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Abstract: Lead (Pb) pollution, especially from the incineration of municipal solid waste (MSW), poses
a significant threat to the environment. Among all the effective methods, activated carbon (AC)
injection serves as an effective approach for lead removal from flue gas, while the modification of ACs
emerges as a crucial pathway for enhancing Pb adsorption capacities. Density functional theory (DFT)
is employed in this study to investigate the mechanisms underlying the enhanced adsorption of Pb
species (Pb0, PbO, and PbCl2) on nitrogen-functionalized carbonaceous surfaces. The results show
that nitrogen-containing groups substantially enhance lead adsorption capacity, with adsorption
energies ranging from −526.18 to −288.31 kJ/mol on nitrogen-decorated carbonaceous surfaces, much
higher than those on unmodified surfaces (−310.35 to −260.96 kJ/mol). Additionally, electrostatic
potential and density-of-states analyses evidence that pyridinic nitrogen atoms remarkably expand
charge distribution and strengthen orbital hybridization, thereby augmenting lead capture. This
research elucidates the role of nitrogen-containing functional groups in lead adsorption, offering
valuable insights for the development of highly efficient biomass-derived activated carbon sorbents
for lead removal.

Keywords: nitrogen functionalization; lead species; DFT calculations; adsorption; activated carbon

1. Introduction

With potent bio-toxicity and a propensity for bioaccumulation, lead (Pb) is categorized
as a highly toxic heavy metal pollutant, and its contamination has widely emerged as a
prominent global concern [1–3]. The annual generation of municipal solid waste (MSW) is
approximately 1.3 million tons [4], and every kilogram of MSW contains approximately
109 milligrams of lead [5]; it is reported that the incineration of MSW has become a major
source of lead pollution [6,7]. Although lead species exist at relatively low concentrations
in flue gas (0.18–0.26 mg/m3) [8], it is crucial to eliminate even trace amounts before its
emission to avoid hazardous environmental impacts.

Among the existing pollution control methods, sorbents injection serves as a viable
approach to flue gas cleaning. In recent years, various solid sorbents, including metal–
organic frameworks [9–11], metal oxides [12–14], and activated carbon [15–17], have been
well explored. Among all the solid sorbents, MOF and metal oxides, despite their favorable
adsorption capacities, face limitations in large-scale application due to their high production
costs and limited stability [10,13]. Conversely, activated carbon (AC), especially that
from biomass pyrolysis, has been recognized as an economical and effective approach for
pollutant control in flue gases due to its robust adsorption capabilities and abundance [15].
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However, the application of this technology is constrained by the limited adsorption
capacity of activated carbon.

In general, the adsorption capacity of activated carbon is determined by its specific
surface area and functional groups. Various methods have been employed to enhance the
specific surface area of activated carbon, but further improvements in performance are
restricted due to an upper limit in optimizing the pore structure [18]. Alternatively, the
modification of the functional groups on activated carbon has emerged as a viable approach
to enhancing its adsorption capacity [19,20]. Choi and Lee [20] utilized different chlorine-
containing solutions to modify activated carbon for mercury adsorption and discovered
that CuCl2-impregnated activated carbon exhibited the most rapid adsorption performance.
In our previous research [21], the influence of phosphorous functional groups on arsenic
adsorption was explored using experimental and density functional theory (DFT) methods,
revealing that phosphorous functional groups significantly promote arsenic adsorption on
carbonaceous surfaces. These findings collectively underscore the significance of functional
group modification in increasing the adsorption capacity of activated carbon.

It is notable that nitrogen is a common element in biomass, migrating to gas, liquid,
and solid products during pyrolysis, with amino, pyridine, and pyrrolic being the main
forms of nitrogen in pyrolysis char. Additionally, conducting biomass pyrolysis in an NH3
atmosphere can increase the number of N-containing functional groups. Gao et al. [22]
investigated the effect of N-doped functional groups on phenol adsorption by activated
biochar and found that the adsorption capacities of different N-containing functional groups
varied. Chen et al. [23] modified biomass-based materials and conducted mercury adsorp-
tion experiments, discovering that specific nitrogen-containing functionalities can greatly
enhance adsorption capacity. It could be concluded that the addition of nitrogen-containing
functional groups over a carbonaceous surface exerts a positive effect on pollutant ad-
sorption. Additionally, numerous studies [24–27] have demonstrated the enhanced lead
adsorption capabilities of nitrogen-doped and nitrogen-modified activated carbons through
a serious of experimental studies, highlighting the pivotal role of nitrogen functional groups
in improving the adsorption efficiency of activated carbon for lead ions, which needs to
be further investigated. However, the effect mechanism of nitrogen-containing functional
groups is still unclear. Quantum chemical calculation has been considered as a reliable
tool for exploring the mechanism of adsorption reactions [28–32]. While extensive efforts
have elucidated the fundamental mechanisms of lead removal by activated carbon, the
specific reaction pathways involving lead species and nitrogen-decorated carbon surfaces
remain insufficiently understood. Bridging this knowledge gap is imperative to enabling
the rational design of superior adsorbents. Therefore, it is crucial to systematically probe
the adsorption mechanisms of lead species on chemically active sites of carbonaceous
surfaces and thoroughly examine the impacts of nitrogen functional groups.

In general, there are several kinds of lead species in flue gas, including elemental lead
(Pb0), lead oxide (PbO), and lead dichloride (PbCl2) [2,33,34]. In this study, the carbona-
ceous surface structure with various nitrogen-containing functional groups was employed
to explore the adsorption processes of Pb0, PbO, and PbCl2 via density functional theory
(DFT) calculations [35]. In addition, wave function analyses [36], including Mayer bond
order (MBO), electrostatic potential (ESP), and density-of-states (DOS), were conducted
to shed light on the adsorption process. By delving into the interactions at the molecular
level, this research not only elucidates the adsorption mechanisms, but also provides vital
insights for developing efficient biomass-derived activated carbon sorbents optimized for
lead removal.

2. Results

2.1. Pb0, PbO, and PbCl2 Adsorption over a Bare Carbonaceous Surface

In this study, to examine the adsorption characteristics of Pb0, PbO, and PbCl2 on
carbonaceous materials, a model consisting of six armchair benzene rings was utilized as a
representative carbonaceous surface structure [32]. To explore all the potential adsorption
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configurations, we considered and calculated every possible active site and the adsorption
directions of lead species on the carbonaceous surface. By systematically examining these
possibilities, we were able to identify the most stable adsorption structures for Pb0, PbO,
and PbCl2, which are illustrated in Figure 1. Additionally, we quantified the adsorption
energy associated with each configuration and documented several critical geometric
parameters, as summarized in Table 1.
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Figure 1. Structures of Pb0, PbO, and PbCl2 adsorption on CS (H, light gray; C, gray; O, red; Pb,
black; and Cl, green).

Table 1. Adsorption energy, major bond lengths, and MBO for lead species adsorption on nitrogen-
free carbonaceous surfaces.

Structure Eads (kJ/mol) Bond Bond Length (nm) MBO

2-1 CS-Pb −310.35 C(6)—Pb(31) 0.223 0.95
C(7)—Pb(31) 0.226 0.91

2-2 CS-PbO −274.07 C(6)—Pb(31) 0.225 0.91
C(7)—O(32) 0.134 1.21

2-3 CS-PbCl2 −260.96 C(12)—Pb(31) 0.234 0.71
C(28)—Cl(32) 0.177 0.95

Figure 1 provides a visual representation of the adsorption configurations for Pb0,
PbO, and PbCl2 on the pristine carbonaceous surface, denoted as structures 2-1, 2-2, and
2-3, respectively. Notably, our analysis revealed that the unsaturated carbon atoms at the
edges of the carbonaceous material served as the active sites for adsorption in all cases. As
shown in Table 1, the adsorption energies for these three configurations were found to be
−310.35 kJ/mol for Pb0, −274.07 kJ/mol for PbO, and −260.96 kJ/mol for PbCl2. These neg-
ative values indicate a strong attractive interaction between the gases and the carbonaceous
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surface, signifying favorable adsorption. Furthermore, it is evident that the adsorption
energy of structure 2-1 (Pb0) was the lowest among the three configurations, suggesting
that Pb0 exhibited the highest affinity for adsorption on the carbonaceous surface compared
to PbO and PbCl2. Notably, the optimized PbCl2 structure shows one Cl atom binding
to a neighboring C atom rather than directly to Pb. This demonstrates the preferential
interaction of one Cl atom with the carbon surface over the Pb. To gain deeper insights
into the nature of the chemical bonds formed during the adsorption process, a Mayer bond
order (MBO) analysis was employed, as listed in Table 1. The MBO analysis revealed that
the bond order values were consistently close to 1.0 for all cases, indicating the formation
of single bonds between the adsorbates and the carbonaceous surface.

2.2. Pb0, PbO, and PbCl2 Adsorption over a Carbonaceous Surface with Nitrogen Functional Groups

In adsorption studies, Gao et al. [37] extensively documented the preparation meth-
ods for nitrogen-doped biochar and underscored the pivotal role of nitrogen functional
groups in enhancing the adsorption capabilities of carbonaceous materials. Their work
revealed the presence of diverse nitrogen groups on the carbonaceous surface, including
amino, pyridinic, and pyrrolic moieties, among others. These nitrogen groups have been
recognized as crucial factors influencing the adsorption behavior of heavy metals, such as
Pb0, PbO, and PbCl2.

To comprehensively assess the effects of various nitrogen functional groups on the
adsorption of Pb0, PbO, and PbCl2, distinct models with specific nitrogen functional
groups were constructed and subjected to rigorous DFT calculations. This approach
provided valuable insights into the adsorption characteristics arising from the nitrogen
incorporation into the carbonaceous surface. After thoroughly optimizing these models, the
final stable configurations were obtained, as shown in Figure 2. This illustrates the distinct
adsorption behaviors of Pb0, PbO, and PbCl2 when interacting with nitrogen-functionalized
carbonaceous surfaces. Additionally, a detailed analysis of the adsorption energies and
critical geometric parameters is provided, as presented in Table 2.

Table 2. Adsorption energy, major bond lengths, and MBO for lead species adsorption on N-
containing carbonaceous surfaces.

Structure Eads (kJ/mol) Bond Bond Length (nm) MBO

3-1 CS-Amino-Pb −526.18 C(5)—Pb(34) 0.229 0.87
C(12)—Pb(34) 0.229 0.82

3-2 CS-Pyridinic-Pb −483.30 C(6)—Pb(31) 0.232 0.77
C(12)—Pb(31) 0.232 0.86

3-3 CS-Pyrrolic-Pb −505.07 C(6)—Pb(30) 0.241 0.76
C(28)—Pb(30) 0.232 0.90

3-4 CS-Amino-PbO −414.12 C(6)—Pb(31) 0.224 0.93
C(7)—O(32) 0.135 1.20

3-5 CS-Pyridinic-PbO −426.41 C(6)—Pb(30) 0.224 0.91
C(7)—O(31) 0.134 1.23

3-6 CS-Pyrrolic-PbO −518.06 C(6)—Pb(28) 0.234 0.84
C(7)—O(29) 0.125 1.84

3-7 CS-Amino-PbCl2 −322.99 C(12)—Pb(31) 0.236 0.69
C(28)—Cl(32) 0.176 0.97

3-8 CS-Pyridinic-PbCl2 −288.31 C(11)—Pb(30) 0.234 0.70
C(27)—Cl(31) 0.177 0.96

3-9 CS-Pyrrolic-PbCl2 −346.21 C(9)—Pb(28) 0.245 0.64
C(25)—Cl(29) 0.176 0.96
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A set of nine distinct adsorption configurations representing the interactions of Pb0,
PbO, and PbCl2 with nitrogen-doped carbonaceous surfaces is seen in Figure 2. Notably,
the active sites on the nitrogen-functionalized carbonaceous surface are found to be the
unsaturated carbon atoms at the edges of the surface, as observed in Section 2.1 regarding
pristine carbonaceous surfaces. These active sites serve as crucial loci for the adsorption of
heavy metal species, and their interaction mechanisms are further elucidated in the context
of nitrogen functionalization.

With the incorporation of nitrogen functional groups onto the carbonaceous surface,
we observed significant changes in the adsorption behavior. The calculated adsorption en-
ergies for Pb0, PbO, and PbCl2 in the presence of nitrogen functional groups were found to
range between −526.18 kJ/mol and −483.30 kJ/mol, −518.06 kJ/mol and −414.12 kJ/mol,
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and −346.21 kJ/mol and −288.31 kJ/mol, respectively, which are shown in Table 2. These
values are notably lower than those obtained for adsorption on nitrogen-free carbonaceous
surfaces, as indicated in Table 1. These results unequivocally indicate that the introduction
of nitrogen functional groups onto the carbonaceous surface leads to a considerable en-
hancement in the adsorption capacity for Pb0, PbO, and PbCl2. This enhancement can be
attributed to the presence of nitrogen moieties, which introduce additional interaction sites
and offer a stronger affinity for the adsorbate species.

Furthermore, the MBO analysis for most of the chemical bonds formed during the
adsorption process revealed consistent values close to 1.0, underscoring the predominantly
single-bond formation in the adsorption of Pb0, PbO, and PbCl2 on nitrogen-functionalized
carbonaceous surfaces. An intriguing exception was found in the bond C(7)—O(29) in
structure 3-6, where an MBO value of 1.84 indicated the formation of a double bond. This
observation aligns with empirical bond order principles and further reinforces the notion
that MBO analyses accurately reflect the nature of chemical bonding during adsorption,
distinguishing between single- and double-bond formations.

2.3. Electrostatic Potential Analysis

In chemical systems, a molecular electrostatic potential (ESP) analysis is considered
as a dependable method for predicting nucleophilic and electrophilic sites. It can provide
valuable insights into the distribution of electron density, thereby offering crucial infor-
mation regarding the reactivity and interaction capabilities of molecules and surfaces. To
extract more nuanced information about adsorption mechanisms, ESP analyses on van
der Waals (vdW) surfaces have been extensively quantified to extract more nuanced infor-
mation about adsorption mechanisms [38]. Building upon the established utility of ESP
analyses, we draw inspiration from the work of Yang et al. [38], who effectively employed
electrostatic potential calculations to unravel the adsorption mechanisms of aqueous Cd(II)
on a MgO-modified palygorskite/biochar composite. This research highlighted the role
of oxygen (O) atoms within the MgO group, which exhibited negative electrostatic poten-
tials, signifying electrophilic activity. These insights into electrophilic sites shed light on
the chemical interaction landscape of adsorbents and adsorbates, thereby enhancing our
understanding of adsorption processes.

Therefore, ESP analyses on vdW surfaces for Pb0, PbO, and PbCl2 adsorption were
further quantified to extract more information, and the corresponding percentages of dif-
ferent ESP values are presented in Figure 3. As seen from Figure 3, when examining the
unmodified carbonaceous surfaces, the ESP distribution predominantly concentrates within
the −50 kJ/mol to −100 kJ/mol interval. This range reflects the electrostatic characteristics
of these pristine surfaces. However, upon the strategic incorporation of nitrogen functional
groups onto the carbonaceous surfaces, a significant transformation in the electrostatic po-
tential landscape is observed. Notably, the ESP distribution shifts towards higher absolute
ESP values, indicating that the addition of nitrogen functional groups leads to an alteration
in the electrostatic potential profile of the carbonaceous surfaces.

Strikingly, upon nitrogen functionalization, the ratio of electrostatic potential values
in the larger absolute ESP range shows a substantial increase. Compared to the unmodified
carbonaceous surface, the ESP values falling below −50 kJ/mol and above −100 kJ/mol
increase by 5.87% with amino groups, 6.41% with pyridinic groups, and 6.30% with pyrrolic
groups incorporated. These quantitative observations suggest that the presence of nitrogen
functional groups exerts a notable influence on the electrostatic potential of the carbona-
ceous surface. Consequently, the propensity of the surface to interact with and adsorb Pb0,
PbO, and PbCl2 is significantly enhanced.
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To further elucidate the mechanisms behind the enhanced adsorption capacity me-
diated by nitrogen groups, we quantitatively analyzed the molecular surface in Figure 4,
gaining valuable insights into the changes in surface characteristics, topography, and in-
teraction sites. In the electrostatic potential color-filled molecular surface map, red region
means the positive ESP value, and blue region corresponds to the negative ESP value.
In addition, the green ball is minimum point. This computational examination offers a
comprehensive perspective on how nitrogen functionalization improves the adsorption
capabilities of the carbonaceous surface. It elucidates the intricate adsorption processes
and the subtle molecular interactions governing heavy metal species.

Additionally, the structural intricacies of a model denoted as structure 5-1 were closely
examined, featuring a benzene ring with two unsaturated carbon atoms. The central region
between these two unsaturated carbon atoms was identified as a critical point within the
structure, characterized by a minimal ESP value of −56.80 kJ/mol. This unique feature
allows for investigating how nitrogen functionalization alters the electrostatic landscape.
Upon the strategic modification of the carbonaceous surface with nitrogen functional
groups, pronounced alterations were observed in the electrostatic potential profiles of these
active sites. Specifically, it was found that the ESP values at these active sites underwent
changes, decreasing to −65.06 kJ/mol for the model incorporating amino functional groups
(structure 5-2), −61.70 kJ/mol for the model with pyridinic functional groups (structure
5-3), and −66.87 kJ/mol for the model featuring pyrrolic functional groups (structure 5-4).
These quantitative shifts demonstrate that nitrogen functionalization markedly modified
the electrostatic characteristics of those sites.

The decreased ESP values at these active sites after nitrogen functionalization indi-
cate an increased adsorption capacity of the carbonaceous surface, demonstrating that
the incorporated nitrogen functional groups play a vital role in augmenting the electro-
static interactions between the surface and adsorbates. Consequently, the affinity of the
carbonaceous material rose markedly for adsorbing Pb0, PbO, and PbCl2.
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2.4. Density-of-States Analysis

A density-of-States (DOS) analysis quantifies the number of electronic states per unit
energy level, thus offering critical insights into the distribution of electrons within a material
as a function of energy. Thereby, it elucidates the electronic properties of materials and their
interactions with adsorbed species. Chen et al. [39] utilized DOS analyses to explore heavy
metal adsorption on a MnFe2O4@CAC hybrid adsorbent. In their research, it was revealed
that the 4s orbitals of metal cations were occupied by the d electrons of the adsorbent,
elucidating electron transfer and bonding mechanisms during the adsorption process.

PbO adsorption was selected as a representative case for performing detailed DOS
analyses across four distinct models in this investigation. The results are present in Figure 5,
highlighting the total density-of-states (TDOS) in black and the overlap population density-
of-states (OPDOS) in green. In addition, the partial density of states (PDOS) was examined
for each optimized structure to gain insights into the electronic distribution governing
gaseous PbO adsorption. The DOS energy range remains relatively consistent between the
models in Figure 5. However, clear variations emerge in the density of states at different
energy levels, which implies that nitrogen functional groups alter the electron distribution
across the carbonaceous surface, thereby influencing the availability and capacity of active
sites for adsorbing gaseous PbO.
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Aligning with molecular orbital principles, an OPDOS analysis effectively visualizes
the orbital composition and electron interactions. As emphasized in our prior work [21],
positive OPDOS regions signify bonding interactions, while negative regions indicate
antibonding. For instance, structure 2-2 in Figure 5a shows minimal positive areas in
the OPDOS line, corresponding to the largest adsorption energy (−274.07 kJ/mol). In
comparison, two pronounced peaks emerge around −0.4 and −0.3 a.u. in the OPDOS plot
of structure 3-6 in Figure 5d, with larger positive regions that match its adsorption energy
(−518.06 kJ/mol), demonstrating intensified electron overlap upon nitrogen functionaliza-
tion, thereby enhancing the PbO interactions with the doped carbonaceous surface.

The DOS analysis revealed significant changes in the electron density distribution
on the carbonaceous surface after nitrogen functionalization, implying a change in the
availability of active sites for gaseous PbO adsorption. Larger positive areas emerge in the
OPDOS plots of nitrogen-containing models, denoting intensified electron overlap between
PbO and the surface. Therefore, greater electron sharing, enhanced by the incorporated ni-
trogen groups, strengthens the PbO interactions with the carbonaceous surface. Combined
with the computed adsorption energies and Mayer bond orders, the DOS analysis con-
sistently demonstrates that nitrogen functional groups bolster the carbonaceous surface’s
adsorption capacity for lead species.

3. Models and Computational Methods
3.1. Carbonaceous Surfaces with Different Functional Groups

Currently, the quantum chemical method has been considered as the most accurate
theoretical method for calculating molecular configuration and energy, of which density
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functional theory (DFT) has been widely employed due to its efficiency and accuracy [40,41].
In general, a simplified model that is reasonable can not only reduce the calculation
workload, but also provide accurate results for complex systems. To simulate the structures
of carbonaceous surfaces, armchair benzene rings were employed as the base models,
which have been validated to reflect the properties of real carbonaceous materials [5,21].
Zou et al. demonstrated the feasibility of using armchair carbonaceous surface models by
investigating the DFT calculations of arsenic adsorption [20]. Typical nitrogen functional
groups were introduced onto the carbonaceous surfaces to examine the effects of the
nitrogen modification of activated carbon on Pb adsorption. As illustrated in Figure 6, four
types of carbonaceous surface models were constructed: (1) six armchair benzene rings
(CS); (2) CS substituted with amino groups (CS-Amino); (3) CS substituted with pyridinic
groups (CS-Pyridinic); and (4) CS substituted with pyrrolic groups (CS-Pyrrolic). This
modeling approach allows for a systematic investigation of the mechanisms through which
nitrogen functionalization enhances Pb adsorption capacity.
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3.2. Calculation Method

All the calculations in this paper were conducted with the B3LYP method using the
Gaussian 16 suite of programs. The def2svp basis set was used for the optimization of
non-metallic elements (C, H, O, N, and Cl) [42], and the SDD basis set was applied to
Pb elements. Frequency calculations were performed to check the imaginary frequency
with the same theory level. In addition, the dispersion corrected (DFT-D3) was taken
into account as a result of the weak interactions during the adsorption process [43,44].
Meanwhile, wavefunction analyses, including Mayer bond order, density-of-states, and
electrostatic potential, were conducted with the help of the Multiwfn program. Fully
unrestricted geometry optimizations were performed for each adsorbate system, which
allowed all atoms to freely adjust their positions to reach the minimum energy configuration.
Due to the adsorption of gas-phase lead molecules on the carbon surface, the total energy
of its system would decrease. Therefore, the adsorption energy (Eads) can be calculated by
the formula:

Eads = E(surface+molecule) − (Esurface + Emolecule)
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Here, E(surface+molecule), Esurface, and Emolecule are the total energies of the carbonaceous
surface plus the molecule surface system, the carbonaceous surface, and the gas-phase
molecule, respectively.

4. Conclusions

In this study, DFT calculations were performed to reveal the influence of nitrogen-
containing functional groups, specifically focusing on amino, pyridine, and pyrrolic groups,
on the adsorption of Pb0, PbO, and PbCl2 on carbonaceous surfaces. Various analytical
techniques, including adsorption energy calculations, Mayer bond order analyses, elec-
trostatic potential assessments, and density-of-states analyses, were employed to gain a
comprehensive understanding of the adsorption processes.

It was found that robust interactions between the gaseous lead species and unmodified
carbonaceous surface existed, as evidenced by the adsorption energies of −310.35 kJ/mol,
−274.07 kJ/mol, and −260.96 kJ/mol for Pb0, PbO, and PbCl2, respectively. The introduc-
tion of nitrogen functional groups onto the carbonaceous surface demonstrated a consistent
reduction in adsorption energy, signifying an augmented adsorption capacity for gaseous
lead species on the modified surface. An in-depth analysis of the electrostatic potential
and density-of-states unveiled the pivotal role of nitrogen functional groups in expanding
the electrostatic potential distribution and fortifying electron overlap. The incorporated
nitrogen moieties extended the charge distribution, therefore promoting lead adsorption.
Additionally, a DOS analysis confirmed that nitrogen functional groups intensified the
electron overlap between carbon atoms and lead, hence reinforcing the interactions between
gaseous lead and the carbonaceous surface. These insights illuminate the mechanisms
through which nitrogen functionalization augments adsorption interactions.

In summary, the comprehensive investigation underscores the substantial impact of
nitrogen functional groups on the adsorption behavior of heavy metal lead species on
carbonaceous surfaces. The modification of the carbonaceous material with these func-
tional groups results in an improved adsorption capacity, and the associated changes in
electrostatic potential and electron distribution further elucidate the underlying mecha-
nisms governing these interactions. This research contributes to the understanding of the
role of nitrogen-functionalized carbonaceous materials in environmental remediation and
adsorption processes.
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