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Abstract: Silver nanoparticles (Ag-NPs) are attracting great attention for their use in various ap-
plications, along with methods for their green and facile production. In this study, we present
a new eco-friendly approach based on the use of Euphorbia balsamifera extract (EBE) in the green
synthesis of silver nanoparticles (Ag-NPs), which are then applied as a reducing and stabilizing
agent for the efficient removal of water-based reactive dyes such as bromocresol green (BCG) and
bromophenol blue (BPB). The as-prepared Ag-NPs are quasi-spherical in shape, with an average
diameter of 20–34 nm. Diverse characterization methods, including X-ray diffractometry (XRD),
Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission
electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) analysis, were used to analyze these
Ag-NPs. The results reveal that water-soluble biomolecules in the Euphorbia balsamifera extract play an
important role in the formation of the Ag-NPs. The removal of toxic dyes was studied under varied
operational parameters such as Ag-NP dosage, initial dye concentration, pH, stirring time, and tem-
perature. Under the optimum investigated conditions, nearly 99.12% and 97.25% of the bromocresol
green and bromophenol blue dyes, respectively, were removed. Both BCG and BPB adsorption were
found to adhere to pseudo-second-order kinetics (r2

2 = 1 and 0.995) and fit the Langmuir isotherm
models well (R1

2 = 0.998 and 0.994), with maximal monolayer adsorption capacities of 20.40 and
41.03 mg/g, respectively. Their adsorption processes were observed to be intrinsically endothermic.
The results confirm the potential of the Euphorbia balsamifera extract as a low-cost, nontoxic, and
eco-friendly natural resource for the synthesis of Ag-NPs that may be useful in the remediation of
hazardous dye-contaminated water sources.

Keywords: Ag-NPs; Euphorbia balsamifera; bromocresol green; bromophenol blue; decolorization

1. Introduction

The water pollution and health risks associated with dye contamination are major
concerns in practically all developing nations due to the use of dyes in numerous industries
for adorning and preserving various materials, including through the coloring of textiles,
leather, paper, and other materials [1]. All dye effluent from the manufacturing and
finishing of textiles is discarded into waterways, resulting in these waterways becoming
filled with a variety of toxic organic substances that are harmful to people, as well as
fish and other aquatic life [2]. Therefore, it is crucial to eliminate hazardous dyes from
the water [3]. A variety of methods have been utilized to remove dyes from water, such
as adsorption [4], electrochemical oxidation [5], ion exchange [6], and other techniques
involving nanoparticles [7–12]. Nowadays, nanobiotechnology is of significant importance
due to its widespread applicability in water treatment [13–15]. In particular, the green
synthesis of plant extracts appears increasingly more attractive because plants can gather
specific amounts of heavy metals in their various sections. Consequently, biosynthetic

Molecules 2023, 28, 3934. https://doi.org/10.3390/molecules28093934 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28093934
https://doi.org/10.3390/molecules28093934
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-7577-8090
https://orcid.org/0000-0002-1266-6980
https://doi.org/10.3390/molecules28093934
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28093934?type=check_update&version=2


Molecules 2023, 28, 3934 2 of 21

approaches utilizing plant extracts are gaining popularity as quick, easy, affordable, and
practical ways to produce nanoparticles, in some cases serving as an effective substitute for
conventional manufacturing processes [16]. Numerous plants can be employed to stabilize
the reduction in the reaction-based synthesis of metal nanoparticles [17]. Many researchers
have used green synthetic methods to produce metal/metal oxide nanoparticles from
plant extracts and further investigated their different applications [18–20]. As traditional
chemical procedures consume greater amounts of energy and reagents (which, in addition,
are occasionally dangerous and toxic) compared with biological approaches, the green
synthesis of metallic NPs is growing in importance as a topic of study for multidisciplinary
scientists throughout the world [21]. Plants contain biomolecules that have a high potential
for converting metal salts into nanoparticles. Plant extract-assisted production of silver and
gold metal nanoparticles was first explored using extracts of aloe vera, oat, alfalfa, lemon,
and neem [16]. The green synthesis of silver nanoparticles (Ag-NPs), which utilizes a variety
of microorganisms and plants, represents a natural, biocompatible, and environmentally
safe method [22]. Recently, the production of Ag-NPs utilizing plant extracts as reducing
agents has been investigated [23,24]. Secondary metabolites, such as flavonoids, tannins,
saponins, phenolic compounds, and protein, in plant extracts are key to the synthesis of Ag-
NPs based on silver ion reduction [19]. Previous research has shown that the bioreduction
mechanism can be broken down into three key steps: reduction and nucleation of silver
ions, development and aggregation, and the final stage of capping and stabilization [25].
In most cases, plant phytochemicals play a decisive role as both capping agents and
stabilizers [26]. The present study is focused on the green synthesis of Ag-NPs using
Euphorbia balsamifera. It is a member of the Euphorbiaceae family, which is one of the biggest
families, with over 330 genera and 8000 species, and it is characterized by a wide range of
therapeutic properties [27,28]. E. balsamifera occurs in the Canary Islands, southwestern
Morocco, Mauritania, western Niger, Sudan, Somalia, southwestern Oman, Yemen, and
Saudi Arabia [29]. It is a pachycaul, dioecious, succulent dendroid shrub that may grow
on rocky to sandy substrates and is adaptable to harsh temperature environments and
characterized by its milky latex (Figure 1). The results from phytochemical screening of
E. balsamifera extracts demonstrate the presence of terpenoid, steroid, tannins, flavonoids,
cardiac glycosides, and saponins [30,31].
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Figure 1. Optical images with (a) low and (b) high magnifications of E. balsamifera from the Asir region.

To the best of our knowledge and based on a review of the literature, no research
has been performed on the synthesis of metal nanoparticles using E. balsamifera. There-
fore, in this study, Ag-NPs were synthesized using E. balsamifera, and their efficiency in
removing toxic dyes in water treatment was evaluated. The synthesized Ag-NPs were
successfully applied in the removal of the bromocresol green (BCG) and bromophenol blue
(BPB) dyes from water, for which they achieved a high percentage. In addition, different
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operational conditions affecting the water treatment process, such as Ag-NP dosage, initial
dye concentration, pH, stirring time, and temperature were investigated.

2. Results and Discussion
2.1. Characterization of Silver Nanoparticles
2.1.1. Powder X-ray Diffraction Studies (XRD)

The X-ray diffraction pattern of the prepared silver nanoparticles was recorded in
the range of 30 < 2θ < 80, as shown in Figure 2. In the experimental diffractogram, the
appearance of four 2θ peaks at 38.048◦, 44.3228◦, 64.6967◦, and 77.3552◦ is attributed
to silver metal and could, respectively, be assigned based on (hkl) principles as (111),
(200), (220), and (311) crystalline structures of the face-centered cubic (FCC)-fabricated
nanosilver. These four peaks were compared and matched with the standard powder
diffraction card of the Joint Committee on Powder Diffraction Standards (JCPDS), silver
file No. 04-0783 [32]. The XRD data demonstrate the crystalline character of the generated
Ag-NPs. The mean crystallite size t of the Ag-NPs was calculated to be 9.9692–19.1210 nm,
as shown in Table 1. This calculation was performed using the standard Debye–Scherrer
equation—t = kλ/β. cos θ, where t is the crystallite size in nm, k is a constant dependent
on crystallite shape equal to 0.89, λ is the X-ray wavelength equal to 0.1542 nm, θ is the
diffraction angle in degrees, and β is the full diffraction peak width at half maximum
intensity (FWHM) in radians. The results of XRD analysis demonstrate that a reduction
in silver ions by EBE is a feasible method for producing Ag-NPs that are structurally
characterized by well-defined edges.
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Figure 2. The Ag-NP XRD pattern. 
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Table 1. The average crystallite size of Ag-NPs was estimated using the XRD pattern.

No of Peaks 2θ (Degree) θ FWHM Height d Value [Å] (hkl) t

1 38.05 19.07 0.4351 456.4 2 111 19.12
2 44.32 22.16 0.5428 143.9 2 200 15.64
3 64.70 32.26 0.4872 94.3 1 220 19.09
4 77.35 38.68 1.0103 94.4 1 311 09.97
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2.1.2. IR, TGA, and Ultraviolet/Visible Absorption Spectra

The biomolecules bound to the synthesized Ag-NPs via specific functional groups
were identified by FT-IR spectroscopy. Figure 3a shows the FT-IR spectra of EBE and
Ag-NPs. For the EBE, the broad signal at 3567 cm−1 (shifted to 3442 cm−1 in Ag-NPs)
is attributed to the stretching vibration of O–H bonds [33]. The peak at 2861 cm−1 is
attributed to the asymmetric stretching of the C–H bonds of alkanes and is shifted to a
higher frequency (2900 cm−1) in Ag-NPs, when compared with the extract. The signal at
1761 cm−1 (is absent in Ag-NPs due to the reduction process) is attributed to the stretching
vibrations of C=O in the amide bands [34]. The band 986 cm−1 is responsible for C-O-C
stretching, which could be attributed to the reduction in Ag+ because the band was shifted
to 1016 cm−1 in Ag-NPs [35]. The band 1510 cm−1 in extraction was due to the presence of
amide vibrations, and this band was shifted to 1616 cm−1 in Ag-NPs because of the proteins
that possibly bound to Ag-NPs through the amine groups. The stretching vibration of the
C–N bond attributed to amines can be clearly observed at 1224 cm−1 in extract and absent
in Ag-NPs [36]. In the Ag-NPs spectrum, the bands at 881 cm−1 are characteristic of out-of-
plane C–H flexural vibrations, and those at 510 cm−1 confirm the existence of Ag-NPs. The
above data suggest that the water-soluble biomolecules containing phenol, carboxyl, and
amide groups, such as proteins or flavonoids, cap and stabilize the synthesized Ag-NPs
through physical absorption rather than chemical bonds [37]. The thermal stability of
adsorbent materials is important as it provides information on their behavior under various
temperature conditions. Thus, we investigated the stability of Ag-NPS with temperature
by applying thermo-gravimetric analysis (TGA), as shown in Figure 3b. TGA analysis
was carried out in a nitrogen atmosphere at a heating rate of 10 ◦C/min at temperatures
ranging from ambient temperature to 800 ◦C. Figure 3b depicts TGA curves of powder
silver nanoparticles. From the thermogram, a slight weight loss of Ag-NPs was recorded
from 40 to 250 ◦C, which is attributed to the removal of moisture and volatile components
from the adsorbents. This was followed by significant weight loss from 250 to 450 ◦C,
mainly due to the decomposition of organic matter. Ag-NPs were shown to be more stable
for pollutant removal at high temperature conditions due to their lowered weight loss (total
weight loss of 31.11%).
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The production of Ag-NPs in solution was also verified using UV/visible spectroscopy.
The solution was scanned in the wavelength range of 300–800 nm. Figure 3c depicts the
characteristic pronounced peak absorbance of Ag-NPs at 470 nm, indicating the production
of NPs of diverse architectures [38]. Absorption spectra are influenced by the particle size,
dielectric medium, and chemical environment. The peak at about 330 nm is caused by
unabsorbed biosubstances at the interface with Ag-NPs [39]. The Ag-NPs remained stable
for three months and exhibited an average absorbance of 430–480 nm, which is within the
range for Ag-NPs. This is evidence of the optical stability of the nanoparticles.

The optical band gap was estimated using Tauc’s equation αhv = (hv − Eg)n, where
hν is the photon energy, h is Planck’s constant, n is equal to 1/2 and 2 for direct and
indirect transitions, respectively, and α is the absorption coefficient. A is an energy-
independent constant. Plots of (νhα)2 and (νhα)1/2 versus hv were produced, in which a
direct band gap was found by extrapolating the linear portion of the curve to (νhα)1/2 = 0,
as seen in Figure 3d. The band gaps for the Ag-NPs and EBE were 2.56 and 4.56 eV,
respectively. This result reveals that Ag+ minimizes the optical band gap values of EBE.
The movement of electrons toward Ag+ is responsible for this decrease in the band gap.
It is suggested that Ag+ increases the mobilization of the EBE electrons by accepting
them in its shell, thus expanding the width of the localized levels in the resulting Ag-
NPs, and in turn, the band gap is diminished. This result has many applications in optics,
electronics, and energy-conversion devices. In reality, a tiny band gap indicates the molecule
is more electroconductive due to facilitating electronic transitions between HOMO and
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LUMO energy states. The produced Ag-NPs can be employed as semiconductors, and the
determined values of their optical characteristics are in the same range as those reported
for highly effective photovoltaic materials.

2.1.3. Scanning Electron Microscopy, EDAX, and BET Analyses

The architecture of the as-prepared Ag-NPs was examined using SEM (Figure 4). The
image captured at low magnification (Figure 4a) shows that the Ag-NP product mostly
comprises agglomerates of irregular forms. The image captured at a high magnification,
shown in (Figure 4b), reveals that these agglomerates are composed of spherical nanopar-
ticles. It has been shown that the biosynthesis of Ag-NPs is regulated by a number of
variables, such as time, metal salt, and concentration. In contrast, stabilizing agents and
modifiers have proven to be crucial in controlling the shape of the granules by preventing
aggregation [37,40,41]. Figure 4c depicts the elemental breakdown of Ag-NPs produced
by green synthesis. Ag is viewed as the primary compound. Energy-dispersive X-ray
spectroscopy (EDX) (Figure 4c) was utilized to record the elemental constituents of the
Ag-NPs. A strong absorption peak located at 4.05 keV can be attributed to the elemental
silver in the nanoparticles. In addition, the signals observed for carbon, oxygen, and sulfur
confirm that the Ag-NPs were successfully capped by compounds from the EBE [37,42].
The Ag-NPs were measured using the Brunauer–Emmett–Teller (BET) method, with which
their surface area and pore size distribution are precisely determined. The values of 2.20 nm,
0.464 cm3/g, and 618.736 m2/g were found for their mean pore diameter, pore volume,
and specific surface area, respectively. The increase in surface area provides more contact
and exposed areas for dye adsorption, which leads to a higher adsorption capacity.
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Figure 5a is a TEM image of the Ag-NP product, showing its quasi-circular architecture
with a particle size of roughly 20–34 nm. In the SAED pattern (Figure 5b), five bright circular
rings attributed to the (111), (200), (220), (311), and (222) faces are characteristic of the face-
centered cubic crystals of silver. The XRD data also prove the crystalline nature of the
Ag-NPs. Likewise, the TEM images and XRD spectrum indicate that the Ag-NPs prepared
using EBE are crystalline in nature. The combination of the biomolecules in the extract is
what prompts the formation of spherical NPs [43]. By contrasting the luminance of various
particle components, such as face-centered cubic (FCC) metal nano-clusters, twinning, or
the planar defect, the twinned nanoparticles could be identified. In the face-centered cubic
lattice of noble metals, various crystal planes have been found to have distinct surface
energies [43–45].
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2.2. Features of Silver Nanoparticle Adsorption
2.2.1. Calibration Curves of Dyes

Dye concentrations were evaluated using UV/Vis spectrophotometry through the
construction of a linear relationship between the dye concentrations and their UV/Vis
absorbance (Beer–Lambert law). The calibration curves were prepared by measuring
the absorbance of the dye concentrations (1.0–150.0 mg/L) at fixed wavelengths of 615
and 590 nm for the bromocresol green and bromophenol blue dyes, respectively. The
dye concentration was then plotted against absorbance, as seen in Figure 6a,b. In the
figures, it can be noted that linear relationships are present throughout the operating
concentration ranges of 3.0–130.0 mg/L and 1.0–120.0 mg/L for the bromocresol green
(BCG) and bromophenol blue (BPB) dyes, respectively. At higher concentrations, there is a
breakdown of the Bee–Lambert law, resulting in a nonlinear relationship.
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2.2.2. Effect of Ag-NP Dosage

Ag-NP dosage is an essential parameter that influences the decolorization of the
bromocresol green (BCG) and bromophenol blue (BPB) dyes because there exists an op-
timum dosage at which maximum dye decolorization occurs. In order to determine the
optimum Ag-NP dosage, amounts of Ag-NPs ranging from 20 to 120 mg were added to
25 mL of each dye, with an initial concentration of 100 mg/L. A plot of Ag-NP dosage
against the color removal efficiency of each dye is presented in Figure 7. It can be observed
that the color removal efficiencies of the dyes increase with the increasing amount of Ag-
NPs, starting from 10 mg and up to 60 mg for the BCG dye and up to 80 mg for the BPB
dye. Thereafter, the color removal efficiencies remain consistent with the rise in the amount
of Ag-NPs. The maximum color removal efficiencies were about 99.12% and 97.25%, with
an optimum Ag-NP dosage of 60 and 80 mg for the BCG and BPB dyes, respectively.

2.2.3. Effect of Initial Dye Concentration

The effect of initial dye concentration on the color removal efficiencies were examined
over a wide range of BCG and BPB dye concentrations, from 20 to 160 mg/L for each,
with the optimum Ag-NP dosage and solution volume kept constant at 25 mL. The results
are displayed in Figure 8. This figure shows that the uptake of dyes was high at lower
concentrations. It can also be seen that, at an initial concentration of 100 mg/L of each
dye, the Ag-NPs removed about 99.12% and 97.25% of the BCG and BPB dyes by using the
optimum Ag-NP dosage of 60 and 80 mg for the BCG and BPB dyes, respectively. With the
further increase in initial dye concentration, the color removal efficiencies decreased.
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green and bromophenol blue dyes.

2.2.4. Effect of pH

The media pH had a significant impact on the decolorization of the dyes. As a result,
the effect of pH on the color removal efficiencies for each dye was investigated using (0.1 N)
NaOH or (0.1 N) HCl solutions in the pH range of 1–12, under identical conditions for
all other parameters, such as Ag-NP dosage, initial dye concentration, and contact time.
The results of the effect of pH on the color removal efficiencies for the dyes are presented
in Figure 9. This figure demonstrates that color removal efficiency increases from 51.79%
to 99.12%, with a maximum value at pH = 7 in the case of the bromocresol green dye.
However, in the case of the bromophenol blue dye, the color removal efficiency increases
from 40.00% to 97.25%, with the highest value at pH = 9. Hereafter, the removal efficiencies
decreased as the pH increased further.
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2.2.5. Effect of Stirring Time

The impact of stirring time on the color removal efficiencies of the BCG and BPB dyes
was investigated by testing various times (15–180 min), with all other optimized parameters
maintained, and the results are presented in Figure 10. As can be seen in this figure, the
stirring time increases with the rise in the color removal efficiencies for the dyes, until it
reached its maximum values of 30 and 45 min for the BCG and BPB dyes, respectively.
Further extension of stirring time did not result in any noticeable increase in the color
removal efficiencies.
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2.2.6. Effect of Temperature

Temperature can affect several aspects of adsorption, namely dye solubility, the
swelling capacity of the adsorbent, and the equilibrium position associated with exother-
mic or endothermic from the adsorption phenomenon [46]. The impact of temperature
on the color removal efficiencies for the BCG and BPB dyes was studied at temperatures
of 15–65 ◦C, with all optimized parameters maintained, as can be seen in Figure 11. As
seen in this figure, the maximum color removal efficiencies were obtained at the room
temperature (25 ± 2 ◦C) for the investigated dyes. Furthermore, raising the temperature
above room temperature caused a decrease in the color removal efficiencies. The removal
efficiency decreased as the process temperature increased, which is a strong indication that
the removal of BCG and BPB dyes by the Ag-NPs is an exothermic process [47].
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2.3. Reusability and Regeneration of Ag-NPs

In order to select the most appropriate adsorbents for application in the commercial
sector, it is essential to consider the potential of adsorbents to be recycled or reused. The
recycling potential of the Ag-NP adsorbent was investigated via the renewal of the BCG-
and BPB-packed adsorbents, which was carried out by swirling the Ag-NPs in ethanol
for 5 h, followed by cleaning in ethanol and drying at 50 ◦C for 5 h. Dye adsorption at
optimal renewal conditions for the laden adsorbent was performed five times; the BCG
and BPB dye removal rates for five reuses are illustrated in Figure 12. The adsorbents’
adsorption efficiency was somewhat reduced, and although there were several repetitions,
the capacity remained significant. This implies that, in addition to being reliable, the
Ag-NPs demonstrate excellent recyclability, with data confirming the suitability of their
use as adsorbents for water purification through the removal of BCG and BPB dyes.
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2.4. Adsorption Isotherms

The Langmuir, Freundlich, and Temkin models were used to evaluate the experimental
and theoretical adsorption data for the BCG and BPB dyes. These models were used to
classify the Ag-NP adsorbents’ ability to bind to different concentrations of dye with
equilibrium under ideal adsorption conditions [48]. According to Langmuir, adsorption
occurs equally or simultaneously on the face of an Ag-NP adsorbent. The linear formula of
Langmuir may be expressed as follows:

Ce

qe
=

1
KLqm

+
Ce

qm
(1)

where Ce is the equilibrium concentration of the BCG and BPB dyes in solution (mg L−1),
qe is the equilibrium adsorption capacity of the BCG and BPB dyes on the Ag-NP adsorbent,
qm is the maximum amount of solute that can be adsorbed per gram of adsorbent to form
a monolayer (mg g−1), and KL is the Langmuir adsorption constant (L mg−1). The slope
and intercept of the fitted line of Ce/qe vs. Ce (Figure 13a) may be used to compute the
variables KL and qm. The linear form of the Freundlich (2) isotherm can be given as follows:

lnqe = lnKF +
1
n

lnCe (2)

where KF is the Freundlich constant (mg/g), which represents the relative adsorption
capacity of the adsorbent; (1/n) is the heterogeneity factor and it is a function of the
strength of adsorption process; and n and KF are Freundlich constants related to adsorption
intensity and adsorption capacity of the Ag-NP adsorbent, respectively, and they are
obtained from the slope and intercept of the linear plot of lnqe against lnCe (Figure 13b).
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Figure 13. Langmuir (a,b), Freundlich (c,d), and Temkin (e,f) isotherms for the adsorption of
bromocresol green (a,c,e) and bromophenol blue (b,d,f) onto the Ag−NP adsorbent.

The Temkin (3) model contains a factor that explicitly takes adsorbent–adsorbate
interactions into account. The model assumes that heat of adsorption (function of tem-
perature) of all molecules in the layer would decrease linearly rather than logarithmically
with coverage:

qe = BTlnKT + BTlnCe (3)
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BT =
RT
b

(4)

A plot of qe versus lnCe enables the determination of the isotherm constants KT and BT,
as shown in Figure 13c. KT is the equilibrium binding constant (L·mol−1) corresponding
to the maximum binding energy and constant BT is related to the heat of adsorption.
Table 2 lists the estimated adsorption coefficients. R2 scores are the main indicators of
the precision and caliber of the linear fit procedure [49,50]. The modeling precision is
demonstrated by the R2 values in Table 2, where Langmuir (R1

2 = 0.9981, 0.9944) > Temkin
(R3

2 = 0.8370, 0.8327) > Freundlich (R2
2 = 0.8276, 0.8276) for the BCG and BPB dyes,

respectively. Clearly, the adsorption of the BCG and BPB dyes onto the Ag-NP adsorbent
follows the Langmuir adsorption isotherm model. This demonstrates that monolayer
adsorption takes place in the Ag-NP adsorbent. The calculation results reveal that the
maximal single film adsorption capabilities are 20.4081 and 40.7166 mg g−1 for the BCG
and BPB dyes, respectively. Additionally, fitting the experimental data into a Langmuir
isotherm model exhibits the homogeneous nature of the Ag-NP surface, which refers to
the adsorption of the BCG and BPB dyes onto the Ag-NP adsorbent as favorable in this
investigation at the optimized adsorption conditions.

Table 2. Variables of the isotherm models for the adsorption of the bromocresol green (BCG) and
bromophenol blue (BPB) dyes onto the Ag-NP adsorbent.

Isotherm Models Variables
Value

BCG BPB

Langmuir

KL (L mg−1) 01.2800 00.5329
qm(cal) (mg g−1) 20.4081 40.7166

R1
2 00.9981 00.9944

RL 00.0077 00.0184

Freundlich
KF (mg g−1) (L mg−1)1/n 07.7566 5.3924

R2
2 00.8276 00.8276

n 28.8350 00.5384

Temkin
BT (J. mol−1) 25.2973 33.1412

KT (L g−1) 01.6521 00.9929
R3

2 00.8370 00.8327

2.5. Adsorption Kinetics

The kinetic variables for the adsorption of the BCG and BPB dyes onto the Ag-NP
adsorbent were investigated by employing pseudo-first-order and pseudo-second-order
kinetic models, as shown in Figure 14a–d. The aim is to learn more about the quantity
of the adsorbent and the rate of the adsorption process. It is critical to note that the
magnitude of the linear model, otherwise recognized as the correlation coefficient r2, can
be used to determine the accuracy and match of the kinetic model. The linear form of the
pseudo-first-order kinetic model is as follows:

ln
(
qe − qt

)
= lnqe − k1t (5)

where qe and qt are the BCG and BPB dyes adsorbed (mg g−1) at equilibrium and time t
(min), respectively. Figure 14a,b show ln(qe − qt) against t graphs used to determine the
pseudo-first-order adsorption rate constant k1 (min−1). However, the experimental data do
not match the pseudo-first-order kinetic model, and a linear relation could not be derived.
Hence, we attempted to fit the adsorption behavior using the pseudo-second-order kinetic
model (6), as shown below:

t
qt

=
1

k2q2
e
+

t
qe

(6)
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where k2 ((g mg−1) min) is the pseudo-second-order rate adsorption constant determined
by graphing t/qt versus t (Figure 14c,d). Table 2 shows the estimated and observed
equilibrium adsorption capacities for the adsorption of the BCG and BPB dyes onto the
Ag-NP adsorbent. The pseudo-second-order model can accurately depict the adsorption of
BCG and BPB dyes onto Ag-NPs, as shown in Figure 14c,d and Table 3. The predicted and
observed adsorption capabilities are identical.

Molecules 2023, 28, x FOR PEER REVIEW 16 of 22 
 

 

tq୲ = 1kଶqଶୣ + tqୣ  (6)

where k2 ((g mg−1) min) is the pseudo-second-order rate adsorption constant determined 
by graphing t/qt versus t (Figure 14c,d). Table 2 shows the estimated and observed equi-
librium adsorption capacities for the adsorption of the BCG and BPB dyes onto the 
Ag-NP adsorbent. The pseudo-second-order model can accurately depict the adsorption 
of BCG and BPB dyes onto Ag-NPs, as shown in Figure 14c,d and Table 3. The predicted 
and observed adsorption capabilities are identical. 

Table 3. Kinetic constants for the adsorption of bromocresol green (BCG) and bromophenol blue 
(BPB) dyes onto the Ag-NP adsorbent. 

Kinetic Models Variables  
Value 

BCG BPB 

Pseudo first order 

k1 (min−1) 9 × 10−5 0.0003 
qe(cal) (mg g−1) 39.644 38.900 

r12 0.7753 0.4335 
qe(exp) (mg g−1) 0.2832 1.468 

Pseudo second order 

k2 [g mg−1 min−1] 1.600 0.0033 
qe(cal) (mg g−1) 39.644 38.900 

r22 1 0.9959 
qe(exp) (mg g−1) 39.821 41.0340 

 

0 40 80 120 160 200

-2.4

-2.2

-2.0

-1.8

-1.6

-1.4

lo
g 

(q
e 

- -
q t

)

t (min)

(a)

 

0 40 80 120 160 200

-3

-2

-1

0

1

2

lo
g 

(q
e - 

q t)

t (min)

(b)

 

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

t/q
t

t (min)

(c)

 0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

t/q
t

t (min)

(d)

 

Figure 14. (a,b) Pseudo-first−order and (c,d) pseudo−second-order adsorption kinetic models for
adsorption of bromocresol green (a,c) and bromophenol blue (b,d) onto the Ag−NP adsorbent.

Table 3. Kinetic constants for the adsorption of bromocresol green (BCG) and bromophenol blue
(BPB) dyes onto the Ag-NP adsorbent.

Kinetic Models Variables
Value

BCG BPB

Pseudo first order

k1 (min−1) 9 × 10−5 0.0003
qe(cal) (mg g−1) 39.644 38.900

r1
2 0.7753 0.4335

qe(exp) (mg g−1) 0.2832 1.468

Pseudo second order

k2 [g mg−1 min−1] 1.600 0.0033
qe(cal) (mg g−1) 39.644 38.900

r2
2 1 0.9959

qe(exp) (mg g−1) 39.821 41.0340
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2.6. Adsorption Thermodynamics

The adsorption of BCG and BPB onto Ag-NPs was also assessed using the adsorption
thermodynamic concept. In this instance, the Van ’t Hoff graphs were adapted for lnKc vs.
1/T and are depicted in Figure 15a,b. Table 4 lists the pertinent thermodynamic parameters.
The ∆G◦ values were negative in the tested temperature gradient, verifying the spontaneous
nature of the thermally advantageous BCG and BPB adsorption processes. The decrease
in ∆G◦ values with temperature shows that higher temperatures favor adsorption. The
positive ∆H◦ values imply the occurrence of endothermic adsorption processes, while
the positive ∆S◦ values indicate random development at the Ag-NP/dye solid–solution
interface [49]. Furthermore, the reduction in the ∆G◦ value of BCG at temperatures ranging
from 288 to 298 K demonstrates that its adsorption onto Ag-NPs is promoted by rising
temperature. In the case of BPB, the ∆G◦ value progressively decreases between 288 and
298 K, indicating that the spontaneity of BPB adsorption is not entirely controlled by
temperature and that 298 K is a reasonable choice for dye adsorption onto Ag-NPs.

Figure 15. Van ’t Hoff plot for adsorption of (a) bromocresol green (BCG) and (b) bromophenol blue
(BPB) dyes onto Ag-NPs.

Table 4. Thermodynamic parameters for the adsorption of bromocresol green (BCG) and bromophe-
nol blue (BPB) dyes onto Ag-NPs.

Temperature (K)
lnKc ∆G

◦
(kJ/mol) ∆H

◦
(kJ/mol) ∆S

◦
(kJ/mol)

BCG BPB BCG BPB BCG BPB BCG BPB

288 1.3707 0.845 −3.282 −2.023
173.503 128.528 0.6125 0.4526293 2.1248 1.508 −5.176 −0.004

298 3.8078 2.649 −9.434 −0.006

3. Experimental Section
3.1. Plant Material

In March 2022, aerial parts of Euphorbia balsamifera Aiton were gathered from the Asir
region along the Khamis–Najran route in Saudi Arabia. The plant was cleaned three times
under flowing water, followed by three rounds of dipping in de-ionized water to eliminate
any remaining dirt, after which it was allowed to air dry at ambient temperature.

3.2. Preparation of Plant Extracts

Aerial parts of Euphorbia balsamifera (500 g) were soaked in 90% ethanol (2.0 L) for 72 h
at 25 ◦C. The ethanol extract was then filtered, and the extraction process was performed
three times. The bulk extract was concentrated after being defatted with n-hexane in order
to create the primitive extract (4.0 g) before spray-drying with hot air.
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3.3. Green Synthesis of Silver Nanoparticles (Ag-NPs)

AgNO3 (0.017 g) in 100 mL of distilled water was added to the Euphorbia balsamifera
extract (EBE) for digestion. Various ratios (1:1, 1:2, 1:3, 1:4, v/v) of AgNO3 and EBE
were continuously agitated for 30 min in the dark chamber and intermittently heated
(45 ± 5 ◦C) until a unique hue was attained following the reduction in silver ions caused
by bioactive components, indicating the formation of Ag-NPs. Centrifugation at 10,000
rpm for 20 min resulted in the collection of synthesized Ag-NPs, which were washed thrice
with distilled water to remove traces of any unbound phyto-constituents. The generated
Ag-NPs exhibited the maximum absorbency when mixed at a 1:1 ratio. Thermal drying of
the material produced solid Ag-NPs that were used in the following studies (Figure 16).
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3.4. Characterization

The FT-IR 460 PLUS Spectrophotometer was used to record the IR spectrum in KBr
discs in the 4000–400 cm−1 range, with a 4 cm−1 resolution, and an average of 16 FTIR
scans were collected for each spectrum. The BET (Brunauer–Emmett–Teller) surface area
was calculated using Quantachrome TouchWin™ (version 1.2 Copyright ©1994–2015) with
nitrogen adsorption–desorption measurements. The crystallinity was determined at ambi-
ent temperature using an X-ray diffractometer (XRD, ADX2500, Stoughton, MA, USA). A
field emission scanning electron microscope (FE-SEM) connected to a microscope was used
to capture FE-SEM images (JEOL JSM-6500F). The material was disseminated in ethanol on
a copper grid, and transmission electron microscopy (TEM) images were captured using a
JEM 2100 electron microscope at an accelerating voltage of 200 kV. The T80 UV/Vis dual
spectrometer (PG Instruments Ltd., Lutterworth, UK) was used to take measurements
of samples in 10.0 mm-fitted quartzite cells in the spectral range of 2.0 nm. The Adwa
pH-meter (Model AD 1030, Romania) and the Digital Hotplate stirrer (Model MSH-20D,
made by DAIHAN Scientific Co., Ltd., Seoul, Republic of Korea) were also used, as well as
the Centrifuge PLC series (Model PLC-03, USA) with a power of 220 V/50 HZ; 0.65 A.
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3.5. Reagents

AR-grade bromocresol green dye (C21H14Br4O5S), bromophenol blue dye (C19H10Br4O5S),
hydrochloric acid (HCl, 37%), silver nitrate (AgNO3, 99.99%), and sodium hydroxide
(NaOH, 99.95%) were acquired from Merck Ltd. in Germany and utilized without addi-
tional purification. All aqueous solutions were prepared in de-ionized water.

3.6. Preparation of Dye Solutions

Stock solutions comprising 500 mg/L of each dye (bromocresol green and/or bro-
mophenol blue, Table 5) were prepared by adding about 0.25 g of each dye into a 500 mL
volumetric flask with double-distilled water added up to mark. A series of concentrations
of each dye, ranging from 1.0 to 150.0 mg/L, were prepared through dilution.

Table 5. Characterization and chemical structures of the bromocresol green (BCG) and bromophenol
blue (BPB) dyes.

Bromocresol Green, (BCG) Bromophenol Blue, (BPB)

Dye IUPAC name
3,3-Bis(3,5-dibromo-4-hydroxy-2-methylphenyl)-

3H-benzo [c] [1,2]oxathiole
1,1-dioxide

3,3-Bis(3,5-dibromo-4-hydroxyphenyl)-2,1-
benzoxathiole-1,1(3H)-dione

Chemical structure
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for BCG dye and pH = 8 for BPB dye using (0.1 N) NaOH. The BCG dye mixture was 
stirred for 30 min in a flask at room temperature, while that of BPB was stirred for 45 min. 
Finally, the samples were centrifuged at 6000 rpm for 10 min, and the residual concen-

Molecules 2023, 28, x FOR PEER REVIEW 19 of 22 
 

 

measurements of samples in 10.0 mm-fitted quartzite cells in the spectral range of 2.0 nm. 
The Adwa pH-meter (Model AD 1030, Romania) and the Digital Hotplate stirrer (Model 
MSH-20D, made by DAIHAN Scientific Co., Ltd., Seoul, Republic of Korea) were also 
used, as well as the Centrifuge PLC series (Model PLC-03, USA) with a power of 220 V/50 
HZ; 0.65 A. 

3.5. Reagents 
AR-grade bromocresol green dye (C21H14Br4O5S), bromophenol blue dye 

(C19H10Br4O5S), hydrochloric acid (HCl, 37%), silver nitrate (AgNO3, 99.99%), and sodium 
hydroxide (NaOH, 99.95%) were acquired from Merck Ltd. in Germany and utilized 
without additional purification. All aqueous solutions were prepared in de-ionized wa-
ter. 

3.6. Preparation of Dye Solutions 
Stock solutions comprising 500 mg/L of each dye (bromocresol green and/or bro-

mophenol blue, Table 5) were prepared by adding about 0.25 g of each dye into a 500 mL 
volumetric flask with double-distilled water added up to mark. A series of concentrations 
of each dye, ranging from 1.0 to 150.0 mg/L, were prepared through dilution. 

Table 5. Characterization and chemical structures of the bromocresol green (BCG) and bromo-
phenol blue (BPB) dyes. 

 Bromocresol Green, (BCG) Bromophenol Blue, (BPB) 

Dye IUPAC name 
3,3-Bis(3,5-dibromo-4-hydroxy-2-methylph

enyl)-3H-benzo [c] [1,2]oxathiole 
1,1-dioxide  

3,3-Bis(3,5-dibromo-4-hydroxyphenyl)-2,1-benz
oxathiole-1,1(3H)-dione  

Chemical structure 

  
Molecular formula C21H14Br4O5S C19H10Br4O5S 

Chemical class Sulfonephthaleins  Phenolphthaleins 
λmax 600 nm 590 nm 

Type Anionic dye Anionic dye 

Solubility 
Soluble in NaOH, water (6 mg/mL), etha-

nol (40 mg/mL), benzene, and diethyl 
ether. 

Soluble in NaOH, methyl and ethyl alcohols, 
benzene, and acetic acid. Slightly soluble in 

water (0.4 g/100 g) at 20 °C. 
CAS Number Bromocresol green 76-60-8  Bromophenol blue 115-39-9 

3.7. General Procedure for Decolorization of Dyes 
A total of 25 mL of each dye solution (bromocresol green (BCG) and bromophenol 

blue (BPB)), with an initial concentration of 100 mg/L in a 100 mL calibrated flask, was 
mixed with 60 and 80 mg Ag-NPs. The pH values of the solutions were adjusted to pH = 7 
for BCG dye and pH = 8 for BPB dye using (0.1 N) NaOH. The BCG dye mixture was 
stirred for 30 min in a flask at room temperature, while that of BPB was stirred for 45 min. 
Finally, the samples were centrifuged at 6000 rpm for 10 min, and the residual concen-

Molecular formula C21H14Br4O5S C19H10Br4O5S

Chemical class Sulfonephthaleins Phenolphthaleins

λmax 600 nm 590 nm

Type Anionic dye Anionic dye

Solubility Soluble in NaOH, water (6 mg/mL), ethanol
(40 mg/mL), benzene, and diethyl ether.

Soluble in NaOH, methyl and ethyl alcohols,
benzene, and acetic acid. Slightly soluble in

water (0.4 g/100 g) at 20 ◦C.

CAS Number Bromocresol green 76-60-8 Bromophenol blue 115-39-9

3.7. General Procedure for Decolorization of Dyes

A total of 25 mL of each dye solution (bromocresol green (BCG) and bromophenol
blue (BPB)), with an initial concentration of 100 mg/L in a 100 mL calibrated flask, was
mixed with 60 and 80 mg Ag-NPs. The pH values of the solutions were adjusted to pH = 7
for BCG dye and pH = 8 for BPB dye using (0.1 N) NaOH. The BCG dye mixture was stirred
for 30 min in a flask at room temperature, while that of BPB was stirred for 45 min. Finally,
the samples were centrifuged at 6000 rpm for 10 min, and the residual concentration of each
dye was analyzed by UV/Vis spectrophotometry; the calibration curves were prepared
from measurement of the BCG and BPB dyes at 615 and 590 nm, respectively [24–26].

The color removal efficiency was calculated for each dye using the following equation:

% Color removal =
Ci − Cf

Ci
× 100
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where Ci and Cf are, respectively, the initial and final concentrations (mg/L) of the dye.

4. Conclusions

In conclusion, Ag-NPs were successfully synthesized using Euphorbia balsamifera plant
extract as a potent bioresource, thus representing a simple, cost-effective, and ecological
approach for the synthesis of Ag-NPs. This study highlights the effective application of
nanotechnology in water treatment. The results of XRD, IR, UV, SEM, TEM, EDAX, BET,
and thermal analyses demonstrated the efficient fabrication of Ag-NPs and revealed their
spherical shape and small size distribution. The synthesized Ag-NPs exhibited an excellent
ability to adsorb the bromocresol green (BCG) and bromophenol blue (BPB) dyes. At pH = 7,
60 mg of Ag-NPs absorbed approximately 99.12% of the 100 mg/L BCG dye in 30 min,
while at pH = 9, 80 mg of Ag-NPs absorbed approximately 97.25% within 45 min, for the
adsorption of both dyes at room temperature. The adsorption kinetics and thermodynamics
were also studied. We conclude that the adsorption process studied here is simple, effective,
and low-cost and may be utilized for the decolorization of water containing BCG and
BPB dyes.
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