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Abstract: The high electrons and holes recombination rate of ZnIn2S4 significantly limits its photocat-
alytic performance. Herein, a simple in situ photodeposition strategy is adopted to introduce the
cocatalyst cobalt phosphate (Co-Pi) on ZnIn2S4, aiming at facilitating the separation of electron–hole
by promoting the transfer of photogenerated holes of ZnIn2S4. The study reveals that the composite
catalyst has superior photocatalytic performance than blank ZnIn2S4. In particular, ZnIn2S4 loaded
with 5% Co-Pi (ZnIn2S4/5%Co-Pi) has the best photocatalytic activity, and the H2 production rate
reaches 3593 µmol·g−1·h−1, approximately double that of ZnIn2S4 alone. Subsequent characteriza-
tion data demonstrate that the introduction of the cocatalyst Co-Pi facilitates the transfer of ZnIn2S4

holes, thus improving the efficiency of photogenerated carrier separation. This investigation focuses
on the rational utilization of high-content and rich cocatalysts on earth to design low-cost and efficient
composite catalysts to achieve sustainable photocatalytic hydrogen evolution.

Keywords: photocatalytic H2 evolution; indium zinc sulfide; cocatalyst; cobalt phosphate; photogenerated
holes transfer

1. Introduction

Rapid economic and social development depends on fossil fuels. However, due to the
non-renewable nature of fossil fuels and the detrimental impact on the environment, it is
imperative that we urgently seek sustainable energy sources capable of replacing them [1–5].
Hydrogen (H2) energy, as a clean and renewable energy source, is one of the most promising
alternative energy sources for fossil fuels [6–8]. Among various H2 production methods,
solar-driven water splitting for H2 production is considered as a green and sustainable
solar energy conversion technology, which can relieve the pressure of energy dilemma
and environmental pollution [9–12]. Consequently, there is an urgent need to develop
photocatalysts with high performance to promote the application of photocatalytic H2
evolution technology [13]. Nowadays, due to their remarkable light absorption properties
and special electronic structures, metal sulfides have become a hot topic in the field of solar
energy conversion technology.

As a ternary sulfide, ZnIn2S4 has attracted global attention from researchers on ac-
count of its favorable layered structure, simple synthesis, good photostability and suitable
electronic band structure [14,15]. In particular, the flower-like structure has a high sur-
face area and improves the light absorption through multiple reflections, which plays an
important role in enhancing the photocatalytic performance [16–18]. However, due to
the high recombination rate of photogenerated electron–hole pairs, pure ZnIn2S4 exhibits
low photocatalytic activity [19–22]. To address this problem, the rational introduction of
cocatalyst is a viable approach to optimize the activity and stability of ZnIn2S4 [23]. Among
the many cocatalysts, cobalt phosphate (Co-Pi) has demonstrated remarkable ability to
transfer photogenerated holes from different light-collecting semiconductors in previous
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studies and has been reported to improve their overall performance [24]. Therefore, the
rational introduction of the holes cocatalyst Co-Pi into ZnIn2S4 is expected to obtain a
cost-effective and efficient composite photocatalyst to promote photocatalytic H2 evolution.
Moreover, in situ photodeposition is considered to be a promising method to enhance
the photocatalytic activity of semiconductors, due to its advantages such as close contact,
simple preparation and directional loading [25–27]. Consequently, rationally introducing
Co-Pi into ZnIn2S4 by in situ photodeposition is expected to promote the migration of
photogenerated holes of ZnIn2S4, thereby improving the photocatalytic performance of the
composite photocatalyst.

Herein, we prepare the ZnIn2S4 nanoflower substrate material by the hydrother-
mal method, and the hybrid catalyst is constructed by in situ photodeposition of cobalt
phosphate (Co-Pi) on ZnIn2S4 nanoflower. The ZnIn2S4/Co-Pi composite exhibits a sig-
nificantly enhanced performance in the photocatalytic H2 evolution compared to pure
ZnIn2S4. Notably, the optimal ZnIn2S4/5%Co-Pi photocatalytic H2 production rate is
3593 µmol·g−1·h−1, which surpasses most similar hybrid cocatalyst systems reported in
the literature (Table 1). The photo/electrochemical tests and photoluminescence (PL)
confirm that the photogenerated carrier separation efficiency of the composite catalyst is
significantly improved. This work aims to provide insights for designing cost-effective and
efficient mixed catalysts to enhance overall photocatalytic performance through rationally
exploiting earth-abundant cocatalysts.

Table 1. Comparison of the hydrogen production properties of the ZnIn2S4-based catalysts.

Photocatalysts Light Sources Sacrificial Agents H2 (µmol·g−1·h−1) Reference

ZnIn2S4-5%Co-Pi 300 W Xe lamp
(λ ≥ 420 nm) TEOA 3593 this work

ZnIn2S4/NiWO4
300 W Xe lamp
(λ ≥ 420 nm) TEOA 1781 [28]

ZnIn2S4/BPQDs 300 W Xe lamp
(λ ≥ 420 nm) TEOA 1207 [29]

J-ZnIn2S4/CdIn2S4
350 W Xe lamp
(λ ≥ 420 nm) TEOA 1830 [30]

N-ZnIn2S4
350 W Xe lamp
(λ ≥ 400 nm) Na2S/Na2SO3 262.62 [31]

MoO2/ZnIn2S4
300 W Xe lamp
(λ ≥ 420 nm) TEOA 2722.5 [32]

ReS2/ZnIn2S4 four 3 W 420 nm LED lamps lactic acid (10 vol%) 2240 [33]

ZnIn2S4/CoFe2O4
300 W Xe lamp
(λ ≥ 420 nm) Na2S/Na2SO3 2260.5 [16]

NiCo2S4/ZnIn2S4
Xe lamp

(λ > 400 nm) - 770 [34]

CoS1.097/ZnIn2S4
300 W Xe lamp

(780 nm ≥ λ ≥ 420 nm) TEOA 2632.33 [35]

2. Results and Discussion

The preparation process diagram of the ZnIn2S4/Co-Pi (ZIS/Co-Pi) composite is
shown in Figure 1a. Initially, ZnIn2S4 (ZIS) nanoflower is prepared by a one-step hydrother-
mal process. Subsequently, Co-Pi is introduced to ZIS nanoflower by in situ photode-
position to obtain ZIS/Co-Pi composites. Due to the best photocatalytic H2 production
performance of ZnIn2S4/5%Co-Pi (Z5CP), we mainly discuss this proportion of the com-
posites in the subsequent characterization. According to Figure S1a,b, the color of ZIS
nanoflower changes significantly before and after in situ photodeposition, with pure ZIS
appearing as bright yellow, and Z5CP appearing as yellowish green. The morphology
and microstructure of different samples are obtained by field emission scanning electron
microscopy (FESEM). As depicted in Figure 1b, pure ZIS presents a spherical flower-like
structure with a diameter of about 1 µm. The SEM image of Z5CP (Figure 1c) shows



Molecules 2024, 29, 465 3 of 13

that Z5CP inherits the flower-like structure of ZIS. Notably, the flower-like structure can
provide a number of active sites, and multiple layers of petals enable light to be reflected
multiple times, which leads to enhanced light absorption [36,37]. In addition, the SEM
image of Z5CP shows that the Co-Pi nanoparticles are highly dispersed, and no large Co-Pi
particles were observed. As presented in Figure 1d, transmission electron microscopy
(TEM) characterization further confirms the spherical flower-like structure of ZIS. More-
over, Figure 1e shows that the Co-Pi nanoparticles are attached to the ZIS nanoflower,
proving the successful synthesis of Z5CP composites. As depicted in Figure 1f, the lattice
distance of Z5CP is about 0.297 nm corresponding to the (104) crystal face of ZIS, and the
Co-Pi synthesized by in situ photodeposition is amorphous. Furthermore, the EDS spectra
(Figure S2) and the element mapping results (Figure 1g) confirm the existence of Zn, In, S,
P, O, and Co elements in Z5CP. The spatial distribution of Zn, In, S, O, P, and Co elements
in the elemental mapping images of Z5CP composite shows that Co-Pi grows uniformly on
the surface of ZIS nanoflower.
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(d–f) TEM images of Z5CP. (g) Mapping analysis results of Z5CP. 
Figure 1. (a) Diagram illustrating the synthesis of ZIS/Co-Pi. (b,c) FESEM images of ZIS and Z5CP.
(d–f) TEM images of Z5CP. (g) Mapping analysis results of Z5CP.

The phase structure and crystallinity are analyzed by the X-ray diffraction (XRD) map.
Figure 2a displays the XRD spectra of both ZIS and Z5CP. For ZIS, the strong diffraction
peaks at 27.5◦ and 47.2◦ belong to the (102) and (110) faces of hexagonal ZIS (JCPDS No.65-
2023) [38]. For Z5CP composites, the XRD diffraction curve closely resembles that of ZIS
except that there is a faint peak at 55.6◦ belonging to the (202) face of hexagonal ZIS, indicat-
ing that ZIS remains a stable crystal structure after coupling with Co-Pi [39]. However, in
the Z5CP composite, the characteristic diffraction peak of Co-Pi is not observed due to the
amorphous nature of in situ photodeposition of Co-Pi [40,41]. The optical characteristics
of the photocatalysts are analyzed by UV-visible diffuse reflection spectroscopy (DRS). As
depicted in Figure 2b, the pure ZIS displays a clear absorption edge around 520 nm, indi-
cating a band gap of about 2.44 eV [42]. Compared with pure ZIS, the absorption intensity
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of Z5CP hybrid in the visible range (520~750 nm) increases with the strong absorption of
Co-Pi, indicating that the introduction of Co-Pi can improve the visible light response of
ZIS. Moreover, Figure 2b shows that there is no significant shift in absorption edge for the
Z5CP composite, indicating that the Co-Pi cocatalyst only deposits on the ZIS surface and
does not bind with the crystal lattice.
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The chemical composition and elemental states of Z5CP composite are further deter-
mined by X-ray photoelectron spectroscopy (XPS). As presented in Figure 3a, Zn, In, S, Co,
and P elements exist in the hybrid products, which further demonstrates the successful
photodeposition of Co-Pi on the surface of ZIS nanoflower. As shown in Figure 3b, the
XPS spectrum of Zn 2p exhibits two distinct peaks at 1045 and 1022 eV, which correspond
to the binding energies of Zn 2p1/2 and Zn 2p3/2 of Zn2+, respectively. From the XPS
spectrum of In 3d (Figure 3c), two peaks that center on binding energies 452.4 and 444.8 eV
are respectively associated with In 3d3/2 and In 3d5/2, which indicate the +3 state of In.
Moreover, as presented in Figure 3d, the peaks of 162.9 and 161.7 eV belong to S 2p1/2 and
S 2p3/2, confirming the presence of S2−. In the XPS spectrum of Co 2p (Figure 3e), the peak
of Co 2p3/2 is at 781.3 eV (satellite peak at 784.3 eV), indicating the presence of Co2+ in the
Z5CP composite [43–45]. In addition, the peak of P 2p (Figure 3f) at 133.5 eV indicates that
P presents in the form of phosphate groups, which further proves the successful synthesis
of Z5CP [46].

Photocatalytic H2 production is performed with triethanolamine (TEOA) as the hole
scavenger, and the photocatalytic properties of pure ZIS and different proportions of
ZIS/Co-Pi composites under visible light are investigated. Figure 4a is a diagram of the
photocatalytic activity of ZIS and composite with 1%, 5%, and 10% Co-Pi (hereinafter
shown as Z1CP, Z5CP, and Z10CP, respectively). As shown in Figure 4a, due to the fast
photogenerated electron–hole recombination rate, the pure ZIS is less active and the H2
evolution rate is only 1832 µmol·g−1·h−1. After the introduction of Co-Pi cocatalyst, Z1CP,
Z5CP, and Z10CP all show better H2 evolution performance compared with blank ZIS.
With the increase in Co-Pi content, the hydrogen yield increases gradually. However, when
the Co-Pi content increases further, the H2 evolution activity decreases, which may be
due to the remarkable shielding effect of Co-Pi, thereby decreasing the photocatalytic
active sites [47]. In particular, the Z5CP composite shows the highest H2 evolution rate
(3593 µmol·g−1·h−1), approximately two times higher than that of ZIS alone. This can
be attributed to the fact that in situ photodeposition of Co-Pi promotes the transfer of
photogenerated holes and reduces the recombination rate of photogenerated carriers. As
shown in Table 1, the Z5CP composite prepared in this work has optimal photocatalytic H2
production properties compared with the photocatalytic H2 production activities of some
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representative ZIS-based composites reported in recent years. In addition, the stability of
Z5CP is tested by the cyclic test. As depicted in Figure 4b, after five cycles, no apparent
deactivation has been observed for Z5CP composite, indicating the excellent stability of
Z5CP composite.
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Photo/electrochemical tests are used to further characterize material reducing capacity
and photogenerated carrier transfer efficiency. Linear sweep voltammetry (LSV) is first used
to determine the H2 evolution performance of ZIS and Z5CP samples. Figure 5a shows the
polarization curve of ZIS and Z5CP composites. It can be seen that the overpotential of Z5CP
is less than ZIS at the same current density, indicating that the H2 evolution performance
of Z5CP is better than that of ZIS [48]. The kinetics of photocatalysis in different samples
can be compared by the Tafel slope. As shown in Figure S3, the Tafel slope of the Z5CP
composite (0.21 V/decade) is smaller than that of ZIS (0.24 V/decade), indicating the better
reduction effect and interfacial charge transfer efficiency of Z5CP, which is consistent with
the photocatalytic H2 production activity as well as other characterization results [49].
These results further demonstrate that Z5CP has faster reaction kinetics and excellent
interface carrier separation efficiency. To study the charge separation and transfer of
these ZIS/Co-Pi composites, instantaneous photocurrent (IT), electrochemical impedance
spectroscopy (EIS) and steady-state photoluminescence (PL) spectra are measured on the
ZIS and Z5CP samples [50]. As illustrated in Figure 5b, the optical current density of ZIS
is small, indicating that the photogenerated carrier separation efficiency of ZIS is poor.
However, it is found that after the introduction of Co-Pi, the optical current density of
Z5CP is significantly improved compared with that of pure ZIS, indicating that Z5CP has
better separation efficiency of electron (e−) and hole (h+) [51–55]. As shown in Figure 5c,
the radius of curvature of Z5CP composite is smaller than ZIS, indicating that the charge
transfer resistance of Z5CP is lower, which improves the separation and transfer rate of
photogenerated carriers, thus enhancing the photocatalytic activity [56–60]. Furthermore,
Figure 5d describes the steady−state photoluminescence (PL) spectra test of the sample.
As shown in Figure 5d, the PL intensity of Z5CP is significantly lower than that of blank
ZIS, indicating that the addition of cocatalyst Co-Pi effectively inhibits the recombination of
photogenerated carriers [61–65]. Taken together, the results of these photo/electrochemical
tests validate the improved separation and transfer of photogenerated charges in Z5CP,
leading to the enhanced performance of photocatalytic H2 evolution.

The information of chemical reaction area of the blank ZIS and the composite material
Z5CP is obtained by the cyclic voltammetry test (CV). Figure 6a,b show the cyclic voltam-
metry (CV) curves of the blank ZIS and Z5CP composites, respectively. As illustrated in
Figure 6c, the double-layer capacitance of Z5CP composite (3.99 µF·cm−2) is significantly
larger than ZIS (1.83 µF·cm−2), which strongly proves that Z5CP has more active sites
area than ZIS [45]. In addition, the flat charged position (Efb) of the original ZIS is mea-
sured with Mott–Schottky (MS). Generally, the slope of the positive one indicates that the
semiconductor is an intrinsic n-type semiconductor [51]. As can be seen from Figure 6d,
ZIS belongs to the n-type semiconductor. Moreover, Figure S4 shows the detailed fitting
parameters of MS. According to the x-intercept of the block, its Efb is determined to be
−0.52 V (vs. Ag/AgCl). In general, the conduction band position of n-type semiconductors
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is about 0.2 V more negative than that of Efb [66–68]. Therefore, the conduction charge
position (ECB) of the ZIS is −0.72 V (vs. Ag/AgCl). From the formula ENHE = EAg/AgCl +
0.20 V, the ECB of ZIS is −0.52 V (vs. NHE). According to the band gap of ZIS (2.44 eV), the
valence band potential (EVB) of ZIS is 1.92 V (vs. NHE).
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Combined with the above experiments and characterization, we propose a viable
mechanism for photocatalytic H2 production of Z5CP under visible light. As shown in
Figure 7, under visible light irradiation, Z5CP effectively absorbs the photon energy, and
then the electrons on the valence band (VB) are excited and transition to the conduction
band (CB), and the corresponding positive electric holes are generated on the valence band
(VB). The electron (e−) migrated to the semiconductor surface binds to the H+ adsorbed
in water to form H2. However, ZIS has a high electrons and holes recombination rate;
therefore, its photocatalytic activity is limited. Notably, Co-Pi has the excellent property of
transferring photogenerated holes, and the holes of ZIS are transferred to Co-Pi and drive
cycles to catalyze the Co2+/3+→ Co4+→ Co2+/3+ reaction [24]. At the same time, ZIS rapidly
exports holes to oxidize the sacrificial reagent of triethanolamine (TEOA); therefore, the
resulting photogenerated hole (h+) is effectively separated and consumed by it. Therefore,
the photogenerated carrier separation efficiency of the composite photocatalyst Z5CP is
improved, which allows more electrons to transfer to the catalyst surface to react with H+

to produce more H2. This is also the main factor for the significant improvement of the
photocatalytic H2 evolution performance of Z5CP composite.
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3. Experimental Section
3.1. Materials

Concentrated sulfuric acid (H2SO4), triethanolamine (C6H15NO3, TEOA), anhydrous
ethanol (C2H5OH), N,N-dimethylformamide (C3H7NO), disodium hydrogen phosphate dihy-
drate (Na2HPO4·2H2O), and sodium dihydrogen phosphate tetrahydrate (NaH2PO4·4H2O)
are supplied by Xilong Scientific Co., Ltd. (Shantou, China). Cobalt nitrate hexahydrate
(Co(NO3)2·6H2O), cetyltrimethylammonium bromide (C19H42BrN, CTAB), zinc nitrate
hexahydrate (Zn(NO3)2·6H2O), indium chloride tetrahydrate (InCl3·4H2O), and Nafion
solution (5 wt%) (C9HF17O5S) are supplied by Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China).

3.2. Synthesis of ZnIn2S4 (ZIS)

Typically, Zn(NO3)2·6H2O (304.2 mg), InCl3·4H2O (624.4 mg), and cetyltrimethyl-
ammonium bromide (CTAB) (230.6 mg) were added to a beaker containing 20 mL of
deionized water and magnetically stirred for 30 min. Then, the thioacetamide (604.8 mg)
was added to a beaker containing 10 mL deionized water and mixed to the above solution.
Afterwards, the mixture was added to a Teflon liner and stirred for 30 min, and the liner
was transferred to stainless steel autoclave heating in an oven at 433 K for 16 h. After
cooling, the products were separated by filtration and washed several times with deionized
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water and ethanol. The resulting samples were dried under vacuum at 333 K for 12 h.
Ultimately, a bright yellow solid was obtained.

3.3. Synthesis of ZnIn2S4/Co-Pi (ZIS/Co-Pi)

In a typical experiment, the prepared 200 mL (0.1 mol/L) NaH2PO4 and 200 mL
(0.1 mol/L) Na2HPO4 solution were mixed and adjusted with pH to around 7. Subsequently,
80 mL of neutral buffer was measured, and the calculated amount of Co(NO3)2·6H2O
was added to make it evenly dispersed by ultrasound. Furthermore, 40 mg of ZnIn2S4
was weighed and introduced into the aforementioned system which was then sealed
using a sealing ring with several ventilation holes. Then, the system was subjected to Ar
gas flow under magnetic stirring for 30 min followed by irradiation from a xenon lamp
while maintaining stirring for an additional duration of 60 min after sealing. After the
photodeposition, the samples were filtered with deionized water, and the samples were
obtained after vacuum drying at 333 K for 12 h. The loading amount of Co-Pi in ZIS/xCo-Pi
was altered by changing the amount of Co(NO3)2·6H2O. In the experimental design, the
loading ratios of deposited Co-Pi in ZnIn2S4 are 1%, 5%, and 10%, respectively.

3.4. Activity Evaluation of Photocatalytic H2 Evolution

Photocatalytic H2 production was performed in a 50 mL airtight quartz reactor. In
the entire quartz reactor, 5 mg of the catalyst was dispersed into a solution containing
5 mL of deionized water and 1 mL of triethanolamine (TEOA). Before the reaction, high
purity Ar was injected into the quartz reactor for 30 min to exhaust the residual air in
the reactor. A 300 W xenon lamp (λ > 420 nm) was selected as the light source, and
after 2 h of illumination, 1 mL of gas was extracted into the gas chromatograph (thermal
conductivity detector TCD, Agilent Technologies GC 7820A, Santa Clara, CA, USA) to
detect the hydrogen yield obtained after the reaction. In order to evaluate the stability of
ZIS/Co-Pi composite, the photocatalyst was separated and centrifuged. The recovered
photocatalyst is then subjected to a subsequent cycle under the same conditions.

3.5. Characterization Methods

The morphological characteristics were tested through scanning electron microscopy
(SEM, FESEM ZEISS sigma 500, Oberkochen, Batenwerburg, Germany) and transmission
electron microscopy (TEM, Jeol JEM-2100F instrument, Jeol, Akishima, Tokyo). The de-
termination of crystal structures was determined by X-ray diffraction (XRD) with Cu Kα

(λ = 0.15406 nm, Bruker D8 Advance, Billerica, MA, USA). The surface composition of
the samples was determined by X-ray photoelectron spectrometer (XPS, Thermo Fisher,
K-Alpha, Waltham, MA, USA). The UV-visible diffuse reflectance spectrometer (DRS,
Shimadzu UV-2600, Kyoto, Japan) was used to test the optical response of the catalyst. Pho-
toluminescence (PL) spectra were obtained using a spectrofluorometer (FLS 980, Edinburgh
Instruments Ltd., Edinburgh, UK) with an excitation wavelength of 500 nm. Furthermore,
all the electrochemical measurements of the photocurrent, the electrochemical impedance
spectra (EIS), the Mott–Schottky (MS), cyclic voltammetry (CV), and linear sweep voltam-
metry (LSV) curves were carried out in the three-electrode cell, in which Ag/AgCl was
used as a reference electrode, a Pt wire was used as a counter electrode, and an indium in
oxide (ITO) conductive glass was used with the samples as a working electrode in 0.1 M
Na2SO4 electrolyte (pH = 7.56), all measurements were carried out on CH instruments
CHI-660E electrochemical workstation (Shanghai Chenhua CHI-660E, Shanghai, China).

4. Conclusions

In summary, we synthesize spherical ZnIn2S4 nanoflower substrate material by the
hydrothermal method, and reasonably construct a novel photocatalyst of indium zinc sul-
fide/cobalt phosphate (ZnIn2S4/Co-Pi) hybrid photocatalyst by the in situ photodeposition
method. In the presence of cocatalyst cobalt phosphate (Co-Pi), the hybrid photocatalyst
shows outstanding photocatalytic hydrogen evolution performance. Through changing
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the photodeposition amount of Co-Pi, it is observed that the highest H2 production rate
of indium zinc sulfide (ZnIn2S4/5% Co-Pi) loaded with 5% cobalt phosphate (Co-Pi) is
3593 µmol·g−1·h−1, which is significantly higher than that of pure ZnIn2S4. The steady-
state photoluminescence (PL) and electrochemical impedance spectroscopy (EIS) of the
photocatalyst show that ZnIn2S4/Co-Pi composite has weaker PL intensity and lower
charge transport resistance than blank ZnIn2S4, demonstrating that the hybrid photo-
catalyst has faster electron transfer and charge separation. Simultaneously, the larger
double-layer capacitance and smaller overpotential of catalyst indicate that ZnIn2S4/Co-Pi
composite has larger active area and better hydrogen evolution performance. This work
makes reasonable use of the earth-abundant cocatalysts to design low-cost and efficient
composite catalysts to promote the prospect of photocatalytic hydrogen evolution.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29020465/s1, Figure S1: Schematic representation of
the samples for ZnIn2S4 (a) and ZnIn2S4-5%Co-Pi (b); Figure S2: EDS spectrum of ZnIn2S4-5%Co-
Pi; Figure S3: Tafel slope plots for ZnIn2S4 and ZnIn2S4-5%Co-Pi; Figure S4: Mott-Schottky plots
for ZnIn2S4.
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