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Abstract: Capsaicin stress, along with salt stress, could be considered the main stressors for lactic
acid bacteria in traditional fermented pepper products. Until now, insufficient attention has been
paid to salt stress, while the effect of capsaicin on the aroma-producing properties of Lactobacillus
plantarum (L. plantarum) is unclear. The present study attempted to illustrate the effect of capsaicin
stress on the aroma-producing properties of L. plantarum CL-01 isolated from traditionally fermented
peppers based on E-nose and GC–IMS. The results showed that E-nose could clearly distinguish
the overall flavor differences of L. plantarum CL-01 under capsaicin stress. A total of 48 volatile
compounds (VOCs) were characterized by means of GC–IMS, and the main VOCs belonged to
acids and alcohols. Capsaicin stress significantly promoted L. plantarum CL-01 to produce alpha-
pinene, ethyl crotonate, isobutyric acid, trans-2-pentenal, 2-methyl-1-butanol, 3-methyl-3-buten-1-ol,
1-penten-3-one, 2-pentanone, 3-methyl-1-butanol-D, and 2-heptanone (p < 0.05). In addition, under
capsaicin stress, the contents of 1-penten-3-one, 3-methyl-3-buten-1-ol, 5-methylfurfuryl alcohol,
isobutanol, 2-furanmethanethiol, 2,2,4,6,6-pentamethylheptane, 1-propanethiol, diethyl malonate,
acetic acid, beta-myrcene, 2-pentanone, ethyl acetate, trans-2-pentenal, 2-methylbutyl acetate, and
2-heptanone produced by L. plantarum CL-01 were significantly increased along with the fermentation
time (p < 0.05). Furthermore, some significant correlations were observed between the response
values of specific E-nose sensors and effective VOCs.

Keywords: capsaicin stress; Lactobacillus plantarum; fermentation; volatile characteristics; chemometrics

1. Introduction

Pepper, which belongs to the Capsicum genus, is considered one of the most necessary
and economical vegetable crops and is widely cultivated around the world [1]. It is rich
in various nutrients, such as vitamins, capsaicin, and minerals, and has antioxidant, anti-
inflammatory, and anti-obesity properties [2]. Therefore, pepper is not only consumed
as food to provide a spicy taste but is also used as an effective component to produce
medicines [3]. In China, several traditional fermented peppers with local characteristics
were produced due to the complex ecological environment and climatic conditions in
different areas [4]. For instance, Doubanjiang [5], Chili paste [6], and Paojiao [7] are favored
by consumers due to their distinct flavor and mild pungency [8].

Volatile compounds (VOCs) are crucial to provide flavor to fermented products, which
are mainly derived from microbial metabolism during fermentation [9]. As one of the
main microorganisms in fermented peppers, lactic acid bacteria (LAB) have the ability to
produce various VOCs through carbohydrate metabolism, amino acid catabolism, and fatty
acid metabolism and, in turn, leads to the unique flavor of various fermented peppers [10].
López-Salas et al. found that consumers preferred Habanero pepper fermented with
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commercial or wild Lactobacillus plantarum (L. plantarum) compared to unfermented ones,
and the fermented product showed significantly higher levels of VOCs, such as 1-hexanol,
cis-3-hexenyl hexanoate, and 3,3-dimethylhexan-1-ol [11]. Moreover, a previous study
suggested that Lactobacillus, the dominant microbiota in salted fermented peppers, was
positively correlated with the contents of valencene, hexyl acetate, and toluene, and these
compounds conferred fruity, floral, and woody aromas to products [12]. Therefore, the
aroma-producing ability of LAB is essential to attribute the flavor characterizations of the
final pepper products. However, LAB is exposed to many adverse conditions during pepper
fermentation, and its metabolic pathways undergo a series of changes [13]. Currently,
there are a few studies on the effects of stress conditions, such as acid, salt, and thermal
conditions, on the alterations of LAB metabolism [14]. Capsaicin, derived from pepper,
could affect the metabolomic feature of LAB, which could be granted by its antibacterial
properties. Therefore, the quality of fermented pepper products can change due to distinct
LAB activities under capsaicin stress [6].

Gas chromatography–ion mobility spectrometry (GC–IMS) combines the high separa-
tion capability of GC and the fast response of IMS, which solves the drawbacks that exist
in GC-MS and provides an effective method for the separation and sensitive detection of
VOCs [15,16]. Gallegos et al. found that GC–IMS could rapidly characterize VOCs from
LAB and that the physiological state of strains could be reflected by the IMS signal intensity
during cheese fermentation [15]. Electronic nose (E-nose), an artificial sensory technology
that simulates the human smell mechanism, is equipped with a range of chemical sensors
to effectively distinguish VOCs [17,18]. Arnold and Senter found that the different bacterial
species had different VOC areas by means of the E-nose [19]. In addition, the combination
of E-nose and GC–IMS was reported to provide a comprehensive and accurate view of
characterizing the VOCs in foods and thereby could assess their flavor profiles [16]. How-
ever, rare attention has been paid to exploring the changes in VOCs of LAB under capsaicin
stress by combining E-nose and GC–IMS.

In order to fill such a gap, capsaicin, instead of pepper directly, was used to explore
its effect on aroma-producing property changes in LAB so as to remove the disturbances
of other endogenous substances in the pepper. Moreover, L. plantarum CL-01, isolated
from traditionally fermented peppers, was involved in analyzing its alterations of aroma-
producing properties under capsaicin stress by combining E-nose and GC–IMS. Moreover,
the correlations between the concentrations of VOCs and response values of E-nose sensors
were set. The present results could provide reference data for the aroma-producing proper-
ties of L. plantarum under capsaicin stress and shed light on the LAB strain screening for
the quality promotion of fermented pepper products.

2. Results
2.1. Effect of Different Capsaicin Concentrations on the Aroma-Producing Properties of
L. plantarum
2.1.1. E-Nose Analysis

The results of the response values of E-nose sensors to L. plantarum under different
capsaicin concentrations are displayed in Table S1. To obtain the overall flavor profile,
the response values of all E-nose sensors were used as the basis for a robust principal
component analysis (rPCA) model. The result is shown in Figure 1.

In Figure 1a, PC 1 accounted for 81.3% of the variance of the entire samples’ set, thus
nicely summarizing the overall flavor characteristics of L. plantarum under different cap-
saicin concentrations. In detail, group A showed the highest response values of LY2/gCT,
LY2/G, P30/1, PA/2, LY2/Gh, T70/2, P30/2, and LY2/AA, and the lowest response values
of P10/1, T40/1, LY2/LG, TA/2, and T40/2 among the four groups.
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Figure 1. rPCA model for E-nose analysis of L. plantarum under different capsaicin concentrations, 
representing Scoreplot (a) and Loading plot (b). A, B, C, and D represent the four groups, whose 
capsaicin concentrations are 0, 0.125, 0.25, and 0.5 mg/mL, respectively. 
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Figure 1. rPCA model for E-nose analysis of L. plantarum under different capsaicin concentrations,
representing Scoreplot (a) and Loading plot (b). A, B, C, and D represent the four groups, whose
capsaicin concentrations are 0, 0.125, 0.25, and 0.5 mg/mL, respectively.

2.1.2. GC–IMS Analysis

Figure 2 summarizes the processing pipeline of GC–IMS information on the VOCs
produced by L. plantarum under different capsaicin concentrations.

The 3D topographic graph provides a visual representation of how the flavor profiles
of L. plantarum differ in various parts of the GC–IMS spectrum under different capsaicin
concentrations. The 2D difference plot shows the point-by-point differences among groups.
The gallery plot shows that the distinct flavor profile of VOCs mainly pertains to acids and
alcohols among the groups. A total of 48 VOCs were characterized in all samples, which
were divided into six categories, namely, aldehydes (4), acids (4), ketones (8), esters (11),
alcohols (12), and others (9).

Figure 3 illustrates the changes in peak intensities of VOCs produced by L. plantarum
after 24 h fermentation under different capsaicin concentrations. The relevant information
on VOCs of L. plantarum fermented for 24 h under different capsaicin concentrations is
presented in Table 1.

Among the characterized VOCs, 38 VOCs showed significant differences among the
four groups. An rPCA model was built according to the peak intensities of VOCs to
highlight the overall trend of the flavor profile (Figure 4).

Compared to A, the B, C, and D groups were found to be mainly characterized by
higher contents of alpha-pinene, ethyl crotonate, isobutyric acid, trans-2-pentenal, 2-methyl-
1-butanol, 3-methyl-3-buten-1-ol, 1-penten-3-one, 2-pentanone, 3-methyl-1-butanol-D, and
2-heptanone and lower contents of 2-butoxyethanol, 2-hexanol, isobutanol, 2-cyclohexen-
1-one, (-)-carvone, 2-methylbutanoic acid, methyl acetate, cis-3-hexen-1-ol, 3-methyl-1-
butanol-M, butanal, ethyl acetate, acrolein, 1-propanethiol, isopropyl acetate, isophorone,
and 2,2,4,6,6-pentamethylheptane.

To further obtain the key VOCs produced by L. plantarum fermentation under capsaicin
stress, PLS-DA was performed on the VOCs, and the result is shown in Figure 5.

In Figure 5a, component one accounted for 50.4% of the total variance and is well-
discriminated. Figure 5b shows VIP scores of the top 15 VOCs, namely, 2-methyl-1-butanol,
ethyl acetate, 3-methyl-1-butanol-D, 2,2,4,6,6-pentamethylheptane, 2-methylbutanoic acid,
alpha-pinene, isophorone, 3-methyl-3-buten-1-ol, isopropyl acetate, acrolein, 1-propanethiol,
(-)-Canone, butanal, 3-methyl-1-butanol-M, and cis-3-hexen-1-ol.
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Table 1. Peak intensity of VOCs produced by L. plantarum fermentation for 24 h under different capsaicin concentrations were characterized by GC–IMS (mean ± sd).

Compounds CAS Formula RI * RT [s] DT [ms]
Peak Intensity (V)

A B C D

Alcohols (12)
1-Propanethiol 107-03-9 C3H8S 823.2 264.886 1.17068 5.61 × 102 ± 0.75 a # 3.50 × 102 ± 8.97 c 3.88 × 102 ± 10.80 b 3.18 × 102 ± 7.57 d

2-Butoxyethanol 111-76-2 C6H14O2 885.3 290.249 1.20111 1.80 × 102 ± 34.80 a 1.20 × 102 ± 15.60 b 1.37 × 102 ± 5.08 ab 1.32 × 102 ± 7.13 ab

2-Furanmethanethiol 98-02-2 C5H6OS 895.6 294.418 1.34532 1.70 × 102 ± 38.60 ab 2.01 × 102 ± 22.50 a 1.38 × 102 ± 8.64 ab 1.21 × 102 ± 16.00 b

2-Hexanol 626-93-7 C6H14O 808.7 258.979 1.28001 2.21 × 102 ± 31.80 a 1.21 × 102 ± 3.22 c 1.69 × 102 ± 2.43 b 1.44 × 102 ± 3.62 b

2-Methyl-1-butanol 137-32-6 C5H12O 724.9 224.785 1.22777 1.93 × 102 ± 15.90 c 2.62 × 102 ± 16.60 b 4.22 × 102 ± 10.50 a 4.64 × 102 ± 31.10 a

3-Methyl-1-butanol-D 123-51-3 C5H12O 1178.6 760.516 1.48999 2.70 × 103 ± 25.00 b 2.73 × 103 ± 47.50 b 3.03 × 103 ± 22.70 a 3.32 × 103 ± 1.38 × 102 a

3-Methyl-1-butanol-M 123-51-3 C5H12O 1178 757.997 1.24036 4.02 × 103 ± 2.49 × 102 a 2.61 × 103 ± 88.30 b 2.61 × 103 ± 50.10 b 2.63 × 103 ± 1.24 × 102 b

3-Methyl-3-buten-1-ol 763-32-6 C5H10O 1258.7 1067.888 1.15898 2.74 × 102 ± 8.59 b 3.00 × 102 ± 28.80 ab 3.36 × 102 ± 34.00 ab 3.61 × 102 ± 22.10 a

5-Methylfurfuryl alcohol 3857-25-8 C6H8O2 953.8 326.696 1.2638 1.36 × 102 ± 8.00 a 1.57 × 102 ± 9.41 a 1.52 × 102 ± 5.46 a 1.49 × 102 ± 7.48 a

cis-3-Hexen-1-ol 928-96-1 C6H12O 822.6 264.628 1.22689 1.63 × 102 ± 5.99 a 75.60 ± 1.41 c 1.01 × 102 ± 2.67 b 73.00 ± 1.15 c

Ethanol 64-17-5 C2H6O 887.7 291.195 1.13063 1.27 × 102 ± 13.10 a 79.80 ± 13.30 b 1.11 × 102 ± 1.37 a 1.12 × 102 ± 12.40 a

Isobutanol 78-83-1 C4H10O 1077.9 475.544 1.17179 7.75 × 102 ± 52.10 a 4.78 × 102 ± 11.70 bc 4.63 × 102 ± 17.40 c 5.14 × 102 ± 16.80 b

Esters (11)
2-Methylbutyl acetate 624-41-9 C7H14O2 895.2 294.269 1.29296 1.56 × 102 ± 8.78 c 2.44 × 102 ± 6.28 a 1.97 × 102 ± 3.12 b 1.77 × 102 ± 11.00 bc

Diethyl malonate 105-53-3 C7H12O4 1077.9 475.544 1.25078 1.22 × 103 ± 46.50 a 1.02 × 103 ± 22.20 a 1.07 × 103 ± 97.60 a 1.04 × 103 ± 33.60 a

Ethyl 2-methylbutyrate 7452-79-1 C7H14O2 1014.3 383.166 1.228 1.79 × 102 ± 18.30 a 2.06 × 102 ± 7.20 a 1.87 × 102 ± 5.33 a 1.86 × 102 ± 8.86 a

Ethyl 3-hydroxybutyrate 5405-41-4 C6H12O3 901.6 297.442 1.16822 82.40 ± 50.90 a 92.90 ± 20.10 a 1.10 × 102 ± 4.76 a 99.80 ± 24.80 a

Ethyl acetate 141-78-6 C4H8O2 880.9 288.431 1.33717 4.36 × 103 ± 2.24 × 102 a 3.92 × 103 ± 48.00 ab 3.59 × 103 ± 64.00 bc 3.47 × 103 ± 93.50 c

Ethyl crotonate 623-70-1 C6H10O2 1140.8 632.689 1.1866 96.70 ± 6.44 b 1.09 × 102 ± 2.09 ab 1.14 × 102 ± 6.65 a 1.13 × 102 ± 6.94 a

Ethyl pentanoate 539-82-2 C7H14O2 907.7 300.837 1.26713 3.10 × 102 ± 94.20 a 3.27 × 102 ± 38.80 a 3.07 × 102 ± 19.20 a 3.00 × 102 ± 19.10 a

Isopropyl acetate 108-21-4 C5H10O2 907 300.471 1.15882 6.87 × 102 ± 1.15 × 102 a 3.55 × 102 ± 25.30 b 3.13 × 102 ± 7.05 b 3.03 × 102 ± 26.70 b

Methyl acetate 79-20-9 C3H6O2 810.2 259.584 1.19708 2.30 × 102 ± 2.32 a 1.30 × 102 ± 7.11 c 1.53 × 102 ± 3.91 b 1.35 × 102 ± 1.91 c

Methyl isovalerate 556-24-1 C6H12O2 1028 400.946 1.1944 3.51 × 102 ± 16.00 b 3.88 × 102 ± 5.63 a 3.61 × 102 ± 3.68 ab 3.52 × 102 ± 7.84 ab

gamma-Octalactone 104-50-7 C8H14O2 1245.8 1023.798 1.33273 4.06 × 102 ± 5.65 a 2.93 × 102 ± 16.60 b 4.08 × 102 ± 78.30 a 3.70 × 102 ± 15.00 a

Ketones (8)
1-Penten-3-one 1629-58-9 C5H8O 1026.1 398.551 1.31696 94.90 ± 6.23 c 1.42 × 102 ± 6.94 ab 1.55 × 102 ± 4.33 a 1.38 × 102 ± 6.71 b

2-Butanone 78-93-3 C4H8O 898.5 295.719 1.24091 7.44 × 102 ± 53.70 b 9.15 × 102 ± 38.90 a 7.70 × 102 ± 5.81 ab 7.96 × 102 ± 61.40 ab

2-Cyclohexen-1-one 930-68-7 C6H8O 914.4 304.625 1.40015 3.34 × 103 ± 2.33 × 102 a 2.18 × 103 ± 21.80 c 2.43 × 103 ± 27.50 b 2.39 × 103 ± 50.10 b

2-Heptanone 110-43-0 C7H14O 1158.5 681.077 1.26393 5.60 × 102 ± 28.7 b 6.66 × 102 ± 19.80 a 6.28 × 102 ± 6.66 a 6.37 × 102 ± 18.80 a

2-Pentanone 107-87-9 C5H10O 982.7 342.913 1.36883 1.49 × 102 ± 7.48 c 3.09 × 102 ± 18.90 a 2.75 × 102 ± 11.90 ab 2.62 × 102 ± 13.80 b

Acetoin 513-86-0 C4H8O2 724.8 224.762 1.0636 4.10 × 102 ± 10.60 a 3.08 × 102 ± 61.10 a 4.00 × 102 ± 17.60 a 3.81 × 102 ± 54.10 a

(-)-Carvone 6485-40-1 C10H14O 1179.8 765.243 1.3148 1.17 × 103 ± 52.20 a 1.08 × 103 ± 17.50 ab 1.00 × 103 ± 51.30 b 1.01 × 103 ± 33.30 b

Isophorone 78-59-1 C9H14O 1119.9 580.59 1.25872 2.63 × 102 ± 25.20 a 1.95 × 102 ± 7.17 b 1.88 × 102 ± 10.60 b 1.75 × 102 ± 12.20 b

Acids (4)
2-Methylbutanoic acid 116-53-0 C5H10O2 872.8 285.138 1.20659 1.38 × 102 ± 14.50 a 1.11 × 102 ± 5.56 ab 1.01 × 102 ± 7.51 bc 92.80 ± 3.27 c

Acetic acid 64-19-7 C2H4O2 1439.7 1686.517 1.15796 7.13 × 103 ± 1.81 × 102 a 7.22 × 103 ± 4.79 × 102 a 7.73 × 103 ± 1.07 × 103 a 7.65 × 103 ± 5.08 × 102 a

Heptanoic acid 111-14-8 C7H14O2 1073.3 464.167 1.36185 4.64 × 102 ± 2.04 × 102 a 2.96 × 102 ± 74.00 a 1.05 × 103 ± 6.92 × 102 a 3.28 × 102 ± 8.83 a

Isobutyric acid 79-31-2 C4H8O2 729 226.443 1.15617 59.20 ± 25.90 b 1.42 × 102 ± 39.70 a 1.36 × 102 ± 9.65 ab 1.56 × 102 ± 42.00 a
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Table 1. Cont.

Compounds CAS Formula RI * RT [s] DT [ms]
Peak Intensity (V)

A B C D

Aldehydes (4)
4-Methoxybenzaldehyde 123-11-5 C8H8O2 1245.4 1022.538 1.20737 6.61 × 102 ± 21.60 a 5.73 × 102 ± 15.80 b 7.55 × 102 ± 65.80 a 6.80 × 102 ± 56.90 a

Acrolein 107-02-8 C3H4O 823.8 265.156 1.06297 3.55 × 102 ± 77.30 a 1.33 × 102 ± 6.91 b 1.31 × 102 ± 4.85 × 10−1 b 1.12 × 102 ± 7.26 b

Butanal 123-72-8 C4H8O 882.4 289.035 1.0965 6.75 × 102 ± 1.16 × 102 a 3.35 × 102 ± 3.37 b 3.20 × 102 ± 6.24 b 3.14 × 102 ± 19.70 b

trans-2-Pentenal 1576-87-0 C5H8O 1157.6 677.582 1.35994 4.87 × 102 ± 18.70 b 9.03 × 102 ± 31.50 a 8.63 × 102 ± 28.80 a 8.42 × 102 ± 40.30 a

Others (9)
1,1-Diethoxyethane 105-57-7 C6H14O2 738.4 230.277 1.13101 1.95 × 102 ± 1.07 × 102 a 3.20 × 102 ± 82.00 a 3.89 × 102 ± 11.70 a 3.91 × 102 ± 22.30 a

2,2,4,6,6-
Pentamethylheptane 13475-82-6 C12H26 917.4 306.324 1.0399 1.26 × 102 ± 7.43 a 72.00 ± 3.01 b 59.00 ± 3.10 bc 55.10 ± 4.93 c

2-Ethyl-3,5-
dimethylpyrazine 13925-07-0 C8H12N2 1083.3 489.054 1.21129 1.66 × 102 ± 3.07 a 1.76 × 102 ± 2.54 a 1.27 × 102 ± 4.79 c 1.43 × 102 ± 5.97 b

2-sec-Butyl-3-
methoxypyrazine 24168-70-5 C9H14N2O 1077.9 475.467 1.28604 2.78 × 102 ± 41.80 a 2.98 × 102 ± 4.14 a 3.57 × 102 ± 72.70 a 3.16 × 102 ± 7.87 a

alpha-Pinene 80-56-8 C10H16 1003.7 369.402 1.28369 80.00 ± 9.55 a 85.70 ± 4.26 a 80.10 ± 2.57 a 89.00 ± 4.30 a

beta-Myrcene 123-35-3 C10H16 985 345.005 1.21594 9.39 × 102 ± 41.60 ab 9.80 × 102 ± 69.40 a 8.96 × 102 ± 9.06 ab 8.58 × 102 ± 26.00 b

beta-Pinene 127-91-3 C10H16 1107.2 548.783 1.29583 2.42 × 102 ± 15.40 b 2.88 × 102 ± 10.10 a 3.00 × 102 ± 5.83 a 3.16 × 102 ± 13.20 a

Decalin 91-17-8 C10H18 1052.4 432.721 1.26618 72.50 ± 5.85 ab 62.50 ± 4.89 b 78.50 ± 6.92 a 80.20 ± 6.37 a

N-Nitrosomorpholine 59-89-2 C4H8N2O2 1106.9 548.072 1.19339 2.13 × 102 ± 7.97 ab 2.21 × 102 ± 4.52 ab 2.08 × 102 ± 4.96 b 2.31 × 102 ± 5.36 a

* RI, RT, and Dt stand for retention index, retention time, and drift time, respectively. # For each molecule, sd values followed by a common superscript identify no significant differences.
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To further obtain the key VOCs produced by L. plantarum fermentation under capsa-
icin stress, PLS-DA was performed on the VOCs, and the result is shown in Figure 5. 

Figure 4. The rPCA model calculated on the basis of VOCs shows significant differences in peak inten-
sities among L. plantarum samples under different capsaicin concentrations. Scoreplot (a) displays the
overall structure of the data. A, B, C, and D represent the four groups, whose capsaicin concentrations
are 0, 0.125, 0.25, and 0.5 mg/mL, respectively. Superscript lowercase letters indicate the significance
of samples along PC 1. Loading plot (b) displays significant correlation between the peak intensity of
each VOC and the importance over PC 1 (p < 0.05).
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Figure 5. PLS-DA of VOCs produced by L. plantarum samples under different capsaicin concentrations.
(a) Score plot. (b) VIP scores. A, B, C, and D represent capsaicin concentrations of 0, 0.125, 0.25, and
0.5 mg/mL, respectively.

2.1.3. Correlation between E-Nose and GC–IMS

The aroma-producing properties of L. plantarum under different capsaicin concentra-
tions were analyzed from distinct perspectives by means of E-nose and GC–IMS. E-nose
provided the overall information on VOCs among the groups, while GC–IMS provided the
detailed profile of VOCs. The correlation between E-nose sensor response values and peak
intensities of VOCs detected by GC–IMS is shown in Figure 6.
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Figure 6. Spearman’s correlation heatmap displays the correlation between E-nose sensor responses
and VOCs’ contents of L. plantarum under different capsaicin concentrations. Each color represents
the correlation coefficient, with blue and red indicating negative and positive correlations. “*” and
“**” represent significance at p < 0.05 and p < 0.01, respectively.

The LY2/LG, T40/2, T40/1, and TA/2 sensors were positively associated with ethyl
crotonate, isobutyric acid, trans-2-pentenal, 2-methyl-1-butanol, 3-methyl-3-buten-1-ol,
1-penten-3-one, 3-methyl-1-butanol-D, and 2-heptanone. These VOCs were found at higher
levels in A compared to the other three groups. The P10/1, LY2/LG, T40/2, T40/1,
and TA/2 sensors were positively associated with 2-cyclohexen-1-one, (-)-carvone, and
3-methyl-1-butanol-M but negatively associated with butanal, acrolein, isopropyl acetate,
and 2,2,4,6,6-pentamethylheptane. Compared to the other three groups, D contained higher
levels of these VOCs.

2.2. Effect of Capsaicin Stress on the Aroma-Producing Properties of L. plantarum
during Fermentation
2.2.1. E-Nose Analysis

Table S2 presents the results of the response values of the E-nose sensor to L. plantarum
under capsaicin stress at different fermentation times. Similar to the above issues, to obtain
the effect of capsaicin stress on the overall flavor of L. plantarum during fermentation, the
response values of all E-nose sensors were used as the basis for an rPCA model, as shown
in Figure 7.
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In Figure 7a, PC 1 accounted for 88.6% of the variance of the entire samples’ set,
thus nicely summarizing the overall characteristics of the L. plantarum samples during
fermentation under capsaicin stress. In detail, BT00 showed significantly higher response
values of P40/2, T40/2, P30/2, P30/1, LY2/Gh, LY2/gCT, T40/1, LY2/AA, LY2/gCTI, and
LY2/G and significantly lower response values of LY2/LG, T70/2, P40/1, T30/1, PA/2,
and P10/1.

2.2.2. GC–IMS Analysis

Figure 8 summarizes the processing pipeline of GC–IMS information on the VOCs
produced by L. plantarum during fermentation under capsaicin stress.

The gallery plot (Figure 8c) showed that VOCs of L. plantarum during fermentation
under capsaicin stress mainly pertained to acids and alcohol. Compared to BT00, the total
relative content of VOCs was increased in BT06, BT12, BT18, and BT24, as shown in Figure 9.
The peak intensities of VOCs among the groups are shown in Table 2.

Among the above-characterized VOCs, 35 VOCs showed significant differences among
the five groups. Similar to the above condition, an rPCA model was built, as shown in
Figure 10.

Compared to BT00, BT06, BT12, BT18, and BT24 were found to be mainly charac-
terized by higher contents of 1-penten-3-one, 3-methyl-3-buten-1-ol, 5-methylfurfuryl
alcohol, isobutanol, 2-furanmethanethiol, 2,2,4,6,6-pentamethylheptane, 1-propanethiol, di-
ethyl malonate, acetic acid, beta-myrcene, 2-pentanone, ethyl acetate, trans-2-pentenal,
2-methylbutyl acetate, and 2-heptanone and by lower contents of decalin, 2-hexanol,
2-cyclohexen-1-one, 2-methyl-1-butanol, methyl acetate, 2-methylbutanoic acid, alpha-
pinene, ethyl 2-methylbutyrate, N-nitrosomorpholine, beta-pinene, 4-methoxybenzaldehyde,
gamma-octalactone, (-)-carvone, and ethyl crotonate.

To further obtain the key VOCs produced by L. plantarum fermentation at different
fermentation times under capsaicin stress, PLS-DA was performed on the VOCs, and the
result is shown in Figure 11.

In Figure 11a, component one accounted for 45.1% of the total variance and is
well-discriminated. Figure 11b shows VIP scores of the top 15 VOCs, namely, ethyl ac-
etate, 2-methyl-1-butanol, 2-methylbutyl acetate, 2-pentanone, beta-myrcene, 2-heptanone,
decalin, trans-2-pentenal, 1-propanethiol, acetic acid, 2-furanmethanethiol, beta-pinene,
2-hexanol, ethyl 2-methylbutyrate, and 3-methyl-3-buten-1-ol.
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Compounds 
Peak Intensity  

BT00 BT06 BT12 BT18 BT24 
Alcohols (12)      
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2-Methyl-1-butanol 1.32 × 103 ± 41.30 a 8.77 × 102 ± 24.60 b 7.35 × 102 ± 11.80 c 7.58 × 102 ± 14.10 c 4.09 × 102 ± 41.40 d 
3-Methyl-1-butanol-D 4.29 × 103 ± 18.10 ab 4.46 × 103 ± 87.90 a 4.35 × 103 ± 29.40 ab 4.20 × 103 ± 45.70 ab 4.12 × 103 ± 2.35 × 102 b 
3-Methyl-1-butanol-M 3.94 × 103 ± 37.40 ab 4.05 × 103 ± 1.84×102 a 3.72 × 103 ± 59.40 ab 3.48 × 103 ± 63.10 b 4.18 × 103 ± 8.06 × 102 a 
3-Methyl-3-buten-1-ol 6.17 × 102 ± 44.50 ab 5.75 × 102 ± 73.80 b 6.44 × 102 ± 35.70 ab 8.53 × 102 ± 59.20 a 8.44 × 102 ± 1.13 × 102 a 

5-Methylfurfuryl 
alcohol 

2.20 × 102 ± 11.40 c 2.26 × 102 ± 2.21 bc 2.54 × 102 ± 5.41 ab 2.74 × 102 ± 2.80 a 2.31 × 102 ± 13.90 bc 

cis-3-Hexen-1-ol 1.26 × 102 ± 3.88 a 88.40 ± 5.13 c 1.02 × 102 ± 2.14 b 1.12 × 102 ± 1.86 ab 1.30 × 102 ± 12.60 a 
Ethanol 3.67 × 102 ± 18.60 a 3.01 × 102 ± 16.00 a 2.53 × 102 ± 1.91 a 2.31 × 102 ± 11.10 a 2.27 × 102 ± 1.18 × 102 a 

Isobutanol 5.71 × 102 ± 11.90 b 6.73 × 102 ± 6.40 a 6.89 × 102 ± 15.20 a 6.63 × 102 ± 20.50 a 8.00 × 102 ± 1.52 × 102 a 
Esters (11)      

2-Methylbutyl acetate 99.50 ± 4.49 e 1.53 × 102 ± 2.90 d 2.94 × 102 ± 5.46 c 3.71 × 102 ± 6.05 a 3.39 × 102 ± 9.33 b 
Diethyl malonate 1.20 × 103 ± 24.30 b 1.65 × 103 ± 2.31×102 a 1.62 × 103 ± 29.60 a 1.59 × 103 ± 37.00 a 1.57 × 103 ± 64.10 a 

Ethyl 2-
methylbutyrate 

3.56 × 102 ± 5.43 a 3.10 × 102 ± 5.20 b 3.06 × 102 ± 18.70 bc 3.14 × 102 ± 5.72 ab 2.81 × 102 ± 8.99 c 

Ethyl 3-
hydroxybutyrate 

1.86 × 102 ± 22.00 a 2.04 × 102 ± 19.10 a 1.95 × 102 ± 9.19 a 1.96 × 102 ± 1.45 a 1.64 × 102 ± 1.07 × 102 a 

Ethyl acetate 3.01 × 103 ± 18.20 d 4.16 × 103 ± 60.70 c 5.46 × 103 ± 53.40 b 5.94 × 103 ± 45.70 ab 6.66 × 103 ± 1.02 × 103 a 
Ethyl crotonate 2.27 × 102 ± 3.85 a 1.89 × 102 ± 3.33 a 1.99 × 102 ± 19.40 a 1.95 × 102 ± 8.02 a 1.61 × 102 ± 13.20 b 

Figure 9. Peak intensities of each category of VOCs produced by L. plantarum fermented at different
times under a certain capsaicin concentration. (a) Peak intensity of total VOCs among the five groups.
(b) Peak intensities of each category of VOCs among the five groups.
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Table 2. Peak intensities of VOCs of L. plantarum along fermentation under capsaicin stress were characterized by GC–IMS (mean ± sd).

Compounds
Peak Intensity

BT00 BT06 BT12 BT18 BT24

Alcohols (12)
1-Propanethiol 4.36 × 102 ± 4.74 c * 3.79 × 102 ± 9.26 d 5.03 × 102 ± 5.39 b 5.19 × 102 ± 8.35 b 6.15 × 102 ± 16.40 a

2-Butoxyethanol 3.35 × 102 ± 6.14 a 2.66 × 102 ± 14.60 a 2.70 × 102 ± 4.12 a 2.71 × 102 ± 5.34 a 2.63 × 102 ± 1.00 × 102 a

2-Furanmethanethiol 95.50 ± 3.04 c 1.08 × 102 ± 3.51 bc 2.32 × 102 ± 19.00 a 1.78 × 102 ± 3.53 ab 3.19 × 102 ± 1.66 × 102 a

2-Hexanol 7.23 × 102 ± 10.50 a 5.05 × 102 ± 19.10 b 2.14 × 102 ± 2.08 cd 1.84 × 102 ± 1.48 d 2.68 × 102 ± 76.00 c

2-Methyl-1-butanol 1.32 × 103 ± 41.30 a 8.77 × 102 ± 24.60 b 7.35 × 102 ± 11.80 c 7.58 × 102 ± 14.10 c 4.09 × 102 ± 41.40 d

3-Methyl-1-butanol-D 4.29 × 103 ± 18.10 ab 4.46 × 103 ± 87.90 a 4.35 × 103 ± 29.40 ab 4.20 × 103 ± 45.70 ab 4.12 × 103 ± 2.35 × 102 b

3-Methyl-1-butanol-M 3.94 × 103 ± 37.40 ab 4.05 × 103 ± 1.84×102 a 3.72 × 103 ± 59.40 ab 3.48 × 103 ± 63.10 b 4.18 × 103 ± 8.06 × 102 a

3-Methyl-3-buten-1-ol 6.17 × 102 ± 44.50 ab 5.75 × 102 ± 73.80 b 6.44 × 102 ± 35.70 ab 8.53 × 102 ± 59.20 a 8.44 × 102 ± 1.13 × 102 a

5-Methylfurfuryl alcohol 2.20 × 102 ± 11.40 c 2.26 × 102 ± 2.21 bc 2.54 × 102 ± 5.41 ab 2.74 × 102 ± 2.80 a 2.31 × 102 ± 13.90 bc

cis-3-Hexen-1-ol 1.26 × 102 ± 3.88 a 88.40 ± 5.13 c 1.02 × 102 ± 2.14 b 1.12 × 102 ± 1.86 ab 1.30 × 102 ± 12.60 a

Ethanol 3.67 × 102 ± 18.60 a 3.01 × 102 ± 16.00 a 2.53 × 102 ± 1.91 a 2.31 × 102 ± 11.10 a 2.27 × 102 ± 1.18 × 102 a

Isobutanol 5.71 × 102 ± 11.90 b 6.73 × 102 ± 6.40 a 6.89 × 102 ± 15.20 a 6.63 × 102 ± 20.50 a 8.00 × 102 ± 1.52 × 102 a

Esters (11)
2-Methylbutyl acetate 99.50 ± 4.49 e 1.53 × 102 ± 2.90 d 2.94 × 102 ± 5.46 c 3.71 × 102 ± 6.05 a 3.39 × 102 ± 9.33 b

Diethyl malonate 1.20 × 103 ± 24.30 b 1.65 × 103 ± 2.31×102 a 1.62 × 103 ± 29.60 a 1.59 × 103 ± 37.00 a 1.57 × 103 ± 64.10 a

Ethyl 2-methylbutyrate 3.56 × 102 ± 5.43 a 3.10 × 102 ± 5.20 b 3.06 × 102 ± 18.70 bc 3.14 × 102 ± 5.72 ab 2.81 × 102 ± 8.99 c

Ethyl 3-hydroxybutyrate 1.86 × 102 ± 22.00 a 2.04 × 102 ± 19.10 a 1.95 × 102 ± 9.19 a 1.96 × 102 ± 1.45 a 1.64 × 102 ± 1.07 × 102 a

Ethyl acetate 3.01 × 103 ± 18.20 d 4.16 × 103 ± 60.70 c 5.46 × 103 ± 53.40 b 5.94 × 103 ± 45.70 ab 6.66 × 103 ± 1.02 × 103 a

Ethyl crotonate 2.27 × 102 ± 3.85 a 1.89 × 102 ± 3.33 a 1.99 × 102 ± 19.40 a 1.95 × 102 ± 8.02 a 1.61 × 102 ± 13.20 b

Ethyl pentanoate 5.82 × 102 ± 24.40 a 5.89 × 102 ± 30.70 a 5.83 × 102 ± 2.94 a 4.52 × 102 ± 16.70 a 5.17 × 102 ± 1.81 × 102 a

Isopropyl acetate 3.94 × 102 ± 9.07 b 4.85 × 102 ± 40.50 a 4.51 × 102 ± 4.14 ab 4.42 × 102 ± 5.51 ab 5.30 × 102 ± 1.26 × 102 a

Methyl acetate 4.22 × 102 ± 3.88 a 3.54 × 102 ± 19.50 b 2.38 × 102 ± 6.10 c 1.57 × 102 ± 4.21 d 2.74 × 102 ± 35.40 c

Methyl isovalerate 6.45 × 102 ± 1.81 a 6.52 × 102 ± 17.70 a 6.49 × 102 ± 5.72 a 6.63 × 102 ± 8.82 a 6.32 × 102 ± 48.60 a

gamma-Octalactone 6.73 × 102 ± 19.20 a 8.14 × 102 ± 53.80 a 4.18 × 102 ± 18.90 b 4.58 × 102 ± 32.50 b 4.51 × 102 ± 69.60 b
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Table 2. Cont.

Compounds
Peak Intensity

BT00 BT06 BT12 BT18 BT24

Ketones (8)
1-Penten-3-one 1.77 × 102 ± 4.43 c 2.47 × 102 ± 1.43 a 2.55 × 102 ± 4.85 a 2.70 × 102 ± 9.97 a 1.95 × 102 ± 9.25 b

2-Butanone 1.69 × 103 ± 82.20 a 1.63 × 103 ± 74.30 a 1.55 × 103 ± 26.40 a 1.57 × 103 ± 15.10 a 1.26 × 103 ± 3.08 × 102 a

2-Cyclohexen-1-one 5.83 × 103 ± 54.10 a 4.57 × 103 ± 1.72 × 102 b 3.77 × 103 ± 24.00 c 3.55 × 103 ± 21.40 d 4.16 × 103 ± 3.55 × 102 bc

2-Heptanone 1.89 × 102 ± 5.28 d 3.49 × 102 ± 11.50 c 1.02 × 103 ± 11.90 ab 1.04 × 103 ± 19.20 a 9.86 × 102 ± 32.50 b

2-Pentanone 78.90 ± 5.19 d 1.14 × 102 ± 17.30 c 3.75 × 102 ± 8.37 b 5.17 × 102 ± 7.64 a 4.01 × 102 ± 34.50 b

Acetoin 7.22 × 102 ± 1.20 × 102 a 5.34 × 102 ± 28.00 a 4.46 × 102 ± 7.64 a 4.02 × 102 ± 9.21 a 4.80 × 102 ± 2.91 × 102 a

(-)-Carvone 1.92 × 103 ± 14.90 a 1.80 × 103 ± 44.90 a 1.67 × 103 ± 64.70 a 1.32 × 103 ± 59.60 b 1.66 × 103 ± 1.96 × 102 a

Isophorone 2.59 × 102 ± 5.55 a 3.10 × 102 ± 15.90 a 2.87 × 102 ± 10.30 a 2.65 × 102 ± 13.40 a 2.76 × 102 ± 35.90 a

Acids (4)
2-Methylbutanoic acid 2.26 × 102 ± 3.97 a 1.84 × 102 ± 12.00 b 1.66 × 102 ± 8.23 b 1.18 × 102 ± 1.07 c 1.68 × 102 ± 8.39 b

Acetic acid 8.18 × 103 ± 1.21 × ×103 c 9.50 × 103 ± 1.32 × 103 bc 1.30 × 104 ± 4.87 × 102 ab 1.79 × 104 ± 1.67 × 103 a 1.56 × 104 ± 4.01 × 103 ab

Heptanoic acid 6.40 × 102 ± 1.37 × 102 a 1.31 × 103 ± 1.19 × 103 a 8.24 × 102 ± 1.48 × 102 a 1.38 × 103 ± 4.92 × 102 a 8.44 × 102 ± 5.76 × 102 a

Isobutyric acid 3.24 × 102 ± 1.08 × 102 a 4.06 × 102 ± 12.50 a 4.18 × 102 ± 9.14 a 4.22 × 102 ± 12.00 a 2.95 × 102 ± 1.83 × 102 a

Aldehydes (4)
4-Methoxybenzaldehyde 1.36 × 103 ± 13.30 a 1.47 × 103 ± 86.10 a 9.64 × 102 ± 5.35 b 1.11 × 103 ± 79.50 ab 9.68 × 102 ± 1.91 × 102 b

Acrolein 1.58 × 102 ± 2.13 ab 1.39 × 102 ± 14.60 b 1.52 × 102 ± 3.96 ab 1.52 × 102 ± 1.42 ab 2.34 × 102 ± 95.90 a

Butanal 5.14 × 102 ± 3.89 a 5.57 × 102 ± 36.30 a 4.70 × 102 ± 8.23 ab 4.53 × 102 ± 1.89 b 5.78 × 102 ± 1.59 × 102 a

trans-2-Pentenal 2.45 × 102 ± 7.56 d 4.98 × 102 ± 12.80 c 1.45 × 103 ± 14.10 a 1.56 × 103 ± 34.20 a 1.28 × 103 ± 1.11 × 102 b

Others (9)
1,1-Diethoxyethane 6.60 × 102 ± 39.00 a 7.59 × 102 ± 46.30 a 8.17 × 102 ± 17.00 a 9.00 × 102 ± 29.80 a 7.05 × 102 ± 5.52 × 102 a

2,2,4,6,6-
Pentamethylheptane 57.30 ± 2.16 c 86.20 ± 6.63 ab 95.70 ± 5.15 a 70.30 ± 3.35 b 1.10 × 102 ± 15.90 a

2-Ethyl-3,5-
dimethylpyrazine 3.05 × 102 ± 11.90 a 2.95 × 102 ± 5.52 a 2.87 × 102 ± 6.83 a 3.03 × 102 ± 2.63 a 2.97 × 102 ± 39.60 a

2-sec-Butyl-3-
methoxypyrazine 4.86 × 102 ± 9.69 a 5.62 × 102 ± 1.32 × 102 a 5.23 × 102 ± 11.50 a 5.45 × 102 ± 33.70 a 4.58 × 102 ± 72.40 a

alpha-Pinene 1.86 × 102 ± 2.32 a 1.50 × 102 ± 5.47 b 1.42 × 102 ± 2.67 bc 1.57 × 102 ± 9.29 b 1.27 × 102 ± 7.95 c

beta-Myrcene 1.16 × 103 ± 74.90 b 1.12 × 103 ± 24.70 b 1.36 × 103 ± 18.60 a 1.47 × 103 ± 20.60 a 1.47 × 103 ± 15.30 a

beta-Pinene 5.81 × 102 ± 11.00 a 5.04 × 102 ± 13.80 b 4.94 × 102 ± 6.52 b 5.17 × 102 ± 15.40 b 4.24 × 102 ± 4.26 c

Decalin 2.03 × 102 ± 3.87 a 1.65 × 102 ± 10.40 b 96.90 ± 3.18 c 95.30 ± 2.61 c 99.80 ± 12.70 c

N-Nitrosomorpholine 4.72 × 102 ± 7.53 a 3.78 × 102 ± 15.50 b 3.62 × 102 ± 12.90 b 3.80 × 102 ± 2.35 b 3.91 × 102 ± 24.50 b

* For each VOC, sd values followed by a common superscript identify no significant differences.
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2.2.3. Correlation between E-Nose and GC–IMS

Figure 12 presents the correlation between the E-nose sensor response values and
peak intensities of VOCs detected by GC–IMS of L. plantarum during fermentation under
capsaicin stress.

The LY2/G, LY2/Gh, LY2/AA and LY2/gCT sensors were positively associated with
beta-pinene, 2-methyl-1-butanol, decalin, 2-cyclohexen-1-one, 4-methoxybenzaldehyde,
gamma-octalactone, 2-hexanol, methyl acetate, (-)-carvone, and 2-methylbutanoic acid
but negatively associated with acrolein, 1-propanethiol, ethyl acetate, 3-methyl-3-buten-1-
ol, 2-methylbutyl acetate, 2-pentanone, 2-furanmethanethiol, isobutanol, beta-myrcene,
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acetic acid, 2-heptanone, and trans-2-pentenal. LY2/LG, T70/2, P10/1, and P40/1 showed
positive connections to acrolein, 1-propanethiol, ethyl acetate, 3-methyl-3-buten-1-ol,
2-methylbutyl acetate, and 2-pentanone but negative connections to decalin, 2-cyclohexen-
1-one, (-)-carvone, and 2-methylbutanoic acid.
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3. Discussion

Flavor is a vital indicator of the quality of fermented products and the choice of pur-
chase by consumers [20]. The flavor of fermented peppers is mainly due to the dominant
microorganisms, such as LAB, that can produce various VOCs through complex biochemi-
cal reactions. However, the effect of capsaicin stress on the aroma-producing properties of
L. plantarum is unclear. Therefore, this study attempted to investigate the effect of capsaicin
stress on the flavor profile of L. plantarum by means of E-nose and GC–IMS.

The response of the E-nose sensors showed significant differences for L. plantarum
with different capsaicin concentrations and fermentation times, and combined with the
rPCA model, they were clearly distinguishable among the samples. This could indicate
that E-nose is highly sensitive to the flavor of samples and clearly reflects the differences
in the overall flavor profile of L. plantarum fermented under capsaicin stress. However,
E-nose fails to identify specific VOCs that contribute to the overall response. Therefore,
high-throughput techniques, such as GC–IMS, should be combined to capture fine-grained
information [21].
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Acids are primarily produced by LAB during fermentation, which could serve as
contributors to the flavor of fermentation products. In our study, acids were the most
abundant VOCs characterized by GC–IMS. In addition, capsaicin stress could promote
L. plantarum to produce acids. Such a result might be attributed to the alternation of
metabolism of L. plantarum under capsaicin stress, which, in turn, could change the flavor
profile. The generation of acetic acid is achieved through the metabolism of citric acid
and the acetate kinase pathway [22]. Acetic acid plays a key role in fermented foods and
is attributed to the main characteristic flavors, such as a pungent, sharp, and vinegary
flavor [23]. Gao et al. compared the effects of LAB fermentation on a seaweed sauce flavor
by means of GC–IMS. The results showed that LAB fermentation led to a higher content
of acetic acid, which provided the seaweed sauce with a more refreshing and distinctive
flavor profile [24].

Alcohols, as essential metabolites of LAB during fermentation, are generated primarily
through redox reactions of unsaturated ketones or aldehydes and amino acid metabolic
pathways [25]. As precursors of many biochemical reactions in fermentation products,
alcohols not only have a pleasant fruity, floral, and malty aroma but also serve as solvents
for other VOCs and, therefore, play important roles in the flavor formation of products [26].
In the present study, capsaicin stress promoted L. plantarum to produce higher levels of
2-methyl-1-butanol and 3-methyl-3-buten-1-ol, and both of these were key VOCs produced
by L. plantarum fermentation under capsaicin stress. 2-Methyl-1-butanol is the organic
compound derived from isoleucine and its corresponding aldehyde [27], which has a mildly
aromatic and pungent flavor and was found to be a key flavor volatile in Doubanjiang [26].
3-Methyl-3-buten-1-ol is the enol organic compound produced by LAB metabolism, with a
sweet and fruity flavor [28]. The above results suggested that capsaicin stress could alter
the metabolism of L. plantarum and, in turn, regulate VOC production. Meanwhile, the
levels of isobutanol, 5-methylfurfuryl alcohol, 2-furanmethanethiol, and 1-propanethiol
increased during fermentation, and all of these VOCs could confer good flavor to the
fermented products. In particular, isobutanol not only could react with acids to form
esters but also provided a harmonious mouthfeel and distinctive full-bodied flavor to the
fermented product.

Esters are mainly formed by the esterification of acids and alcohols. They are essential
contributors to the flavor of fermented peppers due to their low threshold and fruity
and floral aroma [29]. In our study, the major esters produced by L. plantarum under
capsaicin stress were ethyl acetate, ethyl crotonate, diethyl malonate, and 2-methylbutyl
acetate. In particular, ethyl acetate, which provides a sweet and fruity flavor, is the key
VOC in fermented peppers. Wang et al. found that inoculation of Lactobacillus isolated
from naturally fermented chopped peppers could increase the content of ethyl acetate in
fermented peppers with a better flavor [30].

Similar to esters, aldehydes and ketones also have a low odor threshold and contribute
significantly to the overall flavor of the fermentation product [31]. They are mainly derived
from fatty acid oxidation and the Strecker degradation pathway of amino acids [32]. More-
over, such compounds are the main sources of flavor and essential VOCs in fermented
peppers [33]. In general, aldehydes possess pleasant, malty, fruity, and grassy flavors [9],
and ketones facilitate the fruit, mushroom, and wood flavors [34]. It was reported that the
metabolic activity of LAB during fermentation may be altered by the high content of alde-
hydes and ketones in Paojiao [7]. Combined with our results, L. plantarum fermented under
capsaicin stress produced higher levels of aldehydes and ketones, which may indicate
that capsaicin stress could promote the metabolism of L. plantarum. Notably, the content
of trans-2-pentenal generated by L. plantarum increased significantly with an increasing
capsaicin concentration and fermentation time, which gave the typical fruity flavor to
fermented products. Moreover, the levels of 1-penten-3-one, 2-pentanone, and 2-heptanone
were significantly increased under capsaicin stress. 1-Penten-3-one, a strong pungent odor
indicator, is the main VOC for the characteristic odor of peppers [35]. With the help of
GC–IMS, we detected a higher level of 1-penten-3-one in L. plantarum samples under cap-
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saicin stress. 2-Pentanone is described as fruity, sweet, and banana-flavored [35]. Li et al.
investigated the flavor profile of L. plantarum PC8 fermented, dried, and fresh chili sauces
by HS-SPME-GC-MS and found that the fermented and dried chili exhibited a unique
nutty, herbal, and fermented flavor profile and identified 2-heptanone as the characteristic
flavor component [25]. Therefore, the increased content of 2-pentanone and 2-heptanone in
L. plantarum under capsaicin stress suggested that capsaicin stress could help to promote
the aroma production ability of L. plantarum, which, in turn, enriched the flavor of the
fermented samples.

4. Materials and Methods
4.1. Activation of Bacteria

L. plantarum CL-01 was isolated from traditional fermented Ciba pepper, identified by
16S rDNA sequencing, and stored at the Microbiology Laboratory of the College of Food
Science and Technology, Southwest Minzu University. The strain was activated in De Man,
Rogosa, and Sharpe (MRS) broth at 37 ◦C for 24 h and cultured with 2% (v/v) inoculum
for 24 h. Finally, a suspension of L. plantarum CL-01 was obtained with concentration of
109 CFU/mL.

4.2. Preparation of Capsaicin Solution

Standard solutions of capsaicin were prepared according to the method of Sabela
et al. [36]. In brief, the standard solution of 0.5 mg/mL was prepared by dissolving
50 mg of capsaicin standard powder in 100 mL of absolute ethanol (99.9% purity). Further
diluted with absolute ethanol to make capsaicin solutions at concentrations of 0.25 and
0.125 mg/mL. All capsaicin solutions were stored at 4 ◦C.

4.3. Fermentation

The activated L. plantarum CL-01 were inoculated into MRS broth with concentrations
of 0 (A), 0.125 (B), 0.25 (C), and 0.5 (D) mg/mL capsaicin at an inoculum of 2% (v/v),
respectively, and left to incubate at 37 ◦C for 24 h. In addition, activated L. plantarum CL-01
was inoculated into MRS broth with 0.125 mg/mL capsaicin at an inoculum of 2% (v/v)
and incubated at 37 ◦C for 0 h (BT00), 6 h (BT06), 12 h (BT12), 18 h (BT18), and 24 h (BT24),
as shown in Figure 13.
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4.4. E-Nose Analysis

According to the method of Zhao et al. with appropriate optimization [21]. An E-nose
system (FOX 4000, Alpha MOS, Toulouse, France) was used to detect VOCs in L. plantarum
samples. Following Wen et al. [37], the system contains 18 metal oxide sensors, and the
main information provided by each sensor is shown in Table 3. To meet the requirements
of the E-nose analysis, 2 mL of sample was placed in a 10 mL headspace vial, and then the
sample was incubated at 75 ◦C for 5 min and manually injected with a 500 µL injection
volume. The test conditions for E-nose analysis were set as follows: the flow rate was
150 mL/s for the carrier gas (synthetic dry air); the measurement time for each sample was
120 s; the recovery time was 300 s. To gain stable data, measurements were repeated five
times for each sample, and the last three sets of data were retained. The average of the
three stable sets was used for the following analysis.

Table 3. Performance description of the E-nose sensors.

Sensor Number Sensor Name Performance Description

1 LY2/LG Sensitive to oxidizing gas
2 LY2/G Sensitive to ammonia, carbon monoxide
3 LY2/AA Sensitive to ethanol
4 LY2/Gh Sensitive to ammonia/organic amines
5 LY2/gCT1 Sensitive to hydrogen sulfide
6 LY2/gCT Sensitive to propane/butane
7 T30/1 Sensitive to organic solvents
8 P10/1 Sensitive to hydrocarbons
9 P10/2 Sensitive to methane
10 P40/1 Sensitive to fluorine
11 T70/2 Sensitive to aromatic compounds
12 PA/2 Sensitive to ethanol, ammonia/organic amines
13 P30/1 Sensitive to polar compounds (ethanol)
14 P40/2 Sensitive to heteroatom/chloride/aldehydes
15 P30/2 Sensitive to alcohol
16 T40/2 Sensitive to aldehydes
17 T40/1 Sensitive to chlorinated compounds
18 TA/2 Sensitive to air quality

4.5. GC–IMS Analysis

According to the method of Zhang et al. with appropriate optimization [38]. The VOCs
of L. plantarum culture samples were characterized by a GC–IMS (Flavorspec®, G.A.S. Instru-
ment, Munich, Germany) with an MXT-WAX capillary column (30 m × 0.53 mm × 1 µm)
(Restek, Mount Ayr, IN, USA). Each sample (1.5 mL) was taken to a 20 mL headspace
vial with a magnetic screw seal cover and incubated for 10 min at 50 ◦C. Then, headspace
sample (100 µL) was automatically injected into the injector (no shunt mode) with the help
of heated syringe at 85 ◦C. The temperatures of column and drift tube were maintained
at 60 ◦C and 45 ◦C, respectively. A total of 150 mL/min was applied for drift gas flow
rate. A high-purity N2 (99.999% purity) was used. The GC column flow rate was pro-
grammed in line with the following program: 2 mL/min for 5 min, 10 mL/min for 10 min,
15 mL/min for 5 min, 50 mL/min for 10 min, and 100 mL/min for 10 min. As suggested
by previous studies [39,40], the retention index (RI) of VOCs was calculated by means of
n-ketone C4–C9 as a reference. In order to identify detected VOCs, their RI and ions’ drift
times were compared with those of the standards in the GC–IMS library. Each sample was
tested once. The relative quantification of each VOC was based on its peak intensity. The
plots, namely three-dimensional (3D) topographic plots, two-dimensional (2D) difference
plots, and gallery plots, were built taking advantage of the Laboratory Analytical Viewer,
Reporter, and Gallery Plot supplemented with GC–IMS instrument.
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4.6. Statistical Analysis

Statistical analysis was performed using the R computational language. Prior to
univariate analysis, the data obtained by E-nose and GC–IMS were pre-processed in two
steps. First, the data were normalized by means of probabilistic quotient normalization
(PQN) so as to remove the effects of several confounding factors, such as extremely high
contents of molecules or response values of sensors. Second, the nonnormally distributed
data were transformed into normally distributed according to Box and Cox [41]. In order
to find out the significant differences among groups, ANOVA, followed by Tukey HSD test,
was applied by taking advantage of “aov” function of the “stats” of R package. For this
purpose, a cut-off p-value of 0.05 was accepted.

To obtain the overall trend of the flavor profile of the samples, all sensors of E-nose
and the VOCs with significant differences were used as basis for building the rPCA model
by means of “agricolae” package. For each rPCA model, we calculated the Scoreplot and
Pearson correlation plot based on the loadings. In addition, MetaboAnalyst 5.0 was used
for PLS-DA of VOCs characterized by GC–IMS. Spearman correlation analysis between the
E-nose and GC–IMS was setup by means of an online tool (https://www.omicstudio.cn,
accessed on 25 October 2023).

5. Conclusions

To the best of our knowledge, the present study, for the first time, attempted to
investigate the effect of capsaicin stress on the aroma-producing properties of L. plantarum
through the combination of E-nose and GC–IMS. Both techniques could be considered
rapid methods for identifying flavor characteristics with simple, fast, and nondestructive
sample preparation. E-nose was able to provide an overview of the odor features of the
samples. It could clearly distinguish the changes in flavor characteristics produced by
L. plantarum under capsaicin stress. In parallel, GC–IMS could spot the specific VOCs
conveying the overall response, such as ethyl acetate, acetic acid, 2-heptanone, 1-penten-
3-one, and 3-methyl-3-buten-1-ol. Overall, the aroma-producing property of L. plantarum
could be affected by capsaicin stress. Therefore, the present work could provide a basis for
investigating the aroma-producing property of L. plantarum and shed light on establishing
more comprehensive and rapid methods for identifying flavor characteristics.
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Response values (mean ± sd) of the E-nose to L. plantarum along fermentation under capsaicin stress.
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