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Abstract: MolOptimizer is a user-friendly computational toolkit designed to streamline the hit-to-lead
optimization process in drug discovery. MolOptimizer extracts features and trains machine learning
models using a user-provided, labeled, and small-molecule dataset to accurately predict the binding
values of new small molecules that share similar scaffolds with the target in focus. Hosted on the
Azure web-based server, MolOptimizer emerges as a vital resource, accelerating the discovery and
development of novel drug candidates with improved binding properties.

Keywords: cheminformatics; fragment screening; hit-to-lead optimization

1. Author Summary

The availability of advanced data aggregation, storage, labeling, and categorization
tools has bridged the gap in hit-to-lead optimization. By leveraging data-driven algorithms,
it is now possible to establish efficient and accurate design principles in drug discovery.
Furthermore, efforts are being made to enhance the accessibility of these optimization tools
to a broader user base.

Fragment-based screening is a prominent technique for identifying potential hit
molecules from the vast chemical space. However, the subsequent “hit-to-lead” opti-
mization step, which narrows the chemical space to achieve desired effects against a
specific target, is extremely challenging. MolOptimizer is a toolkit designed for a hit-
to-lead optimization of fragment-containing small molecules. The toolkit is available
online (https://molopt.online/, accessed on 31 December 2023) or as an open-source
(https://github.com/csbarak/MolOpt_Students_2023, accessed on 31 December 2023),
and this paper provides a step-by-step guide on downloading, configuring, and utilizing
the MolOptimizer toolkit.

2. Introduction

Fragment-based screening is a fundamental philosophy in drug discovery [1–4], which
is based on finding fragment molecules that are bound to a macromolecular target. Small
molecules in fragment libraries are only functional chemical groups. Therefore, optimizing
a fragment hit into a drug-sized molecule and, at the same time, enhancing its affinity and
specificity to the target is a highly challenging task. Due to their simplicity and small size
(<300 Da), fragment molecules have a high propensity for target binding but often exhibit
low affinity. Consequently, these fragment hits must be expanded into drug-sized molecules
that increase attractive interactions with the pocket of the target macromolecule [4].

We have previously introduced a two-step computational process encompassing
virtual filtration and virtual screening for a hit-to-lead optimization [4]. The subsets of
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fragment-containing drug-sized molecules selected from virtual libraries composed of
multi-million drug-like small molecules underwent high-throughput molecular docking
to obtain the binding value for each small molecule against a pre-structured drug target.
The molecules were then ranked based on their calculated free energy binding to the
target. The datasets of small molecules and their assigned molecular docking values
(‘labels’) are crucial for developing data-driven prediction models that establish design
principles for small molecules with enhanced binding properties. Specifically, we prepared
a benchmark dataset of labeled small molecules obtained with NMR-fragment-based and
virtual screening to target RNA hairpins [5]. The most influential chemical descriptors were
employed to train machine learning models to predict the binding scores of novel small
molecules (which contained the same scaffold found by the NMR fragment screening) [6].

In supervised learning, an algorithm learns from the labeled training data of small
molecules, which is achieved using the features of the data to predict the labels on new,
unseen data. The labels act as the ‘ground truth’ to guide the learning process. For a
dataset of molecular descriptors, labels might represent the efficacy of binding to a specific
target. By including these labels, the supervised learning model can discern the patterns
and correlations between the features of the molecules (like shape, charge distribution,
hydrophobicity, etc.) and their binding performance to the target.

Building on this knowledge, we present MolOptimizer, a toolkit that provides users
with a simplified workflow for molecular optimization in fragment-based drug discovery.
MolOptimizer integrates supervised learning models into a unified, user-friendly platform,
which works to streamline the process and enhance the feasibility of molecular optimization.
The unique features of MolOptimizer compared to other computational tools are presented
in Supplementary Table S1.

3. Implementation

MolOptimizer is a Python-based computational tool devised to estimate the binding
values for the chemical alterations that are made to pre-selected fragment molecules, thus
eliminating the need for a time-consuming in silico docking process on a labeled subset.
Details of MolOptimizer’s architecture can be found in the Supplementary Materials section.
To facilitate ease of use, we offer a step-by-step video tutorial online, which guides users
through molecular optimization using the benchmark dataset and MolOptimizer package
provided (https://www.youtube.com/watch?v=2ouirsHHpJY, accessed on 31 December
2023). This workflow is delineated in a few straightforward steps, as illustrated in Figure 1.
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4.2 [7] and Raccoon [8] tools (Figure 2), and it is provided with MolOptimizer. 
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December 2023) for this purpose, which operates based on the principles of tethered min-
imization (available at https://github.com/Discngine/rdkit_tethered_minimization, ac-
cessed on 31 December 2023). This module facilitates the identification of a common sub-
structure by comparing the atoms and bonds between two molecules. Ensure you upload 
the reference molecule (the fragment hit) and a dataset of fragment-containing small mol-
ecules in SDF format. After alignment, the aligned dataset can be downloaded. MolOpti-
mizer allows users to adjust the �ratio threshold� to manage the size of the second dataset 
of fragment-containing drug-sized molecules while other default parameters remain con-
stant. 

 
Figure 2. Benchmark dataset provided with MolOptimizer. The dataset contains binding values for 
2-phenylthiazole-containing drug-sized molecules that bind RNA targets. (a) A molecular structure 
of 2-phenylthiazole, i.e., the scaffold in each molecule, was obtained by fragment-based screening 
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Step 1: Upload a labeled dataset of small molecules, their binding scores, and a refer-
ence fragment molecule. Such a benchmark dataset, which features extracted descriptors
for each molecule accompanied by a binding value (or label), is derived from AutoDock
4.2 [7] and Raccoon [8] tools (Figure 2), and it is provided with MolOptimizer.
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Figure 2. Benchmark dataset provided with MolOptimizer. The dataset contains binding values for
2-phenylthiazole-containing drug-sized molecules that bind RNA targets. (a) A molecular structure
of 2-phenylthiazole, i.e., the scaffold in each molecule, was obtained by fragment-based screening
using T2 relaxation spectroscopy [5]. A representative larger molecule containing phenylthiazole was
obtained using a virtual filtration approach that was applied to the ZINC database [9]. (b) Hairpin
91, located in the center of the PTC of the large ribosomal subunit of Staphylococcus aureus (PDB
id. 4WCE, [10]), was the target for the virtual screening of ~800 2-phenylthiazole containing small
molecules. Molecular docking was performed using Autodock 4.2 [11].

Step 2: In this step, align a batch of small molecules using the atoms of the fragment
molecule found in all of the entries in the dataset. This alignment maintains the structural
orientation of the molecules and grants uniformity to the dataset. Utilize the RDKit’s Most
Common Substructure (MCS) module (available at https://www.rdkit.org/, accessed on
31 December 2023) for this purpose, which operates based on the principles of tethered
minimization (available at https://github.com/Discngine/rdkit_tethered_minimization,
accessed on 31 December 2023). This module facilitates the identification of a common
substructure by comparing the atoms and bonds between two molecules. Ensure you
upload the reference molecule (the fragment hit) and a dataset of fragment-containing
small molecules in SDF format. After alignment, the aligned dataset can be downloaded.
MolOptimizer allows users to adjust the ‘ratio threshold’ to manage the size of the sec-
ond dataset of fragment-containing drug-sized molecules while other default parameters
remain constant.

Step 3: Extract a substantial number of chemical descriptors using the RDKit
(https://www.rdkit.org/, accessed on 31 December 2023) and Mordred [12] Python li-
braries. These descriptors are critical for the computer-aided classification of molecules
based on the structure–activity relationship (SAR) [13] (illustrated in Figure 3). Users
can opt between RDKit or Mordred for feature extraction by uploading a multi-molecule
file in .mol2 format. The extracted features are available for download in .csv format
upon completion.

Step 4: Training machine learning models using the labeled datasets of small molecules
to predict binding scores for new fragment-containing molecules. MolOptimizer features a
user-friendly interface hosting three machine learning algorithms: extreme gradient boost-
ing regression (XGBoost [14]), Lasso regression [15], and the decision tree regressor [16].
This phase enables the prediction of binding scores for new fragment-containing small
molecules, thereby bypassing the necessity for molecular docking by considering the crucial
chemical attributes embedded in the new entities.

https://www.rdkit.org/
https://github.com/Discngine/rdkit_tethered_minimization
https://www.rdkit.org/
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Figure 3. Example of chemical descriptors extracted using RDKit (https://www.rdkit.org/, accessed
on 31 December 2023) and Mordred [12].

The available data are split into two subsets to effectively train a machine learning
model, i.e., the training and validation sets (where the split ratio is 75% and 25%, respec-
tively). The training set is used to fit the model, thus allowing the algorithm to learn from
the data. During this phase, a 5-fold cross-validation ensures the model’s performance is
robust and not dependent on how the data are split. In a 5-fold cross-validation, the training
set is divided into five smaller sets (folds). The model is trained five times, using four
folds for training and the remaining fold for validation. This way, the model’s parameters
are tuned, and the best model in terms of generalizing to new data is selected. After the
model has been trained and the parameters have been selected, the separate validation
set, which the model has not seen during the training process, is used to evaluate the
model’s performance. This helps to provide an unbiased estimate of how well the model
will perform on unseen data.

MolOptimizer offers machine learning algorithms in Expert Mode (Figure 4a) and
Manual Mode (Figure 4b).
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Expert Mode: In this setting, the MolOptimizer tool requires users to input specific
hyperparameters that significantly influence the learning trajectory of the model. Designed
to be user friendly, even for individuals with a limited background in machine learning,
‘Expert Mode’ automates the identification of optimal hyperparameters through the Grid-
SearchCV function from the scikit-learn library [17]. Moreover, it suggests the top ten
critical features using three integrated ML algorithms: XGBoost, Lasso regression, and the
decision tree regressor.

The process involves training two models: a primary and a secondary one. Initially,
the primary model is trained with the most influential features, which are identified
automatically. Following this, the user re-uploads the dataset to train the secondary model,
which utilizes the features selected from the recommended list. The model undergoes
further refinement through another round of hyperparameter tuning with GridSearchCV
before being saved as the final version for affinity score predictions.

Importantly, each step in our process creates files that the next step uses. For example,
we line up molecules in a file in the molecular alignment step, ensuring they all match up
in the same 3D space. Then, in the next part, we look at these files and pick out a great deal
of different features for each molecule, as many as 1340 different kinds. The data are then
organized into a tabular format for further analysis.

Manual Mode: This mode caters to users who prefer a hands-on approach, in which
the option to input hyperparameters manually is offered, where chemical features are
selected for training from the uploaded database, thus bypassing the extended training
process witnessed in Expert Mode. It encompasses the functionalities from XGBoost, Lasso
regression, and the decision tree regressor algorithms integrated within MolOptimizer.

To aid users in feature selection, which incorporates Shapley Additive exPlanations
(SHAP [18]) for the XGBoost and the decision tree regressor, these notebooks assist in
understanding the significant roles various features play in binding affinity predictions.
Notably, SHAP is not implemented for Lasso regression due to current limitations. This
framework, grounded in game theory, clarifies the model results by evaluating the impact
of each feature on the predictions, thereby offering insights into the positive or negative
influences on the outcome.

MolOptimizer incorporates various machine learning algorithms, including Extreme
Gradient Boosting (XGBoost), Lasso regression, and the decision tree regressor. Here, we
delve into each as follows:

XGBoost: The XGBoost algorithm [14], renowned for its tree-based learning and
handling of large data volumes, is adept at predicting the binding affinity of drug-sized
molecules. It is particularly beneficial in medicinal chemistry, addressing data sparsity
issues by learning the direction of missing values, and in allowing tree splitting with
sparsity awareness.

The aim of the XGBoost algorithm is minimizing the objective function, which is a
combination of the loss function (L) and the regularization term (γ), which is as follows:

obj(t) = ∑n
i=1

[
l
(

yi,
^
y
(t−1)

i

)
+ gift(xi) +

1
2

hif2
t (xi)

]
+ Ω(ft) + constant, (1)

where gi = ∂
^
y(t−1)l(yi,

^
yi

(t−1)), hi = ∂2 ^
y(t−1)l(yi,

^
y(t−1)), y is the target variable, and

^
y is the

predicted variable.
In MolOptimizer, users can utilize ‘Expert Mode’ to automatically find the optimal

hyperparameters using GridSearchCV with a grid that includes parameters (with default
values) such as ‘n_estimator’, ‘max_depth’, and ‘subsample’. Users can manually input
hyperparameters like ‘Learning Rate’ and ‘Alpha Value’ in the ‘Manual Mode’ (Figure 5),
whereby the model’s root mean square error displayed in the terminal.
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Lasso Regression: This method, also known as shrinkage regression [15], minimizes
a specific cost function and is crucial for reducing redundant features in large chemical
datasets. It identifies and eliminates less relevant features, thus facilitating feature selection.

The cost function that the Lasso regression algorithm aims to minimize is as follows:

∑n
k=1

(
yk − ∑j xkjβj

)2
+ Θ ∑p

j=1

∣∣βj
∣∣ (2)

where y is the target variable, x is the input variable, β is the magnitude, and Θ is the tuning
parameter. The higher the value of Θ, the more the absolute value of coefficients shrinks,
thus eliminating more features.

Users can either employ ‘Expert Mode’ to find the best regularization parameter using
GridSearchCV or manually enter the desired value in ‘Manual Mode’.

A text file, ‘CustomModel_rmse.txt’, is generated in the root directory, which contains
the mean absolute error, mean squared error, and root mean squared error of the model.

Decision Tree Regressor: In implementing the Classification and Regression Trees
(CART) algorithm, this regressor predicts target variable values by continually splitting
nodes to minimize the impurity via the Gini index that generalizes binomial variance [19].
‘Expert Mode’ utilizes GridSearchCV to determine the optimal values for various hy-
perparameters, while ‘Manual Mode’ allows users to specify values for parameters like
‘max_depth’ and ‘min_samples_leaf’ (Figure 5). Creating a shallow decision tree is impor-
tant for the simplification of the model.

For all three algorithms, the performance metrics such as the mean absolute error
and root mean squared error are saved in a text file named ‘CustomModel_rmse.txt’ in
the respective scripts’ sub-directories. Additionally, the SHAP approach detailed in the
accompanying Jupyter Notebooks helps explain the tree structures created by the decision
tree regressor.

4. Discussion

In this study, we presented a UI toolkit that seeks to simplify the hit-to-lead opti-
mization process of a molecule that is obtained with fragment-based screening. Utilizing
machine learning algorithms, the toolkit is designed to assist in analyzing a dataset that is
uploaded by a user and which is aimed at identifying molecules with desired attributes
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more efficiently. The user’s dataset will contain molecules, and each of them are assigned a
label of binding values that are obtained by virtual screening (docking).

MolOptimizer allows navigating the extensive chemical space more effectively, poten-
tially reducing the time and resources traditionally required in the initial stages of drug
discovery. Overall, the toolkit is available online (https://molopt.online/, accessed on 31
December 2023) and offers a practical approach to addressing the common challenges faced
during the early phases of drug discovery, thereby facilitating a smoother transition from
data analysis to pinpointing potential drug candidates.

5. Conclusions

This study introduces a toolkit that integrates machine learning algorithms to stream-
line fragment-based screening in drug discovery. By offering a more efficient pathway
for analyzing datasets and identifying promising molecules, the tool serves as a simpler
aid in the complex landscape of medicinal chemistry. The architecture of the toolkit and
list of dependencies are presented in the Supplementary Materials section. It represents a
thoughtful step toward refining the early stages of drug discovery, thus potentially mak-
ing the process smoother and more focused. The tool has an available UI developed in
Microsoft Azure®, and it can be downloaded from Github under a licensed agreement
(https://github.com/csbarak/MolOpt_Students_2023, accessed on 31 December 2023). A
video tutorial is available online at https://www.youtube.com/watch?v=2ouirsHHpJY,
accessed on 31 December 2023.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29010276/s1, Figure S1: Architecture of MolOptimizer.
Figure S2: User and task managements. Table S1: Unique features of MolOptimizer compared to
other computational tools.
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