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Abstract: Most organic pollutants are serious environmental concerns globally due to their resistance
to biological, chemical, and photolytic degradation. The vast array of uses of organic compounds
in daily life causes a massive annual release of these substances into the air, water, and soil. Typical
examples of these substances include pesticides, polychlorinated biphenyls (PCBs), and polycyclic
aromatic hydrocarbons (PAHs). Since they are persistent and hazardous in the environment, as
well as bio-accumulative, sensitive and efficient extraction and detection techniques are required to
estimate the level of pollution and assess the ecological consequences. A wide variety of extraction
methods, including pressurized liquid extraction, microwave-assisted extraction, supercritical fluid
extraction, and subcritical water extraction, have been recently used for the extraction of organic
pollutants from the environment. However, subcritical water has proven to be the most effective
approach for the extraction of a wide range of organic pollutants from the environment. In this review
article, we provide a brief overview of the subcritical water extraction technique and its application to
the extraction of PAHs, PCBs, pesticides, pharmaceuticals, and others form environmental matrices.
Furthermore, we briefly discuss the influence of key extraction parameters, such as extraction time,
pressure, and temperature, on extraction efficiency and recovery.

Keywords: environmental matrices; organic pollutants; pesticides; polycyclic aromatic hydrocarbons;
polychlorinated biphenyls; subcritical water extraction

1. Introduction

An enormous number of organic chemicals are used daily to meet human physiological
needs and maintain a healthy and better quality of life. As a result, large quantities of
organic pollutants (OPs), including insecticides, herbicides, fungicides, polychlorinated
biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs), are released into the
environment [1–3]. The majority of these OPs are resistant to biodegradation, persist for a
long time in the environment, and migrate from one place to another; for these reasons,
they are called persistent organic pollutants (POPs) [4]. In contrast to the high solubility of
OPs in non-polar solvents and edible oils, they exhibit relatively low solubility in water.
Moreover, the addition of extra rings to the PAHs decreases their solubility. These chemicals
bio-accumulate in the food chain and are widespread toxic contaminants that endanger
humans, animals, and ecosystems [5]. Hence, POPs are found in small amounts in the
human body and are more prevalent in foods high in fat, such as meat, fish, eggs, and milk,
due to their lipophilic nature [6]. Exposure to these contaminants causes a variety of health
issues, including cancer, diabetes, heart problems, endocrine disorders, and reproductive
system problems [7]. As a consequence, effective methods for OP extraction and detection
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are essential for determining the degree of contamination and assessing the potential risks
it causes to the ecosystem.

Liquid–liquid extraction (LLE) and solid-phase extraction (SPE) are two of the most
well-known and frequently used methods for the extraction of OPs from different environ-
mental samples [8]. However, these classical extraction techniques frequently have several
drawbacks, including being difficult to automate, complicated and time-consuming, and re-
quiring large quantities of glassware and organic solvents, which are frequently hazardous
to the environment [8,9]. As an alternative, several new green extraction and separation
technologies, such as pressurized liquid extraction (PFE) [10], microwave-assisted extrac-
tion (MAE) [11], ultrasonic-assisted extraction (UAE) [12], supercritical fluid extraction
(SFE) [13,14], and subcritical water extraction (SBWE) [14,15], have recently been developed
to reduce extraction times and organic solvent requirements for OPs extraction from liquid
and solid matrices. However, SBWE has been utilized to extract a range of OPs from
environmental matrices and is the most promising of the group. The subcritical water
extraction technique has been the focus of much study for the past ten years (Figure 1). It
has been used in the pharmaceutical industry to extract natural products and essential oils,
as well as in the environmental sector to extract contaminants.
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were retrieved from the ScienceDirect database.

SBWE is a relatively new technique for the extraction of organic compounds using pure
liquid water under critical temperature and pressure (Tc = 374.15 ◦C, Pc = 22.1 MPa) [16].
The primary benefits of SBWE are attributed to the usage of water instead of toxic organic
solvents and the reduced extraction time, which considerably reduces the cost of extraction
processes, as well as environmental pollution [17]. The solvent’s fundamental characteristic
that identifies its polarization is its dielectric constant (ε). For instance, water has a dielectric
constant of about 80 in mild extraction conditions (25 ◦C, 0.1 MPa), which drops to 25
when the temperature and pressure are increased to 250 ◦C and 2.5 Mpa, respectively [18].
As a result, water can behave identically to acetonitrile, methanol, and ethanol due to
the tunable polarity of subcritical water, which allows for the extraction of a variety of
polar or less polar organic compounds by adjusting extraction conditions (pressure and
temperature) [19–21].

The SBWE process involves two types of extraction modes: static extraction (discrete
mode) and dynamic extraction (continuous flow mode) [16,22]. These extraction modes can
be used individually or together. However, due to the allowance for the continuous flow
of fresh water through the extraction vessel, the compounds are extracted continuously,
and thus the recovery efficiency of the dynamic mode is much higher than that of the static
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mode. In order to collect extracted analytes, SBWE systems can utilize both solvent and
solid trapping, as shown in Figure 2 [23,24]. However, sorbent-type trapping has been used
more commonly due to the limitations of solvent trapping.
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As shown in Figure 2, distilled water is pumped from the water reservoir to the
extraction cell using a syringe pump and heated in an oven using pre-heating coils. The
eluent, which contains the extracted organic compounds, is cooled by being passed through
an ice-water bath and then collected in a flask containing an organic solvent trapper
(Figure 2a). While utilizing a solid trapper, after the extraction step, the extracted organic
compounds are cooled and collected on sorbent at the same time (Figure 2b).

In addition to extracting diverse bioactive substances (such as polyphenols, pigments,
essential oils, flavonoids, and peptides) from various raw materials, SBWE is also capable
of extracting and remediating a wide range of contaminants (such as pesticides, PAHs,
and PCBs) from various environmental matrices [25–30]. In this study, we present a
comprehensive and systematic explanation of the SBWE approach for extracting organic
pollutants from environmental matrices, including pesticides, pharmaceuticals, PAHs,
PCBs, pharmaceuticals, and phthalates. Additionally, the comparison of SBWE with other
analytical methods and the impact of extraction temperature, pressure, and time on recovery
and extraction efficiencies of organic pollutants are discussed briefly,

2. Types of Analytes Extracted

This review article provides a comprehensive overview of the application of subcrit-
ical water in the extraction of various organic contaminants (PAHs, PCBs, insecticides,
herbicides, fungicides, pharmaceuticals, phthalates, and others) from a variety of solid and
liquid environmental matrices (waters, soils, dust, sludges, sediments, and others).

2.1. PAHs

PAHs refer to a class of organic compounds consisting of two or more fused benzene
rings in the molecule [31]. Based on fused benzene rings, PAHs can be classified as
light PAHs (2–4 rings) or heavy PAHs (4–6 rings) [32]. PAHs are widespread chemical
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contaminants that are frequently found in the air, soil, and water [33]. They are largely
produced by the incomplete combustion of organic substances (e.g., oil, coal, gasoline, and
wood) and are typically toxic, mutagenic, and carcinogenic [34,35]. Figure 3 represents
some of the most hazardous and carcinogenic PAHs as specified by the United States
Environmental Protection Agency (US-EPA).
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The adverse impacts of PAHs on human health are mostly determined by human
exposure to a precise quantity of PAHs, the duration of exposure, the mode of exposure,
and the inherent toxicity of PAHs [36,37]. Short-term impacts of PAHs on human health
include symptoms such as anxiety, vomiting, nausea, and eye irritation. Reduced immuno-
logical function, vision problems, kidney and liver damage, respiratory issues, signs of
asthma, alterations to lung function, and skin redness and inflammation are the chronic
health effects of long-term human exposure to PAHs [35,37–39]. In fact, cancer is the most
serious and significant outcome of PAH intoxication [40]. PAHs are highly soluble in
nonpolar solvents and edible oils but have limited solubility in water [41]. Regardless of the
hydrophobic properties of PAHs, a broad range of extraction techniques, such as dispersive
solid-phase extraction (d-SPE) [42], magnetic solid-phase extraction (MSPE) [43], stir bar
sorptive extraction (SBSE) [44], fabric phase sorptive extraction (FPSE) [45], SBWE [46],
and SFE [47], have been developed. The application of SFE for the extraction of PAHs
from the environment has become more apparent; however, supercritical water requires
extremely high temperatures and pressures (T > 374 ◦C and P > 221 bar), and it is extremely
corrosive [48,49]. SBWE, on the other hand, is an emerging technology that utilizes su-
perheated water as a solvent instead of toxic organic solvents [50]. Several studies have
investigated clean-up of PAHs and demonstrated the capability of extracting PAHs from
diverse environmental matrices using subcritical water [46,51]. The extraction of PAHs
from environmental matrices utilizing subcritical water as a green solvent is illustrated in
Table 1 [14].
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Table 1. SBWE of PAHs from environmental matrices.

Environmental
Matrices Type Type of Extracted PAHs

Extraction Conditions
% Recovery

(% RSD) Removal (%) Ref.
Temp (◦C) P

(bar)
Time
(min)

Spiked Sand

Naphthalene

250 50 15 >90%

100

[14]

Phenanthrene 96

Anthracene 95

Chrysene 90

Benzo[a]pyrene 86

Benzo[ghi]perylene 94

Railroad Bed Soil

Naphthalene

250 - 60

278 (7)

- [52]

Acenaphthene 210 (6)

Phenanthrene 99 (12)

Anthracene 324 (14)

Fluoranthene 91 (10)

Pyrene 104 (10)

Benz[a]anthracene 153 (13)

Chrysene 100 (9)

Benzo[a]pyrene 98 (22)

Perylene 161 (11)

Benzo[ghi]perylene 80 (16)

Petroleum Waste
Sludge

Naphthalene

250 50.7 60

126 (10) 49

[23]Phenanthrene 109 (15) 77

Pyrene 82 (31) 87

Soil

Naphthalene

275 100 60 - >99 [48]

Acenaphthene

Chrysene

Benz[a]anthracene

Benzo[b+k]fluoranthene

Benzo[e]pyrene

Benzo[a]pyrene

Indeno[1,2,3-cd]pyrene

Benzo[ghi]perylene

Soil

Naphthalene

250 - 60

96

>90% [51]

2-Methyl naphthalene 99

1-Methyl naphthalene 99

Acenaphthene 93

Phenanthrene 94

Anthracene 93

Fluoranthene 99

Pyrene 91

Benzo[a]anthracene 94

Chrysene 99

Benzo[b+j+k]fluoranthene 93

Benzo[a]pyrene 93

Perylene 93

Indeno[1,2,3-cd]pyrene 92

Benzo[ghi]perylene 92
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Table 1. Cont.

Environmental
Matrices Type Type of Extracted PAHs

Extraction Conditions
% Recovery

(% RSD) Removal (%) Ref.
Temp (◦C) P

(bar)
Time
(min)

Soil

Pyrene

150 50 15 + 10

101.8 (10.4)

- [53]

Benzo[a]anthracene 73.6 (11.5)

Benzo[e]acenaphthen 96.8 (10.2)

Benzo[k]fluoranthene 110.4 (7.4)

Benzo[a]pyrene 106.5 (9.3)

Benzo[ghi]perylene 104.0 (1.2)

Sediment
(CRM 104)

Benz[a]anthracene

150 - 20

88 (5)

- [54]

Benzo[b]fluoranthene 55 (4)

Benzo[k]fluoranthene 104 (4)

Benzo[ghi]perylene 95 (1)

Benzo[a]pyrene 89 (3)

Chrysene 87 (4)

Fluoranthene 89 (12)

Indole[1,2,3-cd]pyrene 106 (1)

Phenanthrene 87 (6)

Pyrene 101 (12)

Soil

Naphthalene 150

100 30 -

99.61

[55]
Phenanthrene

300

98.12

Fluoranthene 96.24

Pyrene 94.05

Soil

Naphthalene 200

- 60 -

100

[56]
Phenanthrene

250

96

Fluoranthene 96

Pyrene 98

Soil

Phenanthrene

275 40 60 -

99

[57]Fluoranthene 92

Pyrene 91

Soil Phenanthrene 165 20 15 - 83.58 [58]

Soil Benzo[a]pyrene 250 101.3 30 - 96 [59]

P, pressure; Temp, temperature; RSD, relative standard deviation; Ref, reference.

Hawthorne et al. obtained quantitative extractions of PAHs ranging from 86 to 100%
in just 15 min under very mild conditions (e.g., 250 ◦C and 50 bar) [14]. Solid-phase
micro extraction (SPME) has been shown to be an efficient method for quantitatively
extracting organic molecules from water. Thus, Hageman reported quantitative PAH
determination from soil using the SBWE/SPME method at 250 ◦C [52]. Subcritical water
could be effectively utilized for selective extraction of polar, moderately polar, and nonpolar
organic compounds by merely adjusting water temperatures (50–300 ◦C) and pressures
(5–100 atm). Thus, at 250 or 300 ◦C and pressures between 50 and 100 atm, Yang et al.
observed selective extraction of PAHs over phenols, BTEX, and n-alkanes from petroleum
waste sludges, soil, and a spent catalyst. PAH remediation using subcritical water at a pilot
scale in contaminated soil (8 kg of soil sample) was performed by Lagadec et al., and all
PAHs were reduced to undetectable levels (0.5 ppm) in as short as 35 min at 275 ◦C and
100 bar [48]. Hawthorne et al. demonstrated that the extraction and recovery of PAHs from
polluted soils and sediments are made very simple and quick by coupling subcritical water
extraction with SPE sorbent disc collection [51].
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More than 90% of the 15 typical PAHs were quantitatively extracted and collected on a
sorbent disk at an extraction temperature of 250 ◦C for 60 min. According to Fernandez-Perez
et al., the use of sodium dodecyl sulfate (SDS) at 50 bar and 150 ◦C, for 10 min of dynamic
extraction and 15 min of static extraction is an effective way to improve the extraction of
non-polar organics from soils [53]. Very high recovery percentages were achieved, ranging
from 73.6 to 110.4 using SD-water, compared to 30–80% using only water as an extracting
agent. Mcgowin et al. used static SBWE and SPE to assess PAHs in certified reference
sediment (CRM 104) and found that an extraction length of 20 min and a temperature of
150 ◦C offered the highest extraction recovery [54]. Additionally, they demonstrated that using
C-18 resin as an alternate sorbent significantly increased the percentage of PAHs recovered.
According to Moreno et al., it was feasible to quantitatively extract PAHs at concentrations
as high as 8522 mg kg−1 under SWBE conditions, and extraction recoveries for PAHs from
Mexican hydrocarbon-contaminated soil varied from 95 to 100% with an average uncertainty of
±1.2% [60]. Wang et al. discovered that subcritical water extraction combined with dispersive
liquid–liquid microextraction (DLLME) produced a promising recovery rate ranging from
57.63% to 91.07% for the detection of monohydroxylated PAHs in sediment samples [61].

As a result, low molecular weight PAHs, such as naphthalene, are more water-soluble
than other PAHs, allowing them to be extracted at lower temperatures (150–200 ◦C),
whereas higher molecular weight PAHs require very high temperatures (200–300 ◦C) to
achieve the best extraction results [46,62].

2.2. PCBs

PCBs are a group of synthetic persistent organic pollutants that were once largely
utilized as hydraulic fluids, heat-transfer fluids, lubricating fluids, plasticizers, and insulat-
ing fluids in some electrical equipment, such as capacitors and transformers [63]. These
substances are among the most persistent xenobiotic pollutants, and can survive in different
environmental situations for an extended period due to their significant chemical stability
and minimal reactivity [64]. Humans are mainly exposed to PCBs by oral intake, inhalation,
and skin adsorption [65]. PCBs have several negative consequences on human health,
including cancer, skin and liver damage, birth defects, metabolic disorders, cardiovascular
problems, immune system failure, and other health problems [66,67]. Thus, due to PCBs’
health risks, they are currently forbidden, and manufacturers stopped producing PCBs
commercially in 1977. Products that were produced before the ban and that are discarded
as garbage continue to gradually and continuously leak PCBs into the environment (soils,
sewage, surface sludge, sediments, and surface water) [68–71]. The chemical structures of
the 12 PCBs that are most abundant in human maternal serum are shown in Figure 4 [72].
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Therefore, it has been crucial to accurately identify and eliminate PCBs from the
ecosystem to minimize their harmful and carcinogenic health impacts. Comparable to how
PAHs are extracted, PCBs can be quantitatively extracted using SBWE at 250 ◦C and 300 ◦C.
Since PCBs are nonpolar molecules and only minimally soluble in water, the temperature
of the water has a big impact on how efficiently PCBs can be extracted. Table 2 shows the
extraction of PCBs from environmental matrices using SBWE.

Table 2. SBWE of PCBs from environmental matrices.

Environmental
Matrices Type

Type of Extracted
PCBs

Extraction Conditions

Removal (%) % Recovery
(%RSD) Ref.

Temp (◦C) P
(bar) Time (min)

Sediment

PCB-26

250 50.7 15 >99

74 (11)

[73]

PCB-28 106 (13)

PCB-44 101 (3)

PCB-52 100 (15)

PCB-102 88 (9)

PCB-118 89 (23)

PCB-149 ND

PCB-153 ND

PCB-105 ND

PCB-128 73 (18)

PCB-156 ND

PCB-180 73 (25)

Industrial Soil

PCB-28

250 50.7 15

>99 95 (15)

[73]

PCB-52 >99 91 (11)

PCB-101 96 92 (9)

PCB-118 92 84 (10)

PCB-149 92 79 (5)

PCB-153 85 81 (9)

PCB-105 94 91 (8)

PCB-138 88 74 (9)

PCB-128 91 70 (7)

PCB-156 82 71 (16)

PCB-180 73 70 (19)

PCB-170 71 71 (18)

Sea Sand

PCB-101

250 253.3 - -

87.5 (6)

[74]
PCB-138 87.9 (5)

PCB-180 87.7 (2)

PCB-194 90.0 (3)
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Table 2. Cont.

Environmental
Matrices Type

Type of Extracted
PCBs

Extraction Conditions

Removal (%) % Recovery
(%RSD) Ref.

Temp (◦C) P
(bar) Time (min)

Sand

PCB-2

250 - - -

102 (12)

[75]

PCB-29 90 (13)

PCB-52 100 (23)

PCB-101 95 (30)

PCB-153 87 (35)

PCB-180 90 (23)

Soil

PCB-118

250 - 60 >99.5 - [76]

PCB-28

PCB-31

PCB-44

PCB-52

PCB-101

PCB-118

PCB-138

PCB-149

PCB-153

PCB-170

PCB-180

PCB-194

PCB-209

P, pressure; Temp, temperature; RSD, relative standard deviation; Ref, reference; ND, not detected.

At 250 ◦C and 50 atm, Yang et al. demonstrated effective removal (>99%) of PCBs from
sediment in just 15 min [73], although in comparable reaction conditions, the extraction
efficiency of the majority of PCBs from industrial soils was only >91% and 71–88% for
highly chlorinated biphenyls. As a result, the extraction of the majority of PCBs, including
highly chlorinated biphenyls (hexa- and hepta-chlorobiphenyls), was carried out at 300 ◦C
(steam) and 50 atm, where it took less than 5 min to complete. Hartonen et al. reported a
recovery rate of more than 85% for spiked PCBs from sea sand using a solid-phase trap
packed with Tenax [74]. Then, Pross et al. investigated three extraction fluids (CO2, H2O,
and SF6) for the extraction of spiking PCBs from soil [77]. They demonstrated that, of all
studied fluids, water was the most effective in extracting PCBs. They also showed that using
octadecylsilane (ODS) instead of Tenax might increase solid phase trapping efficiency, as the
extraction recovery efficiency can reach over 95%. SWBE can be coupled to SPME for rapid
estimation of PCB concentrations in soils and sediments or HPLC for more accurate and
sensitive PCB analysis [78,79]. Li et al. devised an identical on-line SBWE-HPLC coupling
system using a sorbent trap as an interface for extraction and analysis of chlorophenols,
chloro- and methylanilines, caffeine, nitrotoluenes, and PCBs from the sand [75]. They
also indicated that at 250 ◦C, all PCBs examined were efficiently extracted from sand, with
recoveries of 87% or higher. Recently, at an extraction temperature of 225–250 ◦C, Islam
et al. reported the total elimination of over 99% of PCBs from field-contaminated soil in
60 min [76].
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2.3. Pesticides

The term “pesticides” refers to a class of chemicals that are used to both protect crops
from pests (such as insects, rodents, fungi, and weeds) and boost crop production. Hence,
pesticides can be categorized as insecticides, rodenticides, fungicides, herbicides, and many
more, depending on the species they are meant to kill [80–82]. China, the United States
of America, Argentina, India, Japan, Canada, Brazil, France, Italy, and Thailand are the
top pesticide consumers, using an average of 2 million tons of pesticides annually [83,84].
Among all pesticides consumed in the world, 80% are insecticides, 1.46% are fungicides,
15% are herbicides, and the remaining are other types of pesticides [85]. The excessive
and continuous utilization of pesticides can eventually cause harm to non-target species,
including humans, animals, plants, and several other beneficial organisms [86]. These
persistent organic pollutants are frequently identified in soils because they are directly
applied to them; one of the most comprehensive and recent examinations showed that 83%
of the 317 agricultural soils studied contained at least one pesticide residue [87]. Many
studies have documented the bio-accumulation of pesticides in fruits and vegetables, which
allows the chemicals to enter the food chain and seriously harm both human and animal
health [88–91]. Additionally, since soil and water bodies are closely connected, both surface
water and groundwater are significantly affected by pesticide contamination. As a result,
detectable pesticide levels have been identified mostly in groundwater and surface water
streams in areas of agriculture and urban land activities [92]. Figure 5 shows some of the
most commonly found pesticides in surface water.
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Pesticides can have both short-term (acute) and long-term (chronic) effects on humans.
Eye stinging, rashes, blindness, dizziness, nausea, diarrhea, and even death are some
possible effects of acute toxicity, while different types of cancer, birth deformities, immuno-
toxicity, neurological and developmental toxicity, reproductive harm, and endocrine system
disturbance are a few examples of documented chronic consequences [93]. Thus, it is crucial
to extract and determine pesticide trace levels in various environmental matrices using
reliable and environmentally friendly methodologies. In this context, SBWE has shown
to be an effective, rapid, and green strategy for the recovery of pesticide-contaminated
soils [94,95]. In comparison to PAHs and PCBs, pesticides are more soluble in water; hence,
most are extracted at moderate temperatures. Miller et al. investigated the effects of tem-
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perature and pressure on the solubility of pesticides in water and found that moderate
pressure had little impact on their solubilities, but that every 50 ◦C increase in temperature
increased the solubility of the pesticides by about one order of magnitude [96]. Table 3
shows the extraction of various pesticides from environmental matrices using SBWE.

Table 3. SBWE of pesticides from environmental matrices.

Environmental
Matrices Type Type of Extracted Pesticides

Extraction Conditions
% Recovery

(%RSD) Removal (%) Ref.Temp
(◦C)

P
(bar)

Time
(min)

Soil Trichloropyridinol 250 200 15 99.7 100% [97]

Soil

Cynarine

90 - -

87

- [98]

Simazine 89

Atrazine 89

Isoproturon 88

Diuron 86

Linuron 84

Clopyralid 93

Picloram 91

Dicamba 90

Bentazone 85

MCPA 87

2,4-D 85

Mecoprop 84

Diclorprop 86

Bromoxynil 84

Ioxynil 84

2,4-DB 63

MCPB 62

Sea Sand

4-Nitrophenol

100 - 30

85 (1.5)

- [99]

Pentacholorphenol 92 (1.0)

Dinoseb 42 (12)

3,5-Dichlorobenzoic acid 93 (2.5)

Dicamba 92 (0.5)

2,4-DP 99 (0.4)

2,4-D 103 (1.2)

2,4,5-TP 100 (1.0)

2,4,5-T 101 (1.9)

2,4-DB 93 (3.9)

Chloramben 90 (2.2)

Picloram 69 (9.9)

Acifluorfen 108 (7.3)

2,4-Dichlorophenylacetic acid 92 (2.5)
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Table 3. Cont.

Environmental
Matrices Type Type of Extracted Pesticides

Extraction Conditions
% Recovery

(%RSD) Removal (%) Ref.Temp
(◦C)

P
(bar)

Time
(min)

Agricultural Soil

4-Nitrophenol

100 - 30

90 (6.2)

- [99]

Pentacholorphenol 88 (7.6)

Dinoseb 47 (11)

3,5-Dichlorobenzoic acid 90 (6.1)

Dicamba 76 (6.8)

2,4-DP 96 (6.1)

2,4-D 93 (6.3)

2,4,5-TP 92 (6.3)

2,4,5-T 92 (7.6)

2,4-DB 90 (6.1)

Chloramben 90 (8.0)

Picloram 71 (7.6)

Acifluorfen 95 (9.5)

2,4-Dichlorophenylacetic acid 88 (4.9)

Soil and
Sediment Tricyclazole 150 - 30 85–100 - [100]

Soil

Trifluralin

250 - 15 - >99 [48]

Atrazine

Alachlor

Metolachlor

Cyanazine

Pendimethalin

Sediment

Ametryne

110 - 20

78 (4)

- [54]

Atrazine 89 (12)

Carbaryl 74 (5)

Chlorpyrifos 91 (3)

Trifluralin 90 (3)

Soil

Bentazone

85 - 60 94.2–113.1 - [101]

2,4-D

Triclopyr

2,4,5-T

2,4,5-Tp

Dust waste

Carbofuran

100 25 30

81 (2.9)
- [102]Imidacloprid 98 (1.0)

Carbosulfan <1
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Table 3. Cont.

Environmental
Matrices Type Type of Extracted Pesticides

Extraction Conditions
% Recovery

(%RSD) Removal (%) Ref.Temp
(◦C)

P
(bar)

Time
(min)

Soil

Chlordane 120

-

10

99 (13)

- [103]

Malathion

160

87 (12)

Heptachlor 82 (4)

Aldrin
20

89 (2)

Dieldrin 77 (7)

Butachlor

10

82 (11)

Metalaxyl 94 (6)

Propiconazole 104 (4)

Thiobencarb 180 82 (12)

Soil

Diazinon

150 20 20 -

100

[104]
Parathione 100

Phenthoate 100

EPN 99

Soil

Ametryn

150 - 20 78.9–101 - [105]

Promtryn

Simetryn

Methoprotryn

Simazine

Atrazine

Propazine

Terbuthylazine

P, pressure; Temp, temperature; RSD, relative standard deviation; Ref, reference.

An investigation was carried out by Jimenez-Carmona et al. to compare the effective-
ness of SBWE and SFE in the extraction of trichloropyridinol, a metabolite of chlorpyrifos,
from soil [97]. They achieved 95% extraction by the SFE method at 40 ◦C and 383 bar in
30 min, utilizing organic additives. Nevertheless, complete extraction was possible with
SBWE at 250 ◦C and 200 bar in just 15 min, negating the need for any further additives.
Subsequently, in a more thorough investigation, Luque-Garcial et al. and Crescenzi et al.
used the SBWE approach at a low temperature to extract a wide number of pesticides
from the soil with outstanding recoveries [98,101]. Crescenzi et al. extracted 16 out of
the 18 herbicides at 90 ◦C from the soil, which exhibited recoveries that varied from 81 to
93% [98]. At 85 ◦C, Luque-Garcia et al. extracted bentazone, 2,4-dichlorophenoxyacetic acid
(2,4-D), 3,5,6-trichloro-2-pyridinyloxyacetic acid (triclopyr), 2,4,5-trichlorophenoxyacetic
acid (2,4,5-T), and 2(2,4,5-trichlorophenoxy) propionic acid (2,4,5-TP) with recoveries of
94.2–113.1% at 60 min [104]. Almost identical to these data, Konda et al. indicated that at
105 ◦C, pesticide recoveries varied between 84.6 and 91.1% (acetochlor, atrazine, carben-
dazim, imidacloprid, and isoproturon), except for diazinon, which was recovered at 59.4%
from soil [106]. Corcia et al., on the other hand, observed substantially greater recoveries,
with extraction recoveries for terbuthylazine (CBET) and its degradation products (DPs)
from an aged soil at 100 ◦C ranging between 95 and 103% [107]. Furthermore, as compared
to Soxhlet extraction and double extraction techniques, the extraction volumes achieved
using SBWE were much higher. In a pilot-scale subcritical water extraction of pesticide-
contaminated soil (8 kg), Lagadec et al. efficiently removed all pesticides (>99%), reducing
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their initial concentration of 400 ppm to below detectable levels (0.1 ppm) in 15 min at
250 ◦C (100 bar) [48]. Lou et al. determined chlorinated acid herbicides and their esters in
sea sand and agricultural soil using static SBWE paired with a strong anion exchange (SAX)
disk [99]. Quantitative recoveries, usually over 80%, were attained using static SBWE/SAX
disk extraction at 100 ◦C for 30 min. Krieger et al. investigated the utilization of SBWE for
extracting tricyclazole from soils and sediments [100]. At optimal conditions (150 ◦C and
30 min) using SBWE, the extraction recoveries of tricyclazole from soil and sediment were
85–100%, regardless of the incubation time and sample matrix, except for one sediment.
Mcgowin et al. determined that an extraction time of 20 min and a temperature of 110 ◦C
provided the maximum extraction recovery ranging from 74 to 91% when they utilized
static SBWE and SPE to evaluate pesticides in certified reference sediment (CRM 104) [53].

Extracting less-polar pesticides via SBWE requires higher temperatures; Eskilsson et al.
revealed that at 100 ◦C, the recoveries for carbofuran, imidacloprid, and carbosulfan were
81, 98, and <1%, respectively [102]. However, SBWE may extract polar molecules more
successfully in comparison to the large range of organic solvents. With recoveries of 77%
at 150 ◦C using SBWE compared to traditional organic extraction (69%) and supercritical
fluid extraction (45%) at 140 ◦C, Krieger et al. observed superior extraction recoveries for
cloransulam-methyl from Wayside, MS (1DAT) soils [108].

To alter the effectiveness of some pesticides’ extraction, organic solvents (acetone,
methanol, acetonitrile) could be added to the water in SBWE. Thus, using water-acetonitrile
as the extraction solvent, Rodil et al. observed 4.1–85.2% recoveries for organochlorine pes-
ticides and chlorobenzene from spiked soil samples (25–155 ng/g) at 120 ◦C in pressurized
SBWE paired with stir bar sorptive extraction (SBSE) [109]. Similarly, Chienthavorn et al.
conducted a comparative study using pure water and a modifier in the SBWE method to
extract insecticides, herbicides, and fungicides from soil, sediment, and sand samples [103].
The optimal extraction temperature was between 120 and 180 ◦C, at which point the recov-
eries from sand samples ranged from 96% to 101% for most pesticides, except for butachlor.
The recoveries were over 91% from sediment samples using an organic modifier. The
extraction method was also used on soil samples, where the majority of the pesticides
recovered between 82% and 105%, except dieldrin, which recovered 76%.

In 2013, Islam et al. reported an extraction efficiency of 99.9% of pesticides (diazinon,
parathion, phenthoate, and EPN) at 150 ◦C and 2 MPa in just 20 min from contaminated
soil [104]. Then, in 2017, Zhao et al. developed a green and selective extraction method
for triazine herbicides based on a combination of SBWE and molecularly imprinted solid
phase extraction (MISPE) [105]. Liquid chromatography–tandem mass spectrometry (LC-
MS/MS) was employed to analyze herbicides. It was discovered that 15% ethanol as
the organic modifier and 150 ◦C for 15 min were the optimum extraction conditions for
triazine herbicides. In addition, molecularly imprinted polymers (MIPs) were added during
SBWE, which increased the extraction efficiency. Therefore, compared to employing SBWE-
MISPE alone (30% to 67%), adopting the optimized MIP/SBWE-MISPE approach exhibited
superior recoveries (78.9% to 101%).

2.4. Other OPs

Pharmaceuticals are primarily used to treat, prevent, and diagnose diseases in humans
and animals. However, over time, pharmaceutical production and consumption have
grown, making them one of the emerging environmental contaminants [110,111]. Due
to their widespread detection, their ongoing release into ecosystems has grown into a
severe problem, causing serious health effects in humans, animals, and plants. They have
been detected in drinking water [112], surface water [113], groundwater [114], marine
waters [115], and soils [116]. They have also been shown to bio-accumulate in fruits
and vegetables [117,118]. Pharmaceuticals can be removed from water using a variety
of traditional procedures, including physical, chemical, and biological treatments [119].
However, the majority of them are unable to remediate pharmaceuticals due to the low
concentration of pharmaceuticals in water, which has resulted in the development of new
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and sophisticated treatment methods. Lately, there has been significant interest in using
polymer-based technology to remove drugs from the environment [120]. To extract and
eliminate pharmaceuticals from environmental matrices, several extraction procedures
have also been developed. There have been comparatively fewer investigations of SBWE
of pharmaceuticals from the environment compared to various other methods. However,
SBWE is an environmentally friendly technique that has shown promise in extracting
and removing pharmaceuticals from environmental matrices with the highest removal
efficiency. Richter et al. reported employing the SBWE method to extract nifedipine from
a synthetic pharmaceutical formulation, with a 99.2% recovery rate achieved in under
20 min at 150 ◦C [121]. Yabalak et al. studied the degradation of 6-aminopenicillanic
acid and cloxacillin in aqueous solution by SBW and oxidizing agents such as O2, H2O2,
and K2S2O8 [122]. The highest TOC removal rates for 6-aminopenicillanic acid (83.54%)
and cloxacillin (76.02%) utilizing H2O2 and K2S2O8, respectively, were reported. Similarly,
Emire et al. demonstrated that with the SBW approach and H2O2 as an oxidant, paracetamol
was 100% degraded [123].

Phthalates esters (phthalates) a predominant type of plasticizer, are a common class of
environmental contaminants that are added to polyvinyl chloride (PVC) to give it more
flexibility and hardness [124,125]. Each year, more than 18 billion pounds of phthalates
are used in products related to medicine and lab work, construction materials, print-
ing inks, cosmetics and personal hygiene, clothing, food items, and packaging, among
other things [126–130]. Phthalate pollution exposure has extremely detrimental impacts
on human health, one of which is the disturbance of hormone levels during fetal devel-
opment [131,132]. Given their hazardous nature, phthalates have been extracted from
environmental samples using a variety of analytical techniques, including SBWE. In a
study, Chang et al. investigated the extraction of different types of phthalates from soil
samples using SBWE [133]. The removal efficiency of phthalates was obtained at 80–90%
under the optimum conditions of 250 ◦C and 10 MPa. According to Colnik’s report on
the degradation of polyethylene terephthalate wastes using SBW, the maximum yield of
terephthalic acid was found to be 85–90% at 300 ◦C and a 30 min reaction duration [134].
Similarly, at 300 ◦C, Xiu et al. achieved 99.2% decomposition of diethylhexyl phthalate-rich
PVC waste at just 15 min using SBW [135].

Crude oils and refined petroleum products are a very complex mixture of different
types of organic compounds, including aliphatic, aromatic, and polar compounds contain-
ing nitrogen, oxygen, and sulfur [136]. Due to the massive amounts of crude oil released by
oil mining, the refining industry, transportation, and utilization, crude oil is one of the princi-
pal environmental pollutants that harm the aquatic and terrestrial environments [137–139].
SBWE is a sophisticated analytical technique that could potentially be applied to crude oil
pollution investigations and remediation. The application of SBWE to the remediation of
lubricating oil from contaminated soil by Islam et al. resulted in an exceptional removal
efficiency of 99% at 275 ◦C in 150 min [140]. In another study, Islam et al. reported 99.8%
extraction efficiency of diesel from crude oil-contaminated soil in 60 min at 200 ◦C using
SBWE [141]. According to Taki et al., 99.69% and 87.33% of the crude oil was recovered
and removed, respectively, from contaminated soil at 250 ◦C and 120 min [139].

2.5. Comparison of SBWE with Other Conventional Techniques

Over the years, a number of conventional techniques have been developed to extract
different types of contaminants from environments. Pesticides, PAHs, PCBs, pharmaceuti-
cals, and others are extracted from the environment using a variety of techniques, such as
microwave extraction, ultrasonic extraction, and Soxhlet extraction [142–144]. However,
low extraction efficiency, large organic solvent consumption, low reproducibility, extended
extraction duration, and solvent diffusion are some of their drawbacks. Nevertheless,
SBWE is a potentially effective green method that uses commonly available, harmless water
at critical pressures and temperatures to extract organic contaminants from environmental
matrices. This technique has several other advantages, such as high extraction efficiency,
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rapid extraction, low process cost, and effectiveness on both polar and non-polar OPs. For
example, SBWE extracted PAHs with up to 99% recoveries in just 60 min [51], whereas
Soxhlet extraction using an organic solvent produced recoveries that were comparable in
16 h [145]. The pesticide extraction methods of microwave, Soxhlet, and SBWE showed
nearly comparable recoveries [105,146]. However, the extraction times for Soxhlet and
SBWE were 900 min and 20 min, respectively. Table 4 contrasts the application of SBWE
with other conventional methods including microwave, Soxhlet, and ultrasound for the
extraction of PAHs, PCBs, pesticides, and pharmaceuticals from environmental matrices.

Table 4. Comparison of SBWE with other conventional methods regarding the extraction of PAHs,
PCBs, pesticides, and pharmaceuticals from the environment.

Analyzed
Compounds

Extraction
Method

Extraction Conditions
% Recovery

(%RSD) Ref.
Temp (◦C) P

(bar)
Time
(min) Solvent

PAHs

SBWE 250 - 60 Water 92–99 (-) [51]

Microwave - - 6 Acetonitrile 78.7–115.6
(0.7–7.8) [147]

Soxhlet - - 960 DCM/acetone 57–99 (-) [145]

Ultrasound - - 45 n-Hexane 29.2–82.5
(6.5–47.1) [148]

PCBs

SBWE 250 - - Water 87–102
(12–35) [75]

Microwave 115 - 10 Hexane/acetone 81–93 (-) [149]
Soxhlet - - 540 Methylene chloride 64.3–75.2 (-)

[150]Ultrasound - - 45 Methylene chloride 69.2–77.2 (-)

Pesticides

SBWE 150 - 20 Water 78.9–101 [105]

Microwave 110 - 10 Hexane/acetone 84.98–104.06
(0.52–9.30) [146]

Soxhlet - - 900 Hexane/acetone 86.79–105.12
(0.61–12.12)

Ultrasound - - 10 Acetonitrile 75–111 (-) [151]

Pharmaceuticals

SBWE 150 - 20 Water 99.2 (1.9) [121]
Microwave 65 - 15 Methanol/water 40–100 (<5) [152]

Soxhlet - - 480 Acetonitrile 88–108 (-) [153]

Ultrasound - - 45 Ethylacetate/formic
acid >80 (1.1–10) [154]

3. Conclusions

SBWE is a promising green technique for the extraction of organic pollutants from
environmental matrices using nontoxic and widely available water at critical temperatures
and pressures. The primary benefits of SBWE are attributed to the usage of water due
to its tunable polarity in a critical state instead of other toxic organic solvents. Thus, by
adjusting extraction conditions (pressure and temperature), a variety of polar or less-polar
OPs, including PAHs, PCBs, and pesticides, can be efficiently removed from different envi-
ronmental matrices (soils, sand, sediments, and water) within a short time with excellent
recoveries. The effectiveness of this approach to remove pesticides, PAHs, and PCBs is
not significantly affected by pressure. However, temperature variations have a significant
impact on the extraction effectiveness of these compounds in the SBWE process, depending
on their polarity. Pesticides, being more soluble in water, are typically extracted at moderate
temperatures, with the optimal condition falling between 90 and 150 ◦C. Conversely, PAHs
and PCBs, which exhibit poor water solubility, require higher temperatures for optimal ex-
traction. Lower molecular weight PAHs show optimum extraction between 150 and 200 ◦C,
while higher molecular weight PAHs necessitate temperatures between 200 and 300 ◦C. For
PCBs, solubility decreases with increased chlorination, and the optimal range for extraction
lies between 250 and 300 ◦C. Occasionally, organic modifiers such as methanol, ethanol,
acetone, and acetonitrile are introduced to enhance the efficiency of SBWE extraction and
maximize the recovery of OPs from complex environmental matrices.
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4. Future Developments

Subcritical water has demonstrated great potential to replace toxic organic solvents in
chemical extractions, chromatography, synthesis, environmental remediation, and other
chemical processes. To further develop subcritical water technology, more fundamental
research, such as the determination and prediction of organic solubility in subcritical water,
as well as organic decomposition under subcritical water conditions, are required.

It has to be pointed out that the solubility of nonpolar organics in water is still poor
at mild subcritical temperatures, and thus, organic modifiers may be needed to achieve
efficient subcritical water extraction. However, toxic organic modifiers such as methanol or
acetonitrile must be avoided. Good alternatives are ethanol or acetone since they are much
less toxic.
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