

Supplementary Information

MolOptimizer: A Molecular Optimization Toolkit for

Fragment-Based Drug Design

Adam Soffer 1,2, Samuel Joshua Viswas 1,2, Shahar Alon 3, Nofar Rozenberg 3, Amit Peled 3, Daniel Piro 3,

Dan Vilenchik 4 and Barak Akabayov 1,2,*

1 Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
2 Data Science Research Centre, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
3 Department of Software Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
4 School of Computer and Electrical Engineering, Ben-Gurion University of the Negev,

Beer-Sheva 8410501, Israel

* Correspondence: akabayov@bgu.ac.il; Tel.: +972-8-6472-716

MolOptimizer dependencies

MolOptimizer requires several specific dependencies with precise version numbers

to work smoothly and stably. This information is found in the "requirements.txt" file in

our code repository's "Server" directory. These dependencies are interrelated, and in-

stalling this file ensures that any additional necessary packages are automatically han-

dled.

For clarity and to make it easier for others to recreate our environment, we've listed

the exact versions of the libraries we're using. Below are some of the key dependencies

and their versions as outlined in our "requirements.txt" file:

• Django = 4.1.5

• djangorestframework = 3.14.0

• numpy = 1.24.3

• pandas = 2.0.1

• scipy = 1.10.1

• rdkit = 2023.3.2

• xgboost = 1.7.6

The architecture of MolOptimizer and the user interface (UI)

 Figure S1. Architecture of MolOptimizer.

On the frontend side we used React – A JavaScript (JS) library (https://legacy.re-

actjs.org/) for building user interfaces and is open source component library Material UI

(MUI, https://mui.com/).

We used them for 2 main reasons: 1) React JS has the advantage to be connected easily

to any backend code (based on previous experience we knew to use it for our purposes).

2) We found MUI to be the best package for a great looking and a user-friendly user-in-

terface.

On the backend side we used Django (An open source, Python-based web frame-

work, https://www.djangoproject.com/).

The user Interface: Frontend based on React JS & Material UI. UI code is fully inte-

grated with all backend code. The UI is adjustable, fit and tested with every available web-

browser.

User management and runs management are presented in Figure S2.

Figure S2. User and task managements.

System’s Database

The database stores all the data of users and algorithm runs and is capable of saving

and working with multiple users and runs in the system. The database is kept updated all

the time (with new molecules that are added to the overall number of molecules).

Algorithms improvements and optimizations

Supporting the following features molecules alignment, feature extraction, and ma-

chine learning algorithms. Auto process mode is added and the system was upgraded into

a thread-based multitasking application that allows parallel execution on a multipro-

cessing system and algorithms runs queue are designed and implemented. All these im-

provements were executed using Microsoft Azure® server (https://azure.mi-

crosoft.com/en-us) for better performance of MolOptimizer.

Table S1. Unique features of MolOptimizer compared to other computational tools.

FEATURE/

SOFTWARE
MOLOPTIMIZER GRID POCKET

APPROACH

Utilizes machine learning to

analyze molecular features and

predicts binding affinities for

molecules with similar

structures to the target.

Uses grids to map the energetically

favorable binding sites on

molecules based on

physicochemical properties.

Detects pockets on the surface of

proteins where ligands might

bind, using geometric algorithms.

EXAMPLE OF

DATA

Labeled small-molecule datasets

with known binding values.

3D coordinates of proteins or other

macromolecules, along with their

associated physicochemical

properties.

Protein 3D structures, typically

from X-ray crystallography or

NMR spectroscopy.

REFERENCE This paper

Goodford, P.J. A computational

procedure for determining

energetically favorable binding

sites on biologically important

macromolecules. J Med Chem 28,

849-857 (1985).

Levitt, D.G., Banaszak, L.J.

POCKET: a computer graphics

method for identifying and

displaying protein cavities and

their surrounding amino acids. J

Mol Graph 10, 229-234 (1992).

WEB

ADDRESS

AND OTHER

WEB

RESOURCES

https://molopt.online/

https://github.com/csbarak/Mol

Opt_Students_2023

Not available Not available

FEATURE/

SOFTWARE
SURFNET PASS MMC

APPROACH

Analyzes the spaces between

protein molecules to identify

potential ligand binding sites,

based on cavity detection.

Identifies putative active sites

using spheres to find regions in

proteins that can potentially bind

to ligands.

Maps the topographical features of

macromolecules to understand the

surface characteristics and

interaction sites.

EXAMPLE OF

DATA

Protein 3D structures, with

emphasis on the gaps and spaces

within the macromolecule's

surface.

Protein 3D structures and known

ligand information.

Surface data from protein 3D

structures, emphasizing the

topology and features of the

surface.

REFERENCE

Laskowski, R.A. SURFNET: a

program for visualizing

molecular surfaces, cavities, and

intermolecular interactions. J

Mol Graph 13, 323-330 (1995).

Brady, G.P., Stouten, P.F. Fast

prediction and visualization of

protein binding pockets with

PASS. J Comput Aided Mol Des

14, 383-401 (2000).

Mezei, M. Mapping the surface of

biomolecules. (2003). Not available

as a specific paper reference;

typically referenced in subsequent

literature discussing molecular

topography.

WEB

ADDRESS
Not available Not available Not available

