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Abstract: As a new generation of green media and functional materials, ionic liquids (ILs) have
been extensively investigated in scientific and industrial communities, which have found numerous
ap-plications in polymeric materials. On the one hand, much of the research has determined that ILs
can be applied to modify polymers which use nanofillers such as carbon black, silica, graphene oxide,
multi-walled carbon nanotubes, etc., toward the fabrication of high-performance polymer composites.
On the other hand, ILs were extensively reported to be utilized to fabricate polymeric materials with
improved thermal stability, thermal and electrical conductivity, etc. Despite substantial progress in
these areas, summary and discussion of state-of-the-art functionalities and underlying mechanisms
of ILs are still inadequate. In this review, a comprehensive introduction of various fillers modified by
ILs precedes a systematic summary of the multifunctional applications of ILs in polymeric materials,
emphasizing the effect on vulcanization, thermal stability, electrical and thermal conductivity, selec-
tive permeability, electromagnetic shielding, piezoresistive sensitivity and electrochemical activity.
Overall, this review in this area is intended to provide a fundamental understanding of ILs within a
polymer context based on advantages and disadvantages, to help researchers expand ideas on the
promising applications of ILs in polymer fabrication with enormous potential.

Keywords: ionic liquids; nanofillers; polymer materials; modification mechanism; multifunctional
applications

1. Introduction

After more than two decades of rapid development, ionic liquids (ILs), a new gen-
eration of green media and functional materials, have become the frontier of current
international scientific and technological research and continue to make breakthroughs in
industrial applications. Many applications involving ILs include batteries [1], fuel cells, su-
percapacitors [2], sensors, chemical demulsification [3], catalysts [4], solvents, performance
additives [5], and media for molecular self-assembly [6]. The vigorous development of ILs’
research demonstrates the trend of high cross-fertilization of today’s disciplines and the
broad development prospect of the application of ILs.

ILs are composed of specific anions and cations, usually consisting of larger organic
cations and smaller organic or inorganic anions [7], bound to each other by Coulomb
forces. ILs are kinds of salts with a low melting point (<100 ◦C), and can be utilized as
excellent solvents for various polar and non-polar compounds. ILs have many advantages,
such as low viscosity, low saturation vapor pressure, high chemical, and thermal stability,
non-flammability, wide electrochemical window, and high ionic conductivity, as shown in
Figure 1 [8,9]. As for the designer solvents displayed in Figure 1, we can understand that
various organic cations with different substituent groups can be combined with anions of
interest to design ILs based on the requirements.
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With the variety of anions and cations in ILs, there are, theoretically, infinite possibili-
ties for different combinations of the two to obtain an extraordinary variety of ILs. Many
researchers have been scientifically and systematically devoted to predicting the structure
and properties of ILs and their relationship. Zhang et al. collected relevant data on the
physical properties of pure ILs and their mixtures since 1984, and established a database of
ILs [10], which consisted of 9400 datapoints and contained 1886 ILs, with 185 anions and
807 cations. Based on the analysis and generalization, they proposed the periodic variation
law and orientation diagram of ILs through further study [11], which provided a reference
and theoretical basis to select suitable ILs precisely and efficiently.

Due to the high efficiency, excellent performance, and low risk, ILs could replace
specific components in many applications; for example, small amounts of ILs could cat-
alyze silanization reactions efficiently and enhance the interfacial interaction of composites.
Meanwhile, they are relatively easy to be recycled by extraction and distillation, which
reduces their cost in industrial applications and expands their fields of application, such
as sensors [12–14], batteries [15–18], ionized gels [19], separation membrane [20–24], etc.
Currently, the applications of ILs are becoming more and more extensive in polymer materi-
als, which involve rubber [25–27], plastics [28], polyurethane [29,30], epoxy resins [31–33],
thermoplastic elastomers [34,35], and bio-based polymers [36]. We have summarized the
ILs used in polymeric materials in Table 1.
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Table 1. Summary of ILs commonly-used in polymeric materials.

ILs Abbreviation Application Field References

1-allyl-3-methylimidazolium chloride [AMIM] [Cl] dispersant, solvent [37–44]

1-decyl-3-methylimidazolium chloride [DMIM] [Cl] dispersant, sensor [12,45–48]

1-methylimidazole chloride [MIM] [Cl] dispersant, modifier [30,49]

1-butyl-3-methylimidazolium chloride [BMIM] [Cl] membrane separation, solvent, plasticizer,
surfactant, conductive, battery [20,50–52]

1-butyl-3-methylimidazolium bromide [BMIM] [Br] dispersant, solvent, conductive [53–55]
1-ethyl-3-methylimidazolium chloride [EMIM] [Cl] [56–59]
1-ethyl-3-methylimidazolium bromide [EMIM] [Br] [60,61]

1-benzyl-3-methylimidazolium chloride [BZMIM] [Cl] membrane separation [62,63]
1-benzyl-3-ethylimidazolium chloride [BZEIM] [Cl] [13,64,65]

1-butyl-3-methylimidazolium
tetrafluoroborate [BMIM] [BF4] dispersant, plasticizer, conductive,

membrane separation, battery [22,66–70]

1-butyl-3-methylimidazolium
hexafluorophosphate [BMIM] [PF6] [19,61,66,71–75]

1-ethyl-3-methylimidazolium
tetrafluoroborate [EMIM] [BF4] dispersant, conductive, electrolyte [16]

1-carboxyethyl-3-methylimidazolium
bis(trifluoromethysulfonyl)imide [CEMIM] [NTf2] dispersant, conductive, grafting agent,

battery [76,77]

1-hexyl-3-methylimidazolium
hexafluorophosphate [HMIM] [PF6] dispersant, plasticizer, conductive,

coupling agent [71,72,78,79]

1-hexadecyl-3- methylimidazolium
bromide [HDMIM] [Br] dispersant, conductive [47,80]

tributylmethylammoniu
bis(trifluoromethylsulfonyl)imide [TBMA] [NTf2] [70]

1-butyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide [BMIM] [NTf2] conductive, electromagnetic interference,

vulcanization [81–92]

1-propyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide [PMIM] [NTf2] vulcanization [15]

1-ethyl-3-methylimidazolium
bis(trifluoromethylsulfonyl)imide [EMIM] [NTf2] dispersant, electromagnetic interference [93]

1-vinyl-3-ethylimidazolium bromide [VEIM] [Br] [34,35,94]

1-butyl-3-methylimidazolium
tetrachloroaluminate [BMIM] [AlCl4] dispersant [81,82]

1-ethyl-3-methylimidazolium acetate [EMIM] [Ac] [95–98]

1-ethyl-3-methylimidazolium dicyanamide [EMIM] [Dca] catalyst [99,100]

1-methylimidazolium mercaptopropinate [MIM] [MP] dispersant, catalyst, modifier,
vulcanization [101]

bis(1-methylimidazolium)
mercaptosuccinate [BMIM] [MS] [101]

1-butylpridinium bromide [BBP] [Br] dispersant, modifier [102]
4-methyl-1-butylpyridinium bromide [BMBP] [Br] [102]

1-butyl-4-methylpyridinium
tetrafluoroborate [BMP] [BF4] [103]

tetrabutylammonium hexafluorophosphate [TBA] [PF6]
electrolyte

[104]
tetraethylammonium hexafluorophosphate [TEA] [PF6] [105]

1-ethyl-3-methyl imidazolium
hexafluorophosphate [EMIM] [PF6] [105]

As we can see from Table 1, the commonly-used types of ILs are imidazoles and
pyridines in polymer materials. The imidazolium ILs contain alkylimidazolium halide,
alkylimidazolium hexafluorophosphate, alkylimidazolium tetrafluoroborate, alkylimida-
zolium bis(trifluoromethylsulfonyl)imide, alkylimidazolium tetrachloroaluminate, alkylim-
idazolium acetate, alkylimidazolium dicyanamide, alkylimidazolium mercaptopropinate,
and alkylimidazolium mercaptosuccinate. As for pyridines, ILs contain alkylpridinium
halide and alkylpridinium tetrafluoroborate. They play many roles in polymer composites,
including solvents, vulcanization accelerators, curing agents, dispersants, plasticizers [106],
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grafting agents, bulking agents, interfacial modifiers, surfactants, and catalysts. In rubber
composites, ILs can function as multifunctional modifiers to modify various fillers such as
carbon black, silica, carbon nanotubes, multi-walled carbon nanotubes, graphene, graphene
oxide, montmorillonite, hydrotalcite, aramid pulp, halloysite nanotubes, powdered cellu-
lose, etc. The dispersion of the fillers is improved in the matrix through the interaction
between ILs and the fillers, leading to the improved performance of rubber composites.
Next, we will focus on the application of ILs in polymer materials and summarize the
mechanism of action of ILs, to provide the theoretical basis for practical applications.

2. Filler Modification by ILs

In the rubber industry, rubbers are usually incorporated with many fillers, as most
neat rubbers suffer from poor mechanical performance. Fillers confer rubber many ex-
cellent properties. For example, reinforcing fillers can not only improve the processing
performance of rubber, but also impart the rubber with high strength, improved wear
and heat resistance, and other excellent properties, which can extend the service life of
products; as for non-reinforcing fillers, they mainly play the role of filling capacity, includ-
ing isolation, demolding, or coloring. However, inorganic nanopowders are not easily
dispersed within the polymeric material matrix. Thus, it is a significant research topic to
find economical and straightforward methods to improve their dispersibility and further
enhance the interfacial interaction between inorganic nanopowders and matrix materials.
This subsection highlights the effect of ILs on the dispersibility of inorganic fillers and
interfacial interaction.

2.1. Carbon Black

Carbon black is one of the most commonly-used reinforcing fillers in the rubber
industry. It is composed of microcrystals with off-domain π-electrons. Aggregates are the
most minor structural units of carbon black in rubber matrix, which are usually formed
by van der Waals forces. Carbon black can be modified to prevent the formation of
agglomerates and improve the interfacial interactions between carbon black and rubber,
such as surface adsorption, surface grafting, surface oxidation, etc. Although specific
modification effects have been achieved, the modification processes either are expensive or
require high solvent consumption, and may destroy the carbon black structure [107].

ILs, as a new kind of green modifier, have been reported to improve the dispersion of
nanoparticles within a polymeric matrix [44,92,108] and enhance the interfacial interaction
of carbon black and the matrix material, simultaneously. Alkyl imidazole salts containing
NTf2 anions significantly improved the dispersion of the curing agent and carbon black
particles in styrene butadiene rubber (SBR), because ILs reduced the interactions among
the carbon black particles, thus reducing their tendency to agglomerate within the polymer
matrix [109]. Meanwhile, the interaction of free radicals and off-domain π-electrons on the
surface of carbon black particles with cations in ILs can improve the dispersion of carbon
black in the matrix and enhance the interfacial interactions between carbon black and the
matrix material. The [AMIM] [Cl] was selected to modify the surface of different grades of
carbon black. The interaction between the cations of [AMIM] [Cl] and the surface groups
of carbon black led to the formation of carbon black–ionic liquid bucky gel, resulting in
significant improvement in the mechanical properties of the vulcanization rubber filled
with carbon black [44].

A new functionalized IL, composed of mercaptobenzothiazole (MBT) anion and 1-
allyl-3-methylimidazolium cation, was used to modify carbon black. Concerning the
strong cation–π interaction between imidazole-like ILs and carbon nanotubes and the
similar microstructure of carbon black and carbon nanotubes, we infer that the newly-
synthesized ILs have a strong interaction with carbon black, improving the dispersion of
carbon black within the rubber matrix. As such, the tensile and tear strength of vulcanized
filled styrene butadiene rubber (ESBR) composites are significantly improved [107]. After
the modification of carbon black with ILs, it was found that the size of the carbon black
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aggregates became smaller (as shown in the SEM images of Figure 2). Meanwhile, the ILs
improved the compatibility between carbon black and silicone rubber (SR), resulting in
composites with a lower percolation threshold compared to those of unmodified carbon
black [71,80].
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2.2. Silica

Due to the plentiful number of silanols on the silica surface, the poor dispersion of
polar silica in non-polar rubber matrix and weak rubber–silica interfacial interaction are
concurrent obstacles for silica utilization in the rubber industry. Toward this dilemma, many
efforts have been made, including silane coupling agents [110], physical coating [111], ion-
izing radiation [112], chemical reactions [113], and macromolecular functionalization [114]
methods. With the development of ionic liquid-modified nanofiller technology, many
studies have reported that ILs could improve silica dispersion within matrix materials and
enhance the interfacial bond strength [39,40,95,115].

In silica-filled composites, silanization modification has a positive effect on improving
the compatibility of silica with the rubber matrix, improving composites’ performance.
ILs can be used as catalysts for silanization reactions, which improve the dispersion of
silica within the matrix and the interfacial interaction between silica and the matrix mate-
rial. Phosphorus ionic liquids (PIL), containing trihexyltetradecylphosphonium decanoate
and octadecytriphencylphosphonium iodide, were reportedly used as a novel catalyst to
promote silanization reactions [116,117]. The addition of a small amount of octadecytriph-
encylphosphonium iodide can efficiently catalyze the silanization reaction between silica
and TESPT by the following mechanism (as shown in Figure 3): The I- anions of PIL can
function as a Lewis base catalyst, which react with silica to produce silanolate anions on
the surface of silica. The silanolate anions have better nucleophilicity, which facilitates
the substitution of the incoming TESPT and promotes the condensation reaction of TESPT
with ethoxy to improve the silanization reactions, which improves silica dispersion and
dramatically enhances the interfacial interaction between silica and SBR substrate [116].
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Figure 3. Proposed mechanism for the catalysis of silanization reaction by PIL. The green arrows
were the attack route of atoms, and the black arrows were the direction of reaction. Image published
in reference [116].

Hydrogen bonding exists between the ILs and the silica surface silicone hydroxyl
group, which effectively limits the agglomeration of silica within the rubber matrix [108].
The [AMIM] [Cl] was applied to silica-filled NR and SBR rubber. The infrared spectroscopy,
solid state nuclear magnetic resonance, and Raman spectroscopy together indicated that the
interaction between [AMIM] [Cl] and silica consisted mainly of hydrogen bonding between
Cl− and hydroxyl groups on the surface of silica. Meanwhile, the C=C double bond in
[AMIM] [Cl] could be linked to the double bonds of rubber molecules by sulfur bridges to
enhance the interaction between silica and rubber (as shown in Figure 4). The interaction
parameters of the SiO2/NR composites with the addition of ILs were larger than those of
the unmodified SiO2/NR composites. The larger interaction parameters may be due to the
establishment of multiple interactions containing cation–π interactions, hydrogen bonding,
and covalent bonding [39,40].
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The type of ILs, including cation (imidazolium, pyrrolidinium, and piperidinium) and
anion (bromide and chloride), greatly influence the curing characteristics and performance
of the rubber composites. Maciejewska et al. [26] investigated the effect of the type of
cation and anion on vulcanization characteristics and thermal properties in the NR rubber
matrix. They found that the type of cation affected the activity of ILs in the vulcanization,
influencing the crosslink density of the vulcanizates. Specifically, the composites containing
imidazolium-based ILs, especially with butyl substituent, had the highest crosslink density.
Moreover, the thermal stability was also influenced significantly by the cation type of ILs, as
the thermal stability of imidazolium salts was the highest compared to other salts, and the
most thermally-stable were NR composites containing imidazolium ILs. In the SBR matrix,
the ILs ([BMIM] [Br]) showed a beneficial influence on the optimal vulcanization time of
SBR/silica compounds, as well as crosslink density and performance of the vulcanizates of
SBR/silica, when compared to the other kinds of ILs [53].

2.3. Graphene Oxide

Graphene oxide (GO) is a material with a large specific surface area, high mechanical
strength, good electrical conductivity, and a unique size effect, making it a potential
application in rubber nanocomposites and an ideal filler material. In recent years, GO has
been widely used as a filler material for polymers, such as NR, BR, silicone, fluoroether
rubber, PLA, and PI, to enhance their mechanical, thermal, thermoelectric, and rheological
properties, etc. One of the main problems of rubber composites is achieving the uniform
dispersion of the filler within the rubber matrix and the interfacial interaction between the
filler and the rubber matrix [118]. Among the many modification methods, the use of ILs to
modify the surface of GO and obtain good dispersion is increasingly favored by researchers
because of their unique physicochemical properties and environmental friendliness.

Due to the cation–π interaction between the cation in ILs and the π-electrons of the
graphite structure in GO, the interaction between the ILs and GO is strong, which improves
the dispersion of GO and enhances the interfacial interaction between the graphene and ma-
trix material [100]. For example, graphene can be modified by 1-butyl-3-methylimidazolium
tetrafluoroborate ([BMIM] [BF4]), and [BMIM] [BF4] is embedded in GO layers and attaches
to the GO surface through π–π, cation–π, and van der Waals force interactions. Therefore,
the distance between GO layers is increased, which improves GO dispersion and interfacial
compatibility within the matrix, resulting in excellent tribological, mechanical, and thermal
properties of the composites. Specifically, the friction coefficient and wear rate of the com-
posites were reduced by 38.2% and 25%, respectively, compared to those of pure PI [68].
In addition, it has been reported that 1-butyl-3-methyl imidazolium hexafluorophosphate
([BMIM] [PF6]) can be inserted into the GO sheet layer effectively to increase the exfoliation
degree of GO. After being incorporated with the [BMIM] [PF6]-modified GO, the thermal
conductivity and thermal stability of BIIR were both significantly enhanced [73].

ILs can function as self-lubricating layers of graphene and facilitate the formation of
strong interfacial bonds between the ILs-modified graphene and rubber matrix. Based
on this function, the QM (silicone rubber) exhibited best wear resistance after being filled
with 1.5 phr 1-ethyl-3-methylimidazolium dicyanamide ([EMIM] [Dca])-modified GO [99].
The fluorocarbon- and amino-containing IL 1-(3-aminopropyl)-3-methylimidazolium bis-
(trifluoromethylsulphonyl)-imide has also been reported to modify GO used in the context
of fluoroether rubber [119]. As shown in Figure 5, the ILs provided an effective self-
lubricating layer for the graphene oxide and facilitated the formation of strong interfacial
interaction between graphene oxide and the fluoroether rubber, which led to a 13.1% and
59.8% decrease in the friction coefficient and wear rate, respectively, when compared with
those of unmodified GO-filled fluoroether rubber [119]. The 1-butyl-1-methylpyrrolidinium
hexafluorophosphate ([Bmpyr] [PF6]) ILs can also be used as an internal lubricant, increas-
ing the athletic ability of PLA chains in the glassy and rubber states, so the processing
properties of PLA were greatly improved, but this effect did not prevail when the composite
was melted [120].



Molecules 2023, 28, 3836 8 of 23Molecules 2023, 28, x FOR PEER REVIEW 8 of 23 
 

 

 
Figure 5. Schematic diagram of tribological properties improvement mechanism of the gra-
phene/fluorother rubber composite induced by IL. Figure adapted from reference [119]. 

2.4. Multi-Walled Carbon Nanotubes 
Multi-walled carbon nanotubes (MWCNTs) are widely used in various polymer ma-

terials due to their good electrical conductivity, thermal conductivity, and mechanical 
properties. However, because of their high aspect ratio, large specific surface area, and 
easy agglomeration, their application often fails to achieve the expected results in polymer 
materials. Thus, the modification of multi-walled carbon nanotubes is a very worthy topic 
of research from the perspective of dispersibility. To achieve better dispersion of 
MWCNTs within the rubber matrix, several methods have been successfully obtained by 
the relevant researchers, including covalent bonding modification and non-covalent bond-
ing modification, in which covalent bonding modification may lead to the destruction of 
the surface structure of MWCNTs. Many other methods require organic solvents to treat 
MWCNTs, which can lead to environmental pollution, corrosion of equipment, and health 
hazards. Therefore, it is necessary to choose environmentally-friendly methods to over-
come these drawbacks. ILs, as green solvents, are used to disperse or modify MWCNTs 
[78,92,121–124], because the existence of cation–π as well as π–π interactions between 
them [47,85,125] could effectively reduce the π–π stacking between the particles of 
MWCNTs. 

Due to the physical interaction (cation–π and π–π interaction) between MWCNTs 
and ILs, the dispersion of MWCNTs was significantly improved within the NBR matrix, 
leading to a more uniformly crosslinked rubber network structure, resulting in improved 
mechanical properties and fatigue resistance. Specially, the composites filled with 3 phr 
ILs-modified MWCNTs showed the most significant improvement in mechanical proper-
ties [57]. Similarly, in the SBR matrix, the dispersion of ILs-modified MWCNTs was better 
than that of unmodified MWCNTs, as depicted in Figure 6, in which large agglomerates 
surrounded by black circles were observed in the cross-section of unmodified MWCNTs-
filled SBR. Meanwhile, the interfacial compatibility between MWCNTs and SBR was en-
hanced, resulting in significantly improved tensile strength, hardness, wear resistance, 
and electrical conductivity of rubber composites [125]. 

Figure 5. Schematic diagram of tribological properties improvement mechanism of the graphene/
fluorother rubber composite induced by IL. Figure adapted from reference [119].

2.4. Multi-Walled Carbon Nanotubes

Multi-walled carbon nanotubes (MWCNTs) are widely used in various polymer ma-
terials due to their good electrical conductivity, thermal conductivity, and mechanical
properties. However, because of their high aspect ratio, large specific surface area, and
easy agglomeration, their application often fails to achieve the expected results in polymer
materials. Thus, the modification of multi-walled carbon nanotubes is a very worthy
topic of research from the perspective of dispersibility. To achieve better dispersion of
MWCNTs within the rubber matrix, several methods have been successfully obtained
by the relevant researchers, including covalent bonding modification and non-covalent
bonding modification, in which covalent bonding modification may lead to the destruction
of the surface structure of MWCNTs. Many other methods require organic solvents to
treat MWCNTs, which can lead to environmental pollution, corrosion of equipment, and
health hazards. Therefore, it is necessary to choose environmentally-friendly methods
to overcome these drawbacks. ILs, as green solvents, are used to disperse or modify
MWCNTs [78,92,121–124], because the existence of cation–π as well as π–π interactions
between them [47,85,125] could effectively reduce the π–π stacking between the particles
of MWCNTs.

Due to the physical interaction (cation–π and π–π interaction) between MWCNTs
and ILs, the dispersion of MWCNTs was significantly improved within the NBR matrix,
leading to a more uniformly crosslinked rubber network structure, resulting in improved
mechanical properties and fatigue resistance. Specially, the composites filled with 3 phr
ILs-modified MWCNTs showed the most significant improvement in mechanical proper-
ties [57]. Similarly, in the SBR matrix, the dispersion of ILs-modified MWCNTs was better
than that of unmodified MWCNTs, as depicted in Figure 6, in which large agglomerates sur-
rounded by black circles were observed in the cross-section of unmodified MWCNTs-filled
SBR. Meanwhile, the interfacial compatibility between MWCNTs and SBR was enhanced,
resulting in significantly improved tensile strength, hardness, wear resistance, and electrical
conductivity of rubber composites [125].

It has been demonstrated that the effect of modifying MWCNTs by two types of ILs
simultaneously is better than that of by only one type of IL. MWCNTs modified with a
single type of IL formed agglomerates in the ethylene–vinyl acetate rubber (EVM) matrix,
while MWCNTs were uniformly dispersed in the EVM matrix when two types of ILs were
used to modify MWCNTs simultaneously. The mechanism of this synergistic effect was
that EVM was miscible with [TBMA] [NTf2] but insoluble with [EMIM] [BF4]. Moreover,
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the interaction of MWCNTs with [EMIM] [BF4] was higher than that of [TBMA] [NTf2]. The
interaction between the ILs, MWCNTs, and EVM was different, so the uniform dispersion
of MWCNTs within the EVM matrix was attributed to the bridging effect of the two
kinds of ILs, which opened up new avenues for preparing high-performance polymer
nanocomposites [70].
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2.5. Other Fillers

With the development of ecology and the increasing environmental concerns, diverse
fillers have been developed to be used in polymer materials, such as starch and walnut
shells [50], hydrotalcite [54,82], powdered cellulose [54], microcrystalline cellulose [107],
halloysite nanotubes [75,101], aramid pulp [126–129], etc. After being modified by the ILs,
the emerging fillers can impart the polymer composites with new functionalities compared
to those of traditional fillers.

Much of the research has demonstrated that the bio-based fillers, such as starch and
walnut shell powder modified by ILs ([BMIM] [Cl]), can be used in rubber composites. The
dispersion of starch and walnut shell powder was improved significantly [50]. The reason
was that ILs could interact with polysaccharides through hydrogen bonding, reducing
the interaction of filler particles. Moreover, the addition of [BMIM] [Cl] increased the
crosslinking density of the rubber composites. The NR vulcanizate filled by ILs-modified
hydrotalcite (HTA) had stronger tensile strength than that filled by other fillers, due to the
strengthening effect of HTA and its high crosslinking density [54].

The halloysite nanotubes (HNTs) are a kind of natural clay that feature nano-structure,
good thermal stability, and flame retardancy. The hydroxyl functional groups of HNTs
are mainly located on the inner surface and tube ends. The distribution of functional
groups contributes to the fine dispersion of HNTs in polymer composites. However, the
interface interaction between HNTs and polymers is poor and needs to be improved by
modification of HNTs. The [MIM] [MP] and [BMIM] [MS], belonging to mercaptan ILs,
were used as new interface modifiers. Such mercaptan ILs could be grafted onto the SBR
chain through a thiol-ene reaction, promoting the dispersion of HNTs within the rubber
matrix effectively [75,101].

Aramid pulp (AP) is widely-used in the rubber industry to provide dimensional
stability before vulcanization and improve the mechanical properties of rubber products.
ILs, as a kind of compatibilizer, are capable of improving the dispersion of aramid pulp
within the rubber matrix. The strong interaction between ILs and AP destroyed the
hydrogen bond network between aramid pulp chains, increasing its surface roughness
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and the carboxyl functionalization. Thus, the interfacial interaction between aramid pulp
and the matrix material became strong, making the vulcanizate of the composites have a
high modulus under 100% strain with a high breaking strain [130]. At the same time, it
was found that the biochar had a synergistic effect with the aramid pulp treated with ILs.
The tensile strength of the mixed system was much higher than that of biochar and carbon
black. It is predicted that the aramid pulp has potential to partially or entirely replace the
carbon black in the formula [126].

3. Application of ILs in Polymer Materials
3.1. Multiple Functions of ILs in Rubber Vulcanization

A complete sulfur vulcanization system consists of three parts: vulcanizing agent,
active agent, and accelerator. Zinc oxide (ZnO) is used as an activator for elastomer
vulcanization, with the function of shortening vulcanization time by way of forming zinc
complexes with accelerators [131]. At the same time, the rubber composites filled with
ZnO could improve the thermal conductivity and prevent the corrosion of rubber by mold
organisms and ultraviolet rays, simultaneously. For the protection of biological safety, EU
environmental legislation requires that the use of ZnO and zinc-containing compounds be
reduced technically. During the rubber vulcanization process, accelerator, sulfur, and stearic
acid particles diffuse through the elastomer matrix and attach to the ZnO surface, forming
intermediate reaction complexes. Therefore, to improve the vulcanization efficiency, the
contact between ZnO and the accelerator in the elastomer matrix should be maximized,
which is dependent on the dispersion of ZnO particles within the elastomer. In recent years,
ILs have been widely used to improve the dispersion of nanoparticles in polymers due to
their unique chemical structure.

Regarding the role of ILs in the rubber vulcanization process, Magdalene et al. have
carried out much research and found that ILs could promote rubber vulcanization under
the traditional sulfur vulcanization system. As for the reasons, there are three main aspects,
as follow: (1) ILs improve the dispersion of active zinc oxide [109,132–134]; (2) the ILs act
as vulcanization accelerators [132,135]; (3) the ILs act as the active agent, which is similar
to stearic acid [109,131]. They synthesized imidazole, benzethonium, and phosphorus ILs,
which were based on 1, 3-dialkylimidazolium, benzalkonium (where R = C12H25 60% and
C14H29 40%), and phosphonium cations combined with the 2-mercaptobenzothiazolate
anion (the scheme shown in Figure 7), which were used as vulcanization accelerators for
nitrile butadiene rubber (NBR), to compare with the use of the conventional vulcanization
accelerator M (2-mercaptobenzothiazole). Compared with conventional accelerator M, the
use of synthetic ILs as accelerators reduced the process positive vulcanization time of NBR
by about half, which significantly improved vulcanization efficiency. At the same time, the
particle size of ZnO decreased from around 10 µm to 1–2 µm, and the dispersion of ZnO
particles became more uniform in the NBR matrix, which indicated that the synthesized
ILs also played a role in promoting the dispersion of ZnO [132]. Meanwhile, the utilization
of ILs reduced the amount of 2-mercaptobenzothiazole in the vulcanized rubber, which
made the product contain fewer allergens and be friendlier to humans. Specialized ILs have
been designed by researchers. The ILs which contained carboxyl groups reacted with ZnO,
improving the solubility and dispersion of ZnO particles in the ethylene–propylene-diene
monomer (EPDM) matrix, which affected the vulcanization characteristics of the rubber
compound [136]. Furthermore, Martyna et al. investigated the role of ILs in the curing
reaction of cis-butadiene rubber under a peroxide curing system. The results showed that,
via incorporation of ILs, the dispersion of silica was significantly improved. At the same
time, the vulcanization time was shortened, as the activation energy of vulcanization was
decreased by ILs. Furthermore, ILs catalyzed the interfacial crosslinking reaction to increase
the crosslink density [137].
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3.2. Applications in the Thermal Stability of Rubber

The thermal stability of the nanocomposite depends on the dispersion of the filler
within the rubber matrix. The higher the dispersion of the filler, the better the thermal
resistance of the nanocomposite [90]. Graphene oxide (GO), which has a good gas barrier
property, can effectively prevent the entry of oxygen during the thermal degradation of
rubber. At the same time, its two-dimensional lamellar structure can play a role in delaying
the thermal degradation of rubber. As such, GO-filled rubber can effectively improve the
thermal stability of rubber. However, GO is hard to disperse uniformly in non-polar rubber,
resulting in deteriorated rubber performance. The thermal stability of rubber composites
can be improved by enhanced GO dispersion by modification via ILs, because the ILs
effectively embed into the interlayer of GO to improve its peeling degree [73].

The literature has reported that, in carbon black-filled EPDM composites, the structure
of the ILs, including the alkyl length bonded to the imidazolium and the type of anion, has
a significant effect on EPDM rubber composites, including rubber vulcanization, thermal
stability, and dynamic mechanical properties [127]. The ILs containing long alkyl chains
elevate the onset vulcanization temperature and lower the vulcanization enthalpies. Ad-
ditionally, the poor thermal stability of the pure ILs reduces the onset of decomposition
temperature of the EPDM composites. Moreover, the onset decomposition temperature of
pure ILs increases with the length of alkyl chains in the imidazolium cations. Among all
the ILs, the lowest onset decomposition temperature has been observed for ILs containing
chloride anions. As for the dynamic mechanical properties, the ILs’ type of anion seems
to be crucial. The storage modulus of vulcanizates containing alkylimidazolium chloride
was slightly lower or comparable to that of EPDM without ILs in the glassy state. In
contrast, vulcanizates containing ILs with BF4 and PF6 anions had a storage modulus about
100–300 MPa higher than that of reference vulcanizates. Kalaivani et al. investigated the
thermal degradation of unmodified and ILs-modified MWCNTs-filled chloroprene rubber
(CR) composites under nitrogen and air conditions. The thermal stability showed the fol-
lowing trend: CR < unmodified MWCNTs/CR composites < ILs-modified MWCNTs/CR
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composites. This trend was attributed to the enhanced interfacial interaction between
the ILs-modified MWCNTs and the CR and the improved dispersibility of the modified
MWCNTs in the CR [90]. The thermal stability of the vulcanizates is closely correlated
with the thermal stability of pure ILs. As well, the type of cation and the length of sub-
stituent have an important influence on the thermal stability of pure ILs. Sowinska et al.
studied ILs consisting of the same bis (trifluoromethylsulfonyl)imide (NTf2) anion, but
possess different cations, such as alkylpyrrolidinium, alkylammonium, and alkylsulfonium,
with different lengths of alkyl chains. The result showed that those with pyrrolidinium
and ammonium cation exhibited much better thermal stability than ILs with sulfonium
cation [27].

3.3. Applications in the Thermal Conductivity of Rubber

Thermally-conductive rubber can provide an effective heat dissipation path, shock
absorption, and insulation, expanding rubber’s application into aerospace, electronic
devices, automotive tires, etc. The thermal conductivity of rubber itself is poor, so the
research of thermally-conductive rubber formulations mainly lies in selecting the filling
system. The thermal conductivity of rubber products depends on the nature of the filling
system itself and its distribution within the rubber matrix.

Inorganic materials in polymers have no or very low thermal conductivity; however,
they have many internal voids. Therefore, the thermal conductivity of these inorganic
fillers can be improved by modification with high thermal conductivity ILs [138]. ILs im-
proved the dispersion of graphene within the matrix material through hydrogen bonding
and cation–π interactions, and the thermal conductivity of the composite with 5 phr ILs-
modified graphene was improved by 34% compared with the pure matrix material [139].
Compared with that of unmodified MWCNTs-filled HXNBR/HNBR, the thermal conduc-
tivity of HXNBR/HNBR composites filled by 7 phr [BMIM] [Cl]-modified MWCNTs was
increased by 29% [89].

3.4. Applications in Electrical Conductivity of Rubber

High ionic conductivity is one of the most important electrochemical properties of ILs.
At room temperature, the conductivity of ILs is generally at the 10−1 mS/cm level, making
improvement of the electrical conductivity of rubber a huge application potential.

The performance of the ternary polymer electrolytes is related to the ionic conductivity,
electrochemical stability, and thermal stability of the ILs used [1]. Vries et al. studied many
kinds of ternary polymer electrolytes, consisting of polyethylene oxide (PEO), lithium
trifluoromethylsulfonimide (LiNTf2), and different ILs. These ILs were a combination
of two cations (Pyr14 and Pyr12O1) and four anions (FSI, NTf2, BETI, and IM14). For
three of the four anions, the total ionic conductivity was increased with Pyr12O1, which
was compared to the corresponding Pyr14 ILs. The smaller the anions, the higher the
ionic conductivity (FSI > NTf2 > BETI > IM14). The ether moiety in the side chain of the
pyrrolidinium increased the ionic conductivity, but, in some cases, lowered the thermal
and electrochemical stability. Samples with NTf2, BETI, and IM14 were found to be fully
amorphous [140]. Joost et al. found that crosslinked ternary solid polymer electrolytes
(SPEs), which consisted of PEO, lithium bis(trifluoromethylsulfonyl)imide (LiNTf2), and
N-butyl-N-methyl-pyrrolidinium bis(trifluoromethylsulfonyl)imide(Pyr14NTf2) ILs, had
high thermal stability in nitrogen (>300 ◦C) and oxygen atmospheres (>150 ◦C), to make
the present SPE systems promising candidates for safe batteries [141].

Suradet et al. investigated the electrical conductivity of ENR/COPA blends by adding
ILs-modified MWCNTs before and after dynamic vulcanization (BDV and ADV). As for
BDV and ADV, MWCNTs prioritized locations in the COPA phase. However, some multi-
walled carbon nanotubes were also situated in the ENR domain under BDV. Compared
with those of TPV prepared by ADV, TPV prepared by BDV showed higher conductiv-
ity, dielectric properties, and better stress relaxation behavior, which may be due to the
better dispersion of MWCNTs in the two phases of the blend. In addition, with the in-
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crease of ILs’ load, electrical and dielectric properties of the elastomer material were both
improved [59]. The ionic conductivity of composites usually depends on the electrical
conductivity and ionic concentration of pure ILs. When two different imidazole-based
ILs ([BMIM] [NTf2] and [BMIM] [AlCl4]) were added to the NBR/SiO2 composites, they
increased the ionic conductivity of the composites (as shown in Figure 8). The conductivity
of hydrophobic [BMIM] [NTf2] was 3.5 mS/cm (25 ◦C), and that of hydrophilic [BMIM]
[AlCl4] was 9.2 mS/cm (25 ◦C). Compared to the NBR/SiO2 composite, the ionic conduc-
tivity of the NBR/SiO2 composites containing 2.5 and 5 phr [BMIM] [AlCl4] increased to
5.6 × 10−12 to 5.5 × 10−11 and 5.8 × 10−11 S/cm, respectively. In contrast, the conductivi-
ties of the composites containing [BMIM] [NTf2] salts were 1.1 × 10−9 S/cm (2.5 phr) and
1.8 × 10−9 S/cm (5 phr), respectively. This result may be related to the active participation
of the AlCl4 anion during the crosslinking process and the lower compatibility of ILs with
hydrophobic polymers [81].
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Qiong et al. obtained graft polymers by reacting the carboxyl group in ILs ([(HOOC)C1C1Im]
[NTf2]) with the epoxy group in epoxy natural rubber, and then introduced LiNTf2. Next,
they successfully prepared solid electrolyte composites with high ionic conductivity, in
which the maximum ionic conductivity reached 3.01 × 10−4 S/cm (23 ◦C) in the experi-
mental range [77]. Furthermore, a conductive solid electrolyte was obtained, in which NBR
was the matrix, with ILs as plasticizer and triallyl cyanurate as crosslinking agent. The
nitrogen atoms in the triallyl trimellitrate contributed to the dissociation of the lithium salt
and promoted the dissociation and migration of lithium ions, resulting in an electrolyte
with a high ionic conductivity at room temperature [15].

3.5. Applications in Polymeric Selectity and Permeability

It is an essential problem in natural and technical processes to separate components
from mixtures. For one thing, most substances exist in the form of mixtures in nature,
and some of which require separation and purification before being used by humans,
such as, water, edible salt, and microorganisms. For another, the separation of mixtures is
indispensable in chemical production. Furthermore, combination of membrane processes
with ILs has received more and more attention in impurity removal, because they enhance
separation efficiency, and also broaden their research and application areas [142]. The
realization of a membrane separation process allows for low-energy separation of mixtures.
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There are three methods for membrane separation: vapor permeation, gas permeation, and
pervaporation. As for different membrane separation methods, there are different applica-
tions. Polymeric membranes used for gas separation must have specific properties, such as
high permeability and selectivity for the desired gas. The unique physicochemical proper-
ties of ILs lay a foundation for their application in the direction of polymeric membranes.
Relevant research reports indicate that polymeric membranes are formed through mixing
of ILs with various polymers in appropriate solvents, and the gas transport performance
of membranes can be adjusted by changing the amount of ILs added. Furthermore, ion
gels formed by low molecular weight organic gelators and a low concentration of polymer
obtain high-efficiency membrane permeability through some methods, for example, using
ABA triblock copolymer and soaking an existing membrane in an excess of ILs.

The vapor permeation (VP) and gas permeation properties of the NR/CNTs/ILs com-
posite membranes were investigated. It was found that the permeability of the membranes
of the three systems—NR, NR/CNTs, and NR/CNTs/ILs—to oxygen (O2) and nitrogen
(N2) was highly variable, in which the NR/CNTs/ILs membrane had a high gas permeabil-
ity of 63.53 and 59.77 Barrers for O2 and N2, respectively; while in the NR/CNTs membrane,
O2, and N2 permeabilities were 30.5 and 27.72 Barrers, respectively. The reason was the
increased free volume of NR/CNTs/ILs membrane, due to the plasticizing properties of
ILs. Furthermore, vapor permeation of NR/CNTs/ILs membrane was also successfully
applied to the low-cost separation of benzene/cyclohexane azeotropic mixtures [20]. When
suitable nano-fillers were added, the polymeric membrane material improved the overall
selectivity [22]. Jiji et al. successfully prepared SBR/MWCNTs (CNTs)/ILs membranes
to separate toluene from toluene/methanol or toluene/heptane mixtures by permeation
vaporization. The mechanism ias shown in Figure 9, where the role of ILs in the composites
is to functionalize MWCNTs (CNTs) and be used as plasticizers [63,143].
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IL gels enable the transport properties and mechanical properties of the membranes to
be tailored over a wide range by variation of the ILs’ content from neat polymer to 80%.
The physical crosslinks, which are responsible for the gelation of the polymer/ILs blend,
are formed by crystalline domains in the semi-crystalline polymers and by microphase
separation and/or crystallization in the thermoplastic elastomers [144]. Nguyen et al. [145]
prepared gelled ILs membranes of either [C6MIM] [NTf2] or [C2MIM] [NTf2], with different
contents (1.5, 3, and 6 wt%) of an aspartame-based low molecular weight organic gelator,
and evaluated their mechanical and gas transport properties. These gelled ILs membranes
showed a trade-off between good mechanical stability and high gas permeability as a func-
tion of the gelator loading, in which an increase in the loading induced a stronger gelator
fiber network. Still, it also slowed down gas diffusion in the gel matrix, thus sacrificing
gas permeability. Compared to [C2MIM] [NTf2], the trade-off was observed to be more
pronounced for [C6MIM] [NTf2], probably because the longer carbon chains attached to
the imidazolium cation caused less mobility for the ILs’ molecules and stronger interac-
tions with the gelator molecules. Gu et al. [146] examined the gas separation performance
of two block copolymer ion gel systems, which were based on 15 wt% poly(styrene-b-
ethylene oxide-b-styrene) (SOS) or poly(styrene-b-methyl methacrylate-b-styrene) (SMS)
and [C2MIM] [NTf2]. The supported ion gel membranes exhibited CO2 permeabilities
between 710 and 840 Barrers, and, due to the high free ILs’ concentration in the system,
both SMS and SOS ion gels showed very high CO2 permeability. Moreover, the SOS gel
exhibited a much higher selectivity for both gas pairs (CO2/N2, and CO2/CH4) than both
the SMS gel and neat ILs, indicating that the gas separation performance of ion gels could
be significantly influenced by the mid-block identity.

As for ion gelation, relevant experts have certified that it is a suitable method to prepare
supported pseudo-solid membranes, with good CO2 separation performance similar to
pure ILs while exhibiting improved mechanical strength. The gelled IL membranes are
promising materials for CO2 separation that bridge ILs and solid polymers. However, using
a matrix reduces their potential CO2 separation efficiency, because the CO2 permeance of
the prepared gelled IL membranes is limited by the thickness of the used matrix [147].

3.6. Application of ILs in Electromagnetic Shielding

With the development of electronic information technology and the widespread use
of electronic devices, electromagnetic interference (EMI) has become a severe problem,
which interrupts the function of electronic devices and seriously affects human organs.
Conductive rubber composites filled with carbon materials, such as carbon black and MWC-
NTs, are widely-used as shielding materials for EMI because of their excellent electrical
conductivity and flexibility. Because of the cation–π interactions between the ILs and the
carbon fillers, ILs have been used to improve the dispersion of carbon fillers in polymer
matrices [34,65,148].

Composites of silicone rubber (SR)/POE blends, filled with carbon black and MWC-
NTs modified with ILs, were prepared by melt-blending and hot-pressing methods. An
SR/POE/CB-CNTs–ILs composite has higher EMI shielding than an SR/POE/CB–ILs
composite. This is because MWCNTs have large lengths and specific surface areas, leading
to stronger cation–π interactions with ILs than those between carbon black and ILs, which,
together with the larger length–diameter ratio of MWCNTs, concurrently contributed to the
formation of conductive networks [34]. The effects of the addition of MWCNTs modified by
ILs and the phase structure of the composites on the shielding performance were also inves-
tigated: (1) With the increase in modified multi-walled carbon nanotubes addition, the EMI
shielding performance of the composites significantly improved, because MWCNTs–ILs
could form more conductive networks and increase the leakage current; (2) The shielding
performance of the composites with co-continuous structure was higher than that of the
island structure due to the homogeneous dispersion of MWCNTs–ILs in the co-continuous
structure, which improved the electrical conductivity [35].
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3.7. Application of ILs in Piezoresistive Sensitivity

In the field of sensors, much attention has been given to the application of the piezore-
sistive behavior of conductive polymer nanocomposites (CPNCs). CPNCs are frontrunners
in strain sensor applications; the reason is that they have some advantages, such as facile
fabrication, tunable piezoresistive sensitivity, and the capability of sustaining high-level
stress/stain. One challenge is to achieve high sensitivity and high ductility/toughness
simultaneously in CPNCs-based piezoresistive strain sensors [61]. We could use conductive
fillers such as carbon nanotubes, carbon black, graphite, or their nanoscale derivatives to
obtain superior mechanical deformation for the composites. Furthermore, the dispersion of
filler plays a decisive role in the mixture. The use of ILs allows improvement of the filler
dispersion, rubber–filler interaction, and flexibility of the composites, which enhances the
piezoresistive performance and sensibility [12].

Kai et al. fabricated the highly piezoresistive and ductile poly (vinylidene fluoride)
(PVDF)-based CPNCS, and the interaction between the polymer matrix and MWCNTs
was regulated by using ILs (1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM]
[PF6]) as interface linker/modifier. The addition of ILs achieved uniform dispersion of
carbon nanotubes within PVDF, with higher electrical contact resistance, greatly improved
piezoresistive sensitivity, and gauge factors ranging from 7 up to 60 [61]. For the silicone
rubber filled with carbon black, the dispersion of carbon black in the matrix was improved
under the action of ILs (1-hexadecyl-3-methylimidazolium bromide). Compared with
CB/SR composite, CB–ILs/SR composite had a lower percolation threshold, higher piezore-
sistivity, better cyclic repeatability, and shorter relaxation time [80]. At the same time,
the ILs could increase response consistency and the flexibility of the composites [45,46].
These features will have great application prospects in flexible stress sensors and wearable
electronic devices.

3.8. Multiple Functions of ILs in Energy

As a green solvent, ILs possess several advantageous properties, including a wide
electrochemical window (ESW), high electrochemical and thermal stability, negligible
volatility, intrinsic ionic conductivity, non-flammability, and good solvation capabilities,
enabling them to be versatile candidates in various advanced electrochemical applications,
such as batteries and fuel cells.

Chen et al. selected [BMIM] [Cl] as the ionic liquid-based aqueous electrolyte due to
its high water-soluble and non-electrochemically active nature. The electrolytes were
promising for safe high voltage and high energy density applications, owing to the
high ESW (3~4.4 V), high ionic conductivity (>10 m S cm−1), and excellent flowability
(viscosity < 10 m Pa s). Not only did the use of [BMIM] [Cl] in flow batteries provide
high stability against decomposition, but also the chloride ions in [BMIM] [Cl] served
as charge carriers when used as a separator in anion exchange membranes [51,52]. In
order to obtain the operating potential window, Matsuda et al. chose tetrabutylammonium
hexafluorophosphate ([TBA] [PF6]) as a supporting electrolyte, achieving a maximum cell
potential of 2.3 V and a maximum solubility of approximately 0.9 M in redox flow battery
(RFBs) [104]. Additionally, Zhang et al. utilized tetraethylammonium hexafluorophosphate
([TEA] [PF6]) and 1-ethyl-3-methyl imidazolium hexafluorophosphate ([EMIM] [PF6]) as
supporting electrolytes, to achieve a potential range of 3.6 V (−2.5~1.5V) [105].

Electrolyte formulation modification is a very important methodology to obtain high
performance in RFBs. Specifically, the stability of electrolytes is largely dependent on
the electrolyte composition [2]. For [BMIM] [Cl], the reduction potential of the chloride
anions and the cations of BMIM is relatively low, and it is considered to be a suitable
electrochemical stabilization additive [51,52]. At the same time, the Coulomb repulsion
and steric hindrance of BMIM used as surfactant cationic additive could improve the
dispersibility of the electrolyte [149]. Li et al. reported that [BMIM] [BF4] was used
as an additive in the anode electrolyte of vanadium RFB (VRFB). When 1.0% [BMIM]
[BF4] was added, the electrochemical activity and stability of the anode electrolyte were
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largely improved, and the energy density and energy efficiency were also increased by
incorporating [BMIM] [BF4] [150]. In addition, ILs are also used as alternative reaction
media to conventional organic solvents for the fabrication of inorganic materials, and play
a key role in the synthesis of various cathode and anode active materials [151].

4. Summary and Outlook

Because of the diversity of the constituent anions and cations, ILs can be formed
by different anion–cation combinations, with infinite possibilities, in principle. In poly-
mer composites, the most commonly-used ILs are imidazoles and pyridines, at present.
Nanofillers usually need to be modified to improve their dispersion, as they tend to ag-
gregate within the polymer matrix. For carbon nanofillers, such as carbon black, GO, and
MWCNTs, ILs reduce the intermolecular interactions between the nanofiller particles by
cation–π interactions (or π–π interactions), because the interaction between cations of ILs
and electrons of graphite structures reduces its tendency of filler aggregation in the polymer
matrix. Furthermore, ILs can function as a self-lubricating layer of graphene, building a
strong interfacial layer of graphene–ionic liquid within the rubber matrix. At the same
time, they can effectively insert into the graphene oxide sheet layer to increase the degree
of exfoliation of graphene oxide, resulting in enhanced interfacial compatibility with the
rubber. Compared with carbon nanofillers, ILs play a much more complex role in silica-
filled composites, either as catalysts for silanization reactions or as interface compatibilizers,
based on cation–π interactions, hydrogen bonds, and covalent bonds.

In recent years, with the rapid development of ILs’ technology, their application
in polymer materials has become more and more extensive, ranging from dispersants,
vulcanization accelerators, and activator-like roles in rubber vulcanization to dispersing
inorganic fillers in a high thermal and electrical conductivity material, with increasing heat
resistance and electrical and thermal conductivity of composite materials. They have been
developed to be used as modifier and plasticizer to increase the free volume of polymer
membrane material, to improve their overall selectivity increase, which can be successfully
used to separate gas and liquid mixtures.

ILs have been utilized as functional additives (such as vulcanization accelerators,
curing agents, dispersants, plasticizers, and grafting agents), catalysts, solvents, and
electrolytes in various applications, which have been summarized and reviewed in this
manuscript. The effective application of ILs requires selecting cations and anions elabo-
rately. For example, the safer and longer service life electrolytes made by conductive rubber
materials are desired currently, which can be achieved by regulating the anion structure
of ILs. Organic/inorganic hybrid electrolytes incorporated with ILs are also specified for
these applications. For the industrial application of ILs, it is always preferable to use ILs
with low costs and good recyclability. Therefore, the high price of ILs is the most crucial
aspect limiting their application. The production of cheap and easily accessible ILs with
multiple functionalities is urgently needed. Furthermore, effective communication between
industry and academia will also facilitate the utilization of ILs at the commercial scale.
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