with a flame ionization detector (FID) and an HP-INNOWAX
capillary (non-polar) was employed to analyze the samples. The GC column box, injector,
and detector were all heated to 270 ◦C, 265 ◦C, and 270 ◦C, respectively, using nitrogen as
the carrier gas at a split ratio of 40:1, a flow rate of 0.85 mL/min, and a volume of injection
of 0.6 µL. GC begins at 120 ◦C, is held at that temperature for 1 min, increases to 265 ◦C
at 10 ◦C/min, and is held at 265 ◦C for 2 min. The yield of IEME in each experiment was
determined from the amount of IEME in the components analyzed by GC using standard
curve analysis.

3.2.3. IEME Yield Analysis

The formula for the eugenol conversion, yield, and selectivity of IEME is given below:

Eugenol conversion (%) =
n(eugenol (initial))− n(eugenol ( f inal))

n(eugenol)
× 100% (1)
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IEME yield (%) =
m × w
M × n

× 100% (2)

IEME selectivity (%) =
[Isoeugenol methyl ether yield(%)]

[Eugenol conversion(%)]
× 100% (3)

where m: mass of isoeugenol methyl ether, g;
w: content of IEME in the product, %, detected by GC;
M: relative molecular mass of IEME, g/mol;
n: theoretical molar value of IEME, mol.

3.2.4. Reaction Mechanism

The reaction mechanism for the one-step green synthesis of IEME from eugenol is
assumed to be divided into four stages (as presented in Figure 9). Step 1: K2CO3 is first
added to the PEG-800 solution and heated to 140 ◦C, at which point the K2CO3 will be
completely dissolved in the PEG-800 solution. The polymer PEG can be folded into a helical
and free-sliding chain, which allows PEG to complex with the K+ in potassium carbonate;
thereby, the solid phase K2CO3 is able to dissolve in the organic phase PEG [37,38]. As the
K+ ions in K2CO3 are enclosed by PEG, the CO3

2− ions are exposed during the dissolution
of K2CO3 in PEG. Step 2: Eugenol, as an organic reagent, is soluble in the organic phase
polymer PEG. The phenolic hydroxyl group in eugenol reacts with CO3

2− to form ArO−

and CO2 as by-products [39]. Meanwhile, CO3
2−, in the presence of PEG, can react with α-

H in an allyl group (usually a strong base is required) to form C− ion. Step 3: DMC reagent
is added to the reaction for electrophilic methylation. DMC generates a C+ ion at elevated
temperatures and reacts with the active O− on the eugenol to produce the corresponding
phenol ether. When the inorganic salt K2CO3 dissolves, the exposed CO3

2− ion reacts with
α-H on the ally group to form a C− ion. This creates an empty P-orbital on the α-C, which
forms a P-Π conjugation with the Π-bond on the benzene ring, which is less stable than the
Π-Π conjugation [40]. Thus, under heated conditions, allyl group isomerization forms a
1-propenyl group, which is thermodynamically more stable than the allyl group forming a
P-Π conjugation with the benzene ring [41]. Step 4: After isomerization, the C− ion on the
1-propenyl group reacts with the H+ ion to eventually produce IEME.
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4. Conclusions

In this study, the one-step green synthesis of IEME from eugenol via O-methylation and
isomerization was investigated. Firstly, a condensation reflux process was used to improve
DMC utilization and significantly increase product yields by separating DMC and by-
products in a distillation column. Secondly, through the screening of catalyst systems, the
“K2CO3 + PEG-800” catalytic system was found to be the most efficient catalyst for the one-
step synthesis of IEME. Based on the results of the experiments conducted, it was found that
weak bases favored O-methylation reactions, strong bases favored isomerization reactions,
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and the application of PTCs allowed isomerization to occur even in weakly basic conditions.
Furthermore, PTCs have shortened the isomerization reaction time and enabled the reaction
conditions to be carried out at low temperatures instead of the previous high temperatures.
Subsequently, the reaction factors such as reaction temperature, n(eugenol):n(K2CO3) ratio,
n(eugenol):n(PEG-800) ratio, n(eugenol):n(DMC) ratio, and DMC droplet rate were opti-
mized, and it was found that at the reaction temperature of 140 ◦C and the DMC drip rate
of 0.09 mL/min, n(eugenol):n(DMC):n(K2CO3):n(PTC) = 1:3:0.09:0.08, the eugenol conver-
sion, IEME yield, and selectivity were optimized and the results were 93.1%, 86.1%, and
91.6%, respectively.
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