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Abstract: Bisphenol A diglycidyl ether (BADGE) is widely present in the inner coating of metal food
cans, from which it can migrate into food and generate harmful derivatives during storage, such as
bisphenol A (2,3-dihydroxypropyl) glycidyl ether, bisphenol A (3-chloro-2-hydroxypropyl) glycidyl
ether, and bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) glycidyl ether. Here, a
gold-nanoparticle-based immunochromatographic strip assay based on a broad-spectrum polyclonal
antibody was developed for the simultaneous detection of BADGE and its derivatives, which could
be accomplished within 15 min. The quantitative analysis of the visualization results was performed
using Adobe Photoshop CC 2021, and the detection limit, defined as the concentration causing
15% inhibition, was 0.97 ng/mL. The recoveries of BADGE and its derivatives at various spiking
levels in canned food samples ranged from 79.86% to 93.81%. The detection results of the proposed
immunochromatographic strip assay were validated via high-performance liquid chromatography,
showing a good correlation coefficient (R2 = 0.9580).

Keywords: bisphenol A diglycidyl ether; derivatives; broad-spectrum polyclonal antibodies; gold
nanoparticles; immunochromatographic strip assay; canned food

1. Introduction

Bisphenol A diglycidyl ether (2,2-bis(4-glycidyloxyphenyl) propane, BADGE) is a
condensation product of bisphenol A (BPA) and epichlorohydrin. It can be used as an
additive in polyester fibers and as a hydrochloric acid scrubber. In particular, BADGE
is often utilized to remove the hydrochloric acid in the organosol resins used as inner
coatings of metal food cans [1–3], where it can remain if the chemical reaction is not
complete during the coating manufacturing process [4,5] and migrate into food during
processing and storage [6,7]. Due to the complexity of the food matrix, BADGE can react
with acidic or greasy food via hydrolysis or chlorination, generating various derivatives,
such as bisphenol A (2,3-dihydroxypropyl) glycidyl ether (BADGE·H2O), bisphenol A
(3-chloro-2-hydroxypropyl) glycidyl ether (BADGE·HCl), and bisphenol A (3-chloro-2-
hydroxypropyl) (2,3-dihydroxypropyl) glycidyl ether (BADGE·HCl·H2O) [8,9], which have
been detected along with BADGE in canned foods such as canned seafood, canned meat
products, and energy drinks [10,11]. BADGE may lead to abnormalities in the human
endocrine, immune, and nervous systems and affect normal reproductive and genetic
functions [12–14]. Therefore, European legislation has set specific migration limits for
BADGE and its hydrolysis derivative BADGE·H2O at 9 mg/kg in foodstuffs and food
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simulants as well as for the hydrochloric derivatives BADGE·HCl and BADGE·HCl·H2O
at 1 mg/kg [15].

Various analytical methods based on high-performance liquid chromatography–fluorescence
detection (HPLC–FLD) [16–18], liquid chromatography–tandem mass spectrometry (LC-
MS) [19–21], and gas chromatography–mass spectrometry (GC–MS) have been developed
for the detection of bisphenol-dihydrate glycerol ether [22]. Although LC-MS and GC–MS
have good accuracy and high sensitivity, they are expensive, complex, and require trained
operators, which is not conducive to rapid on-site detection. In contrast, immunoassays
are suitable for the simultaneous detection of a large quantity of samples and can meet
daily monitoring requirements. The immunochromatographic strip assay, also known
as lateral-flow immunoassay, is a combination of chromatography and immunoassay. It
has gained attention as an alternative to enzyme-linked immunosorbent assay (ELISA).
Immunochromatographic strip test is considered to be a useful tool for the rapid screening
of food and raw materials. It is in demand for rapid and point-of-care testing in all parts of
the food-processing chain “from farm to fork” [23,24].

Gold nanoparticles are commonly used as detector reagents in lateral-flow immunochro-
matography for the visualization of signals. In particular, gold nanoparticle (AuNP-based
immunochromatographic strip assays have been widely used for detecting hazardous
macromolecular and small-molecule substances [25–31].

To the best of our knowledge, although the production of monoclonal antibodies that
can recognize BADGE and the establishment of an ELISA method for detecting BADGE
in lake water have been previously reported [32], broad-spectrum polyclonal antibodies
that can simultaneously recognize BADGE and its derivatives using an immunochromato-
graphic strip assay have not yet been described.

Here, we developed an immunochromatographic strip assay using AuNPs and a
broad-spectrum polyclonal antibody to simultaneously detect BADGE and its derivatives.
The visualized results were quantitatively analyzed using Adobe Photoshop CC software.
Canned foods were selected as samples, and HPLC was used as the analysis method to
evaluate the proposed immunochromatographic strip assay, which is a convenient tool for
the fast and efficient detection of BADGE and its derivatives.

2. Results
2.1. Screening of Broad-Spectrum Antibodies

Standard solutions of BADGE derivatives were freshly prepared before analysis. The
concentration causing 50% inhibition (IC50) values were determined, and the cross-reactivities
were calculated using the indirect competitive ELISA (ic-ELISA) method. The recognition
capability of selected antisera (PAb-1, PAb-2, PAB-3, and PAb-4) for BADGE derivatives
was also investigated. As shown in Table 1, the cross-reactivities of antiserum PAb-1 with
BADGE·HCl, BADGE·H2O, and BADGE·HCl·H2O were 79.6%, 175.8%, and 110.8%, re-
spectively. Compared with other antisera, antiserum PAb-1 exhibited better recognition
capability for BADGE and its derivatives; therefore, it was selected as a broad-spectrum
recognition antiserum. PAb-1 was purified using protein A-Sepharose 4B affinity chromatog-
raphy (Figure 1a), and the obtained antibody was characterized using SDS-PAGE (Figure 1b).

Table 1. Cross-reactivities of antisera with BADGE, BADGE·HCl, BADGE·H2O, and BADGE·HCl·H2O.

Target

Antisera

PAb-1 PAb-2 PAb-3 PAb-4

IC50 (ng/mL) CR (%) IC50 (ng/mL) CR (%) IC50 (ng/mL) CR (%) IC50 (ng/mL) CR (%)

BADGE 51 100 65 100 26 100 29 100
BADGE·HCl 64 79.6 114 57.0 57 45.6 60 48.3
BADGE·H2O 29 175.8 51 127.4 76 34.2 47 61.7

BADGE·HCl·H2O 46 110.8 59 110.1 82 31.7 70 41.4
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Figure 1. (a) The antiserum purified via protein A-Sepharose 4B affinity chromatography. (b) The 
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Figure 1. (a) The antiserum purified via protein A-Sepharose 4B affinity chromatography. (b) The
results of SDS-PAGE: 1: marker; 2: antiserum; 3: purified antibody.

2.2. Optimization of AuNP-Labeled Antibody

The AuNPs and AuNP-labeled antibody (Au NPs@PAb-1) were characterized using
their UV–vis spectrum, as shown in Figure 2. The adsorption peak of AuNPs shifted from
521 nm to 532 nm, which indicated that the antibody successfully conjugated to the AuNPs.
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Figure 2. Wavelength scanning of AuNPs and AuNP-labeled antibody.

The combination of AuNPs and antibody mainly depended on the pH and the amount
of binding antibody. When the pH of the system was close to the isoelectric point of
the antibody protein, the binding between AuNPs and antibody was more stable. For
1 mL of AuNP solution, the pH value was adjusted by adding different amounts of a
0.2 M potassium carbonate (K2CO3) solution. As shown in Figure 3, the absorbance first
increased and then decreased with an increasing amount of K2CO3 solution. When the
volume was set to 15 µL, the solution absorbance of the AuNP-labeled antibody reached a
maximum. Therefore, 15 µL of K2CO3 solution was used for adjusting the pH of 1 mL of
AuNP solution.
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Figure 3. (a) Wavelength scanning of AuNP-labeled antibody with different amounts of K2CO3.
(b) Absorbance of AuNP-labeled antibody with different amounts of K2CO3.

The amount of antibody used for labeling was also a key factor; an insufficient amount
of antibody would result in the surface instability of AuNPs, while excess antibody would
lead to the waste of antibody. According to Figure 4, when the antibody amount was
9.35 µg (experimental group 5 in Figure 4b), the amount of labeling antibody had already
reached saturation. Based on these parameters, for 1 mL of AuNP solution, the optimum
labeling conditions were set to 15 µL of 0.2 M K2CO3 solution for pH adjustment and
9.35 µg of antibody for conjugation.
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2.3. Establishment of AuNP Lateral-Flow Immunochromatographic Strip Assay

An immunochromatographic strip assay was developed on the basis of an antibody–antigen
competitive immunoreaction. The process is depicted in Figure 5. The reaction principle
is as follows: In the absence of BADGE in the sample, the AuNP-labeled antibody binds
to the coating antigen at the test (T) zone, which turns red. This result is considered
negative. Meanwhile, BADGE competes with the coating antigen (T zone) to bind the
AuNP-labeled antibody, thereby weakening the color of the T zone. This color weakening
is more pronounced as the BADGE concentration increases. The concentrations of the
coating antigen and AuNP-labeled antibody in the lateral-flow immunoassay strip assay
were optimized. As shown in Figure 6a, the color of the T zone gradually darkened with
increasing concentration of the coating antigen up to 20 µg/mL. As shown in Figure 6b,
when the volume of AuNP-labeled antibody reached 20 µL, the color of the T zone did not
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change considerably. Therefore, 20 µL of AuNP-labeled antibody solution was selected for
the following test.
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Figure 6. (a) Optimization of the coating antigen. (b) Optimization of AuNP-labeled antibody.

Under optimal conditions, the AuNP-labeled antibody was mixed with different
concentrations of BADGE and added to the strip. As shown in Figure 7a, the intensity of
the color of the T zone decreased as the BADGE concentration increased. When the BADGE
concentration reached 1 ng/mL, the color of the T zone could be distinguished from that
of the negative sample (without BADGE); therefore, the visual detection limit was set to
1 ng/mL.

Color intensities were quantified using Adobe Photoshop CC software. The grayscale
variation in the T zone and the standard curve drawn by calculating the inhibition ratio are
shown in Figure 7b and Figure 7c, respectively. The calculated limit of detection, which was
defined as the concentration causing 15% inhibition (IC15), was 0.97 ng/mL. This result is
consistent with the visual result.
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Figure 7. (a) Visual results of AuNPs lateral-flow immunoassay strip assay (the concentration
of BADGE: 0, 0.1, 1, 10, 100, 500, 1000 ng/mL). (b) Grayscale variation in T zones for different
concentrations of BADGE. (c) Inhibition analysis for BADGE.

2.4. Stability Analysis of AuNPs-PAb Immunochromatographic Strip

The test strips were stored at 4 ◦C for 1, 3, 5, and 7 days, and the color was observed via
the immunochromatographic strip assay using a standard 1 ng/mL BADGE solution. The
results are shown in Table 2. No remarkable change was observed in the T zone, indicating
the good stability of the test strips for the detection of BADGE.

Table 2. Stability analysis of AuNP-labeled antibody immunochromatographic strip assay.

1 (Day) 3 (Day) 5 (Day) 7 (Day)
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2.5. Matrix Effect

In the analysis of real samples, the matrix can interfere with the detection accuracy.
Therefore, to eliminate the matrix effect, the samples were diluted to different concentra-
tions (5-, 10-, 20-, and 40-fold dilution) and analyzed via ic-ELISA. As shown in Figure 8,
the 40-fold dilution could remove the matrix effect almost completely, enabling the analysis
using the assay.
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Figure 8. The optimized dilution of the sample-extracting solution: (a) canned luncheon meat;
(b) canned yellow peach; (c) Red Bull drink (Hainan Red Bull Beverage Co., Ltd., Lingao, China).

2.6. Sample Recovery Analysis

Spiking and recovery analyses were performed using the AuNP-labeled antibody
immunochromatographic strip assay, which was validated via HPLC analysis (Table 3).
The recoveries of BADGE in canned food samples ranged from 79.86% to 93.81%. The
correlation coefficient between the AuNP-based lateral-flow immunochromatographic strip
assay and HPLC analysis was 0.9580 (Figure 9).
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BADGE and its derivatives may exist simultaneously in real samples, thus the pro-
posed immunochromatographic strip assay was used to detect the total amount of BADGE
and its derivatives and validated via HPLC analysis. As shown in Table 4, the total amount
of BADGE compounds in the samples determined using the immunochromatographic
strip assay was consistent with that obtained via HPLC, demonstrating that the devel-
oped AuNP-based lateral-flow immunochromatographic assay could be used as a practical
biological monitoring method for the rapid screening of BADGE and its derivatives.
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Table 3. Recoveries of BADGE and its derivatives in spiked samples by AuNPs lateral-flow im-
munochromatographic strip assay and HPLC (n = 3).

Sample Spiked Conc. (ng/g)
HPLC (n = 3) AuNPs Lateral-Flow Immunochromatographic

Strip Assay (n = 3)

Mean ± SD (ng/g) Recovery (%) Mean ± SD (ng/g) Recovery (%)

Canned
luncheon meat

50 45.28 ± 0.02 90.56
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Table 4. Detection of BADGE and its derivatives in samples using AuNPs lateral-flow immunochro-
matographic strip assay and HPLC (n = 3).

Sample BADGE and Its
Derivatives

HPLC AuNPs Lateral-Flow Immunochromatographic
Strip Assay

Mean ± SD
(ng/g)

Total
Amount

Detection of Concentration
Mean ± SD (ng/g)

Actual
Concentration

Mean ± SD
(ng/g)

Canned
luncheon

meat

1

BADGE 45.03 ± 0.83

130.06
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3. Discussion

BADGE is widely used in the preparation of the inner coatings of metal cans. It is often
used to avoid direct contact between the food matrix and metals in packaging materials.
During processing, storage, and transportation, BADGE is prone to migrating into the food
matrix and generating hydrated or chlorinated derivatives, which can accumulate in the
human body through the food chain, causing abnormalities in the endocrine and nervous
systems. Anna et al. [33] studied the toxicity and potential lipid destruction of BADGE in
human placental JEG-3 cells and found that it can interfere with lipid metabolism and alter
the cellular lipidome, ultimately causing disease. Instrumental analysis methods have been
used to detect BADGE and its derivatives. For instance, Gallo et al. [34] simultaneously
determined eight kinds of bisphenol substances, including BADGE, in soft drinks via liquid
chromatography–fluorescence.

Due to the wide polarities of BADGE and its derivatives, conventional LC requires
complex sample pretreatment to complete the separation, which cannot meet the need for
rapid detection. Moreover, traditional instrumental analysis methods cannot realize the
simple and rapid analysis of large quantities of samples or the real-time monitoring of
migrated residual pollution.

In contrast, immunoassays based on antibodies or other biological molecules enable
rapid analysis with simple pretreatments and constitute an effective supplementary method
to conventional instrumental analysis methods. In fact, immunoassays have been widely
used for the analysis of various pollutants in the field of food safety because of their
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reliability, efficiency, and cost savings. Accordingly, they have been recommended by
institutional analysis departments for the rapid screening of large quantities of samples.
Considering the health hazards posed by BADGE compounds, the monitoring of food
via long-term, multifrequency, high-throughput sample analysis is required, for which
immunoassays are suitable methods. Guan [35] developed a fluorescence polarization
assay for the simultaneous monitoring of BPA, BPF, BADGE, and BFDGE in canned tuna
with detection limits of 0.35, 0.08, 0.10, and 0.49 mg/L, respectively. The method was
not sufficiently sensitive for the detection of BADGE, which may be because the receptor
cannot completely replace the biological antibody to achieve high-affinity recognition of
the target compound. The broad-spectrum polyclonal antibody used in this study can
simultaneously recognize BADGE and its derivatives, enabling the development of a rapid
AuNP-based lateral-flow immunochromatographic strip assay for the detection of BADGE
and its hydrolyzed and chlorinated derivatives in canned food. The assay can be performed
within 15 min. The visual results were processed using Adobe Photoshop CC software,
and the detection limit (IC15) was 0.97 ng/mL. Therefore, this method can meet the need
for real-time screening and the detection of large quantities of samples. The developed
AuNPs-based lateral-flow immunochromatography assay is compared with other methods
reported for the detection of BADGE and its derivatives in Table 5.

Table 5. Comparison of analytical methods for the detection of bisphenol derivatives (includ-
ing BADGE).

Detection Method Detection Targets Detection Results References

HPLC-FLD Bisphenols, bisphenol diglycidyl
ethers and their derivatives

Quantitation limits for the analytes
ranged between 0.9 and 3.5 µg kg−1 Ref. [16]

HPLC-FLD 5 bisphenol derivatives
including BADGE

Limits of detection (LODs) were
between 21 and 28 ng/mL Ref. [17]

HPLC-FLD Bisphenol A diglycidyl ether and
its derivatives LODs varied from 0.01 to 0.20 ng/g Ref. [18]

LC–MS/MS BPA and its derivatives
including BADGE

Quantification limits were in the
range of 2–10 µg kg−1 Ref. [19]

UHPLC-ESI-MS/MS Bisphenol ethers and their derivatives Limits of quantitation (LOQs) for the
analytes ranged from 0.02 to 5 mg/kg Ref. [21]

GC-MS Bisphenols and their diglycidyl ethers Migration of BPA is between 104.67
and 181.46 µg L−1 Ref. [22]

ic-ELISA

BADGE
BADGE·HCl
BADGE·H2O

BADGE·HCl·H2O

IC15 of BADGE, BADGE·H2O,
BADGE·HCl, BADGE·HCl·H2O
were 0.73, 0.39, 0.78, 1.45 ng/mL

Ref. [36]

AuNPs-based
immunochromatographic

strip assay

BADGE
BADGE·HCl
BADGE·H2O

BADGE·HCl·H2O

Simultaneous detection of BADGE
and its derivatives within 15 min.

Visual detection limit was 1 ng/mL
for BADGE.

This work

4. Materials and Methods
4.1. Chemicals and Reagents

Chloroauric acid (HAuCl4·4H2O), trisodium citrate dihydrate, sodium chloride (NaCl),
K2CO3, disodium hydrogen phosphate dodecahydrate (Na2HPO4·12H2O), sodium phos-
phate dibasic dihydrate (Na2HPO4·2H2O), sulfuric acid (H2SO4), Tween-20, ethyl acetate,
hexane, acetonitrile, and methanol were purchased from Sinopharm Chemical Reagent
(Shanghai, China). The chemical standards BADGE, BADGE·H2O, BADGE·HCl, and
BADGE·HCl·H2O were purchased from Macklin (Shanghai, China). Bovine serum albumin
(BSA), nonfat milk powder, and goat anti-rabbit IgG-HRP were purchased from Sangon
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Biotech (Shanghai, China). Canned luncheon meat, canned yellow peach, and Red Bull
drinks were purchased from a local supermarket (Zhenjiang, China).

4.2. Instruments

An HH-A magnetic stirrer was purchased from Zhongda Instrument Factory
(Changzhou, China), and a UV-1801 ultraviolet spectrophotometer was purchased from
Ruili Company (Beijing, China). A smartphone (Huawei P40 with a rear camera of 8 million
pixels, Huawei Technologies Co., Ltd, Shenzhen, China) was used to take photos. HPLC
was performed using an LC-20AD module (Shimadzu, Japan) coupled to an ultraviolet
detector. A Hypersil GOLD C18 column (4.6 mm × 250 mm, 5 µm) was employed for
chromatographic separation in the HPLC analysis. The mobile phase was composed of 40%
ultrapure water and 60% acetonitrile. The eluent flow rate was 0.5 mL/min, the injection
volume was 10 µL, and the temperature of the column oven was maintained at 30 ◦C.

4.3. Screening of Broad-Spectrum Antibodies

Four antisera with certain recognition abilities for BADGE and its derivatives were
screened. The cross-reactivity of the four antisera, which was investigated to determine
their broad-spectrum recognition specificity, was calculated as follows:

Cross-reactivity (%) = IC50 (BADGE)/IC50 (other analogs) × 100

4.4. Preparation of AuNPs

AuNPs were produced according to the sodium citrate method. Briefly, 100 mL of
a 0.01% HAuCl4 solution was heated and kept boiling. Then, 4 mL of 1% sodium citrate
was quickly added under stirring, and the resulting solution was heated and stirred for
5–10 min until the color was stable. The obtained AuNP solution was cooled to room
temperature and stored at 4 ◦C.

4.5. Preparation of AuNP-Labeled Antibody
4.5.1. Optimization of pH Value of AuNPs Solution

The pH value of the AuNP solution was adjusted by adding different amounts of
K2CO3 solution. Excess amounts of antibodies were added and allowed to stand at room
temperature for 10 min. Further, 10% NaCl was added and vortex-mixed. After standing
for 10 min, the color was observed and scanned via UV–vis spectroscopy.

4.5.2. Optimization of the Amounts of Antibody

As shown in Table 6, different amounts of antibody were added to the pH-adjusted
AuNP solution, and the mixture was allowed to stand at room temperature for 10 min.
Then, 10% NaCl was added and vortex-mixed. After standing for 10 min, the color was
observed and scanned via UV–vis spectroscopy.

Table 6. pH-adjusted AuNPs solution for labeling different amounts of antibody.

Number of Experimental Group 0 1 2 3 4 5 6 7 8 9

Antibody (µg) 0 0.37 1.49 3.36 5.98 9.35 13.51 18.33 23.93 30.32
AuNPs solution (mL) 1 1 1 1 1 1 1 1 1 1

Overall, 10 mL of a AuNP solution was adjusted to the optimal pH value by adding a
0.2 M K2CO3 solution. The antibody was added to the resulting AuNP solution, and the
mixture was allowed to react at 4 ◦C for 330 min. Then, 10% BSA was added to block the
unbinding sites. The solution was centrifuged at 12,000 rpm for 20 min, and the precipitate
was redissolved in 1 mL of PB solution containing 0.05% Tween-20 and 1% BSA. The
resulting solution was stored at 4 ◦C until use.



Molecules 2024, 29, 13 12 of 14

4.6. Establishment of AuNPs Lateral-Flow Immunochromatographic Assay

A typical immunochromatographic test strip consisted of a sample pad, a conjugate or
reagent pad, a capture zone (test line and control line), and an absorbent pad. A nitrocellu-
lose membrane with smooth backing was used to prepare the immunochromatographic
strips, which were cut to a certain size. The T zone was coated with the coating antigen, and
the control (C) zone was coated with goat anti-rabbit IgG. The strip was then dried at room
temperature and stored at 4 ◦C. A certain volume of AuNP-labeled antibody was mixed
with 100 µL of a BADGE standard solution and incubated for 10 min. The mixture was
added to the sample zone. After 15 min, the liquid completely flowed through the T and C
zones. The visualized results were recorded using a smartphone (Huawei Technologies Co.,
Ltd., Shenzhen, China) and processed using Adobe Photoshop CC software for quantitative
analysis. All photos were recorded during the daytime without a flashlight.

Inhibition was calculated using the following equation:

Inhibition (%) = (△G − △G1)/(△G) × 100%,

where G and G1 represent the grayscale variation without and with different concentrations
of BADGE (or its derivatives), respectively.

4.7. Sample Analysis

Canned luncheon meat, canned yellow peach, and Red Bull drinks obtained from
a local supermarket were selected as samples for analysis. The canned luncheon meat
samples were treated as follows: 2.0 g of sample was homogenized with 10 mL hexane
and subjected to ultrasonic-assisted extraction for 30 min. The mixture was centrifuged
at 4500 rpm for 10 min. The supernatant was extracted twice using 5 mL of acetonitrile.
The acetonitrile extracts were evaporated to dryness at 40 ◦C under nitrogen. Subsequently,
the residues were redissolved in 2 mL of methanol. The canned yellow peach samples
were treated as follows: 2.0 g of sample was weighed, and 5 mL of ethyl acetate was
added as the extraction solvent. The mixture was shaken for 20 min in a shaker and then
transferred to an ultrasonic bath for 30 min. The mixture was centrifuged at 4500 rpm for
15 min. The supernatant was evaporated to dryness under a nitrogen stream. Furthermore,
the extract was redissolved in 2 mL of methanol. The Red Bull samples (5 mL) were
centrifuged at 4500 rpm for 10 min, and the supernatant was filtered through a 0.22 µm
membrane before analysis. The samples were separately spiked with BADGE at different
concentrations (50, 100, and 250 ng/g) to evaluate the accuracy of the AuNP-based lateral-
flow immunochromatographic strip assay, and the results were confirmed using HPLC.

5. Conclusions

A broad-spectrum polyclonal antibody that can recognize BADGE and its BADGE·HCl,
BADGE·H2O, and BADGE·HCl·H2O derivatives was evaluated and coupled with AuNPs
to develop a AuNP-based lateral-flow immunochromatographic strip assay for the simulta-
neous detection of BADGE and its derivatives in canned food. The visualized results were
processed using Adobe Photoshop CC software and validated via HPLC analysis. The
developed broad-spectrum lateral-flow immunochromatographic strip assay is reliable and
accurate and meets the requirements for the rapid screening of large quantities of samples
because of its simplicity, rapid operation, and cost effectiveness.
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