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Abstract: The antioxidant drug ebselen has been widely studied in both laboratories and in clinical
trials. The catalytic mechanism by which it destroys hydrogen peroxide via reduction with glutathione
or other thiols is complex and has been the subject of considerable debate. During reinvestigations
of several key steps, we found that the seleninamide that comprises the first oxidation product of
ebselen underwent facile reversible methanolysis to an unstable seleninate ester and two dimeric
products. In its reaction with benzyl alcohol, the seleninamide produced a benzyl ester that reacted
readily by selenoxide elimination, with formation of benzaldehyde. Oxidation of ebselen seleninic
acid did not afford a selenonium seleninate salt as previously observed with benzene seleninic acid,
but instead generated a mixture of the seleninic and selenonic acids. Thiolysis of ebselen with benzyl
thiol was faster than oxidation by ca. an order of magnitude and produced a stable selenenyl sulfide.
When glutathione was employed, the product rapidly disproportionated to glutathione disulfide and
ebselen diselenide. Oxidation of the S-benzyl selenenyl sulfide, or thiolysis of the seleninamide with
benzyl thiol, afforded a transient thiolseleninate that also readily underwent selenoxide elimination.
The S-benzyl derivative disproportionated readily when catalyzed by the simultaneous presence
of both the thiol and triethylamine. The phenylthio analogue disproportionated when exposed
to ambient or UV (360 nm) light by a proposed radical mechanism. These observations provide
additional insight into several reactions and intermediates related to ebselen.

Keywords: organoselenium chemistry; antioxidants; ebselen; seleninamide; seleninic acid; selenenyl
sulfide; methanolysis; disproportionation

1. Introduction

The glutathione peroxidases (GPx) act as biological antioxidants by catalytically de-
stroying peroxides, formed during aerobic metabolism, with the tripeptide thiol glutathione
(GSH) [1–14]. This ability serves to maintain redox balance in cells and minimizes oxidative
stress caused by hydrogen peroxide, lipid hydroperoxides and downstream species such
as the hydroxyl radical [15–19]. Several members of the GPx family owe their antioxidant
activity to the presence of selenol moieties in the form of selenocysteine residues. Since
oxidative stress has been implicated in many diseases and degenerative conditions, refer-
ences [20–27] considerable effort has been directed toward the discovery of small-molecule
mimetics of GPx that could be administered therapeutically [28–39]. Ebselen (1) has ar-
guably been the most widely studied such selenium-based antioxidant. It was first reported
by Lesser and Weiss in 1924 [40], but its antioxidant properties were not discovered until
much later [41–48]. Numerous efforts to elucidate the catalytic cycle by which it reduces
peroxides with stoichiometric amounts of thiols have been reported and several reviews on
the subject have appeared [49–52]. Ebselen has undergone clinical trials as a neuro- and
cardioprotective agent (Daiichi-Sankyo Inc. (Tokyo, Japan), Phase 3) [53,54], as a drug for
restoring hearing loss (Sound Pharmaceuticals, Inc. (Seattle, WA, USA), Phase 2) [55,56]
and in the treatment of bipolar disorder (Sound Pharmaceuticals, Inc. in collaboration with
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Oxford University (Oxford, UK), Phase 2) [57–59]. A clinical trial of ebselen as a therapy for
SARS-CoV-2 was also announced recently [60]. Scheme 1 shows some of the key pathways
that have been proposed in its catalytic antioxidant mechanism [61–70]. Since various
groups have employed different thiols, peroxides, conditions and assay techniques in their
mechanistic investigations, the results have not always been consistent. We have therefore
re-examined several key steps and related intermediates in order to provide additional
insight into their behavior and possible relevance to the overall catalytic process.
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Scheme 1. Pathways for the catalytic cycle of ebselen.

2. Results and Discussion

The first step in Scheme 1 (Scheme 1 is a modified and updated version of an earlier
depiction of the possible mechanisms of ebselen [46]) can either be oxidation of ebselen
by the peroxide to produce an oxidized intermediate such as 2 via (Path A) or thiolysis to
afford the selenenyl sulfide 6 via (Path B) and its disproportionation product diselenide
7 (Path C). In principle, each of these intermediates 2 and 6, along with the initial 1, can
be further transformed by either oxidation or reduction with the thiol, resulting in six key
steps, which we investigated in turn.

2.1. Oxidation of Ebselen

By comparison with ebselen, the oxidation of diphenyl diselenide and its congeners
to afford the corresponding seleninic acids has been widely studied and the latter can be
used as stoichiometric or catalytic oxidants for a variety of useful transformations (for
selected reviews, see: [71–76]). We recently discovered that the epoxidation of cyclooctene
effected with benzeneseleninic acid (9) in the presence of hydrogen peroxide proceeds
chiefly through the corresponding peroxyselenonic acid 13 [77] and not directly from
the peroxyseleninic acid 10, as previously suggested [78–83]. This is due to the rapid
conversion of 10 to the selenonium selenonate salt 11, followed by further oxidation to 12
and finally to 13 in the presence of hydrogen peroxide (Scheme 2). Several earlier reports
of the preparation of 12 [84,85] were subsequently shown to be in error, as the products
proved to be the salt 11, as later confirmed by x-ray crystallography [77]. It was therefore of
interest to investigate the similar oxidation of ebselen to see whether products analogous
to 11–13 would again be formed.



Molecules 2023, 28, 3732 3 of 24

Molecules 2023, 28, x FOR PEER REVIEW 3 of 23 
 

 

of interest to investigate the similar oxidation of ebselen to see whether products analo-

gous to 11–13 would again be formed. 

 

Scheme 2. Intermediates in epoxidation with benzeneseleninic acid. 

The oxidation of ebselen with hydrogen peroxide and other oxidants was reported to 

produce seleninamide 2 initially, which then underwent thiolysis to afford the selenenic 

acid 4 [62]. Furthermore, Kamigata et al. [86] reported that seleninamides were formed 

when various cyclic selenenamides related to ebselen were treated with ozone under an-

hydrous conditions, but the products were not characterized in full. Sarma and Mugesh 

[46] subsequently determined that oxidation of 1 with aqueous hydrogen peroxide pro-

duced the seleninic acid 3, via the hydrolysis of initially formed 2. The structure of 3 was 

unequivocally confirmed by x-ray crystallography. 

We re-examined the reaction of ebselen with ozone in anhydrous dichloromethane 

and isolated the seleninamide 2 in nearly quantitative yield. The product was thermally 

stable and was fully characterized but, as expected, was converted to the seleninic acid 3 

upon exposure to water. When 3 was heated under vacuum, it regenerated the selenina-

mide 2 (Scheme 3). The reversibility of the hydration/dehydration of 2 and 3 was also ev-

ident during the preparation of 2 by oxidation of 1 with aqueous hydrogen peroxide in 

dichloromethane or chloroform. Under such conditions, the seleninamide 2 was isolated 

after 15 min, but on longer exposure to water (including water present in aqueous hydro-

gen peroxide), the main product was the seleninic acid 3. These experiments confirm that 

the seleninamide can be formed initially by oxidation of 1, but under physiological condi-

tions, would undergo hydrolysis (or thiolysis, vide infra) to the seleninic acid. 

 

Scheme 3. Oxidation and reversible hydrolysis of ebselen. 

It has also been suggested that further oxidation of seleninic acid 3 to the selenonic 

acid 14 might be feasible in excess hydrogen peroxide [67,70,87], but 14 has never been 

isolated or identified. Selenonic acids in general have been little studied, but a few have 

been reported from the further oxidation of the corresponding seleninic acids. Several ex-

amples of such oxidations were achieved by using potassium permanganate, followed by 

perchloric acid to liberate the free selenonic acids from their potassium salts [88–90], while 

several salts of carbohydrate-derived selenonic acids were obtained by using dimethyldi-

oxirane (DMDO) as the oxidant [91]. The selenonic acid derivative of selenocysteine has 

also been prepared and its x-ray crystal structure was determined [92]. More recently, we 

described an effective one-pot synthesis of various selenonic acids from aryl bromides 

[93]. On the other hand, the formation of the isomeric peroxyseleninic acid 15 from 3 does 

Scheme 2. Intermediates in epoxidation with benzeneseleninic acid.

The oxidation of ebselen with hydrogen peroxide and other oxidants was reported
to produce seleninamide 2 initially, which then underwent thiolysis to afford the sele-
nenic acid 4 [62]. Furthermore, Kamigata et al. [86] reported that seleninamides were
formed when various cyclic selenenamides related to ebselen were treated with ozone
under anhydrous conditions, but the products were not characterized in full. Sarma and
Mugesh [46] subsequently determined that oxidation of 1 with aqueous hydrogen peroxide
produced the seleninic acid 3, via the hydrolysis of initially formed 2. The structure of 3
was unequivocally confirmed by x-ray crystallography.

We re-examined the reaction of ebselen with ozone in anhydrous dichloromethane
and isolated the seleninamide 2 in nearly quantitative yield. The product was thermally
stable and was fully characterized but, as expected, was converted to the seleninic acid
3 upon exposure to water. When 3 was heated under vacuum, it regenerated the seleni-
namide 2 (Scheme 3). The reversibility of the hydration/dehydration of 2 and 3 was also
evident during the preparation of 2 by oxidation of 1 with aqueous hydrogen peroxide in
dichloromethane or chloroform. Under such conditions, the seleninamide 2 was isolated
after 15 min, but on longer exposure to water (including water present in aqueous hydrogen
peroxide), the main product was the seleninic acid 3. These experiments confirm that the
seleninamide can be formed initially by oxidation of 1, but under physiological conditions,
would undergo hydrolysis (or thiolysis, vide infra) to the seleninic acid.
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It has also been suggested that further oxidation of seleninic acid 3 to the selenonic acid
14 might be feasible in excess hydrogen peroxide [67,70,87], but 14 has never been isolated
or identified. Selenonic acids in general have been little studied, but a few have been
reported from the further oxidation of the corresponding seleninic acids. Several examples
of such oxidations were achieved by using potassium permanganate, followed by perchloric
acid to liberate the free selenonic acids from their potassium salts [88–90], while several
salts of carbohydrate-derived selenonic acids were obtained by using dimethyldioxirane
(DMDO) as the oxidant [91]. The selenonic acid derivative of selenocysteine has also been
prepared and its x-ray crystal structure was determined [92]. More recently, we described
an effective one-pot synthesis of various selenonic acids from aryl bromides [93]. On the
other hand, the formation of the isomeric peroxyseleninic acid 15 from 3 does not appear
to have been reported during the oxidation of ebselen (Mugesh et al. [46] also postulated
the formation of the corresponding peroxyselenenic acid intermediate (ArSe-OOH) from
seleninic acid 3. However, given the propensity for Se(II) species to undergo oxidation to
Se(IV) in the presence of hydrogen peroxide and the expected greater stability of seleninic
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acid 3 compared to its peroxyselenenic acid isomer, this would likely comprise a very
minor pathway).

In order to provide additional insight into the further oxidation of seleninic acid 3
during the oxidation of ebselen, we first performed Gaussian 09 DFT computations to
obtain the optimized geometries and relative energies of the isomeric selenonic acid 14
and peroxyseleninic acid 15, using the B3LYP platform, with cc-pVTZ and 6-311G(d,p)
basis sets for Se and the lighter elements, respectively (for details, see the Supporting
Information). Both 14 and 15 showed significant intramolecular hydrogen bonding between
their hydroxyl or hydroperoxyl hydrogens and the corresponding selenoxide-like oxygen
atoms, with OH—O distances of 2.576 Å and 2.026 Å, respectively. Peroxy acid 15 also
displayed coordination between the carbonyl oxygen and selenium atoms, with a C=O—Se
distance of 2.676 Å. On the other hand, 14 exhibited a strong hydrogen bond with a bond
distance of 1.991 Å between the amide proton and a selenoxide oxygen atom (NH—O=Se).
These interactions are within the sum of the van der Waals radii of the respective atoms. The
two aryl moieties were not coplanar, exhibiting twist angles of 45.65◦ and 28.04◦ in 14 and 15,
respectively. The selenonic acid 14 proved more stable than the peroxyseleninic acid 15 by
28.4 kcal mol−1. The greater stability of 14 indicates that it would be the thermodynamically
dominant product of the overall oxidation of seleninic acid 3. An early report indicated
that peroxyseleninic acid 10 isomerized to the selenonic acid 12 via a three-membered
dioxyselenirane intermediate when heated in acetonitrile: [94]. However, subsequent
work [77] revealed that the product was the salt 11 as indicated by x-ray crystallography.
Interestingly, the conformation of 14 shown in Figure 1, where the carbonyl group is anti to
the selenium moiety, is more stable than the syn conformer by 2.01 kcal mol−1. In contrast,
the syn conformer of 15 shown in Figure 1 is more stable than the anti by 2.75 kcal mol−1.
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Figure 1. Geometry of optimized conformations of 14 and 15.

As shown in Scheme 1, the initial step in the reaction of ebselen in the presence of thiols
and hydrogen peroxide (as in most assays or in vivo), can in principle be either oxidation
to 2 or thiolysis to selenenyl sulfide 6. In a separate experiment to establish relative rates of
these processes, the oxidation of 1 with 1.0 equiv of hydrogen peroxide was monitored by
1H NMR spectroscopy in CDCl3 solution at 25 ◦C, revealing that the oxidation to 3 was
50% complete after 40 min and 90% complete after 140 min (Figure 2A). The oxidation
affords the seleninamide 2 initially, followed by its hydrolysis to the seleninic acid, and is
considerably slower than the thiolysis of 1 (vide infra) depicted in the catalytic cycles B and
C of Scheme 1 and suggests that cycle A plays a minor role, if any, in the catalytic mechanism
of ebselen under these conditions. This is in agreement with computational work by Antony
and Bayse [95], who reported that the thiolysis of ebselen to the corresponding selenenyl
sulfide is favored over its oxidation to the seleninamide 2. The dominance of thiolysis
over oxidation is expected to be even greater in vivo as a result of the high concentrations
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of glutathione and other thiols in cells, compared to the concentrations of ROS species.
The brief induction period shown in Figure 2A suggests that autocatalysis by the product
seleninic acid 3 in the oxidation of ebselen with hydrogen peroxide may be occurring, and
the induction period was slightly but noticeably shortened by the addition of a catalytic
amount of seleninic acid 3 at the start of the reaction. The linear nature of the plots in
Figure 2B is also consistent with a catalytic reaction where the concentration of the active
catalyst is constant.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 22 
 

 

 

(A) 

 

(B) 

Figure 2. (A). Oxidation of ebselen (1) with 1.0 equiv of hydrogen peroxide. (B) Oxidation of ebselen 

(1) with 1.0 equiv of hydrogen peroxide and 0.1 equiv (10 mol %) of 3. All reactions were conducted 

using 96 mg (0.35 mmol of ebselen in 10 mL of CDCl3 containing dimethyl sulfone (Me2SO2) as an 

internal standard). Error bars in (A) are based on triplicate runs shown at ±1 standard deviation. A 

single run was made in (B). The indicated mol % of 3 in (B) was adjusted for the 10% added at the 

start. 

It was also of interest to determine if the selenonium selenonate salt 16 was produced 

along the oxidation pathway leading from seleninic acid 3, as was previously observed 

with 11 in the phenyl series shown in Scheme 2. By analogy, the reaction of seleninic acid 

3 with 0.5 equiv of hydrogen peroxide was expected to produce salt 16 by conversion of 

50% of 3 to selenonic acid 14, followed by protonation of the remaining 3 by the stronger 

acid 14. While the pKa’s of 3 and 14 have not been reported, the analogous pKa’s of ben-

zeneseleninic and benzeneselenonic acids 9 and 12 were found to be 4.56 and 1.82, respec-

tively [77]. An earlier pKa measurement of 9, was reported as 4.79 [96]. The amphoteric 

nature of 9 has also been noted previously; see: [97]. Unfortunately, the process proved to 

be more complex than the one shown in Scheme 2 and we were unable to isolate pure 16 

under a variety of conditions. Mixtures of products were obtained with their composition 

varying with solvent, duration of reaction, ratio of reactants and other conditions. The 

cleanest results were obtained when the reaction was performed in acetonitrile with 0.5 

equiv of hydrogen peroxide, resulting in the formation of a white precipitate that dis-

played two faint peaks in the UDEFT 77Se NMR spectrum (The UDEFT protocol is useful 

for decreasing acquisition times for NMR signals from nuclei with slow relaxation times 

that are otherwise difficult to obsrve; see: [98]) at 1162 and 1020 ppm in DMSO-d6 (see 

Supporting Information). Longer acquisition times to obtain better 77Se spectra were pre-

cluded by the decomposition of the initial product. By comparison, an authentic sample 

of 3 gave a peak at 1143.3 ppm in DMSO-d6, which shifted to 1167.4 ppm with the addition 

of 1% D2O. This correlates closely with the downfield signal at 1162.5 ppm in the precipi-

tate. In our previous work [93], all of the selenonic acids studied produced 77Se NMR sig-

nals in the 1020–1031 ppm range in D2O, consistent with the more upfield signal at 1020.2 

ppm. These results suggest that the species present are the free seleninic and selenonic 

0

20

40

60

80

100

0 15 30 45 60 75 90 105 120 135 150

m
o

l f
ra

ct
io

n
 (

%
)

Time (min)

Ebselen
Seleninic acid 3

0

20

40

60

80

100

0 15 30 45 60 75

m
o

l f
ra

ct
io

n
 (

%
)

Time (min)

Ebselen
Seleninic acid 3

Figure 2. (A). Oxidation of ebselen (1) with 1.0 equiv of hydrogen peroxide. (B) Oxidation of ebselen
(1) with 1.0 equiv of hydrogen peroxide and 0.1 equiv (10 mol %) of 3. All reactions were conducted
using 96 mg (0.35 mmol of ebselen in 10 mL of CDCl3 containing dimethyl sulfone (Me2SO2) as an
internal standard). Error bars in (A) are based on triplicate runs shown at ±1 standard deviation.
A single run was made in (B). The indicated mol % of 3 in (B) was adjusted for the 10% added at
the start.

It was also of interest to determine if the selenonium selenonate salt 16 was produced
along the oxidation pathway leading from seleninic acid 3, as was previously observed with
11 in the phenyl series shown in Scheme 2. By analogy, the reaction of seleninic acid 3 with
0.5 equiv of hydrogen peroxide was expected to produce salt 16 by conversion of 50% of 3 to
selenonic acid 14, followed by protonation of the remaining 3 by the stronger acid 14. While
the pKa’s of 3 and 14 have not been reported, the analogous pKa’s of benzeneseleninic
and benzeneselenonic acids 9 and 12 were found to be 4.56 and 1.82, respectively [77]. An
earlier pKa measurement of 9, was reported as 4.79 [96]. The amphoteric nature of 9 has
also been noted previously; see: [97]. Unfortunately, the process proved to be more complex
than the one shown in Scheme 2 and we were unable to isolate pure 16 under a variety
of conditions. Mixtures of products were obtained with their composition varying with
solvent, duration of reaction, ratio of reactants and other conditions. The cleanest results
were obtained when the reaction was performed in acetonitrile with 0.5 equiv of hydrogen
peroxide, resulting in the formation of a white precipitate that displayed two faint peaks in
the UDEFT 77Se NMR spectrum (The UDEFT protocol is useful for decreasing acquisition
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times for NMR signals from nuclei with slow relaxation times that are otherwise difficult to
obsrve; see: [98]) at 1162 and 1020 ppm in DMSO-d6 (see Supporting Information). Longer
acquisition times to obtain better 77Se spectra were precluded by the decomposition of the
initial product. By comparison, an authentic sample of 3 gave a peak at 1143.3 ppm in
DMSO-d6, which shifted to 1167.4 ppm with the addition of 1% D2O. This correlates closely
with the downfield signal at 1162.5 ppm in the precipitate. In our previous work [93], all
of the selenonic acids studied produced 77Se NMR signals in the 1020–1031 ppm range in
D2O, consistent with the more upfield signal at 1020.2 ppm. These results suggest that the
species present are the free seleninic and selenonic acids 3 and 14, respectively, and not
the expected salt 16. The difference between this oxidation and that of benzeneseleninic
acid 9 in Scheme 2 is likely due to the cyclization of the selenonium moiety of 16 with the
amide side chain to produce 2. In the presence of water, 2 is expected to hydrolyze to 3,
resulting in its regeneration (Scheme 4). Interestingly, oxidation of 3 with a full equivalent
of hydrogen peroxide under a variety of conditions afforded mixtures in which the seleninic
acid was the only identifiable product. Selenonic acid 14, which to our knowledge has not
yet been reported, could not be isolated from the oxidation of 3. Longer reaction times in
the oxidation resulted in intractable mixtures that were not investigated further. It therefore
appears that the oxidation of ebselen seleninic acid 3 behaves quite differently from that of
the phenyl analogue 9, which can be attributed to the presence of the nucleophilic amido
side chain in 3.
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2.2. Formation of Methyl Seleninates from Seleninic Acid 3

Due to the relatively poor aqueous solubility of ebselen and many other GPx mimetics,
assays for measuring their relative catalytic activities in the reduction of hydrogen peroxide
with thiols have frequently been performed in methanol or mixtures of methanol with other
solvents. This raises the possibility that in the presence of the alcohol, methanolysis of
oxidized ebselen species such as seleninamide 2 or esterification of seleninic acid 3, which to
our knowledge have not been previously reported, might compete with hydrolysis or other
reactions of 2 in such assays. Indeed, when 2 was simply dissolved in methanol, the methyl
ester 17a was identified in the reaction mixture by NMR spectroscopy and ESI HRMS,
along with the seleninamide 2. Minor amounts of unexpected dimeric species consistent
with structures 18a and 18b were also detected by HRMS (see Scheme 5 and Supporting
Information for NMR and mass spectral data). Attempts to isolate the methyl ester 17a
by removal of methanol under vacuum afforded only 2, identical to an authentic sample.
These results indicate that the methyl ester 17a and seleninamide 2 are in equilibrium in
methanol solution and that removal of the solvent shifts the equilibrium to the cyclized
product 2. Similarly, 18a and 18b could not be isolated. Further evidence for the ability of
seleninamide 2 to undergo spontaneous esterifications was obtained from its reaction with
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benzyl alcohol instead of methanol. After 3 h, the formation of benzaldehyde was observed
in 20% yield (1H NMR), consistent with the formation of the benzyl ester 17b, followed by a
selenoxide syn-elimination to afford selenenic acid 4 and the aldehyde, and then cyclization
and dehydration of 4 to ebselen (1) (Scheme 6). Prolonged exposure of 2 to methanol for
24 h also resulted in the generation of 1, indicating that the methyl ester 17a is formed
and undergoes a similar syn-elimination, albeit more slowly than in the case of 17b. These
experiments indicate that a separate catalytic cycle under oxidative conditions in alcohols
can operate via oxidation of 1, followed by esterification of 2, selenoxide elimination of 17
and cyclization/dehydration back to 1.
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While it is not known what precise effect the above processes have on the outcome
of assays for GPx-like activity when conducted in methanolic media, the possibility exists
that the results could be affected by esterification side reactions.

2.3. Thiolysis of Ebselen

In contrast to the relatively slow oxidation of ebselen (1) with hydrogen peroxide,
its thiolysis with benzyl thiol in CDCl3 to produce the known selenenyl sulfide 6a [62]
was monitored by 1H NMR analysis, as shown in Figure 3. The reaction reached ca.
60% completion by the time the first data point was obtained after 5 min and was 94%
complete after 40 min. The thiolysis of 1 was also performed with glutathione (GSH) in
a two-phase system because of incompatible solubilities of the reactants, resulting in a
slower reaction than with benzyl thiol. Thus, an aqueous solution of glutathione was
added to an equimolar amount of 1 in CDCl3-CD3OD (95:5) with vigorous stirring, and
the corresponding selenenyl sulfide 6b [63] began to precipitate within a few minutes
(Scheme 7). The disappearance of ebselen under these conditions was again monitored by
1H NMR analysis and is shown in Figure 4. The reason for the unexpectedly linear plot
in Figure 4 is not clear at this time, but may be the result of concentration effects at the
interface between the immiscible solvents where the reaction occurs. After 60 min, the
precipitated selenenyl sulfide was collected in 92% yield. When the reaction was repeated
in DMSO-d6/D2O (85:15) under homogeneous conditions, ebselen was consumed much
more rapidly and the selenenyl sulfide 6b was observed as the sole product within one
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min. Repetition of the above process with two equiv of glutathione resulted in almost
immediate disproportionation of the initially formed selenenyl sulfide 6b (vide infra) to
the corresponding diselenide 7 and glutathione disulfide (GSSG). The entire process was
again complete in less than 1 min, indicating that the disproportionation is accelerated
by the presence of excess glutathione. These results are consistent with those reported
by Mugesh et al. [69,70], who also noted that the rate of thiolysis of ebselen is highly
dependent on the nature of the thiol.
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Figure 3. Thiolysis of ebselen with one equiv of benzyl thiol. The reaction was conducted using
96 mg (0.35 mmol) of ebselen in 10 mL of CDCl3 containing dimethyl sulfone (Me2SO2) as an internal
standard. Reactions were initiated by the addition of 41 µL of BnSH (0.35 mmol). Analyses were in
triplicate and error bars are shown at ±1 standard deviation.
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Scheme 7. Thiolysis of ebselen.

These experiments show that the rate of thiolysis of 1 is considerably faster than
its rate of oxidation (see Figure 2 for comparison) when performed under homogeneous
conditions in either CDCl3 with benzyl thiol or in DMSO-d6 with glutathione. The faster
rate of thiolysis compared to oxidation of ebselen confirms that the oxidative pathway A in
Scheme 1 would only be competitive under extremely high concentrations of hydrogen
peroxide and elevated conditions of peroxide-induced oxidative stress.
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Figure 4. Thiolysis of ebselen with one equiv of glutathione under two-phase conditions. The reaction
was conducted using 138 mg (0.503 mmol) of ebselen in 4 mL of 95:5 CDCl3/CD3OD containing
dimethyl sulfone (Me2SO2) as an internal standard. Reactions were initiated by the addition of
153 mg (0.498 mmol) of glutathione in 1 mL of D2O with vigorous stirring to ensure proper mixing.

2.4. Reduction of Seleninamide 2 with Benzyl Thiol

Earlier studies of the reactions of benzeneseleninic acid (9) with n-butyl and t-butyl
thiols were reported by Kice and Lee [99], who showed that thiolseleninates (RSSe(=O)Ph)
are first generated, followed by their reaction with additional thiol to afford the correspond-
ing selenenyl sulfides (RSSePh) and finally disproportionation to diphenyl diselenide and
either di-n-butyl or di-t-butyl disulfide. With t-butyl thiol, the resulting thiolseleninate
proved isolable, while the reaction of the n-butyl thiolseleninate with additional n-butyl
thiol proved faster than its formation, thus precluding its direct observation. Kice and
Purkiss [100] later showed that a radical process propagated by PhSeO• was implicated in
the decomposition of the t-butyl thiolseleninate.

The reaction of seleninamide 2 with benzyl thiol was investigated by Glass et al. in
1989 [101], but since then, this reaction has received limited attention. These researchers
postulated that the thiolseleninate 19 was formed initially and then underwent a selenoxide
elimination to produce thiobenzaldehyde and selenenic acid 4 (Scheme 8). The formation
of the thiobenzaldehyde was confirmed by a trapping experiment with cyclopentadi-
ene, which afforded the corresponding hetero-Diels-Alder cycloadduct 20 in 90% yield.
The selenoxide elimination of another thiolseleninate had been previously reported by
Reich et al. [102].
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Scheme 8. Trapping of thioaldehyde from the thiolysis and selenoxide elimination of 2 by
Glass et al. [101].

We investigated the similar reaction of seleninamide 2 with three equiv of benzyl
thiol under similar conditions to those of Glass et al. Instead of trapping the thioaldehyde
produced by selenoxide elimination, the reaction mixture was analyzed by 1H NMR
spectroscopy in CDCl3 with dimethyl sulfone as an internal standard. The reaction was
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essentially complete within 5 min and conversion of 3 to the selenenyl sulfide 6a was
observed, along with minor amounts of dibenzyl disulfide, similarly to the report by
Glass et. al. Small amounts of benzaldehyde (1H NMR signal at 10.02 ppm) were also
present, presumably from oxidation or hydrolysis of thiobenzaldehyde as well as one equiv
of unreacted thiol. This supports the mechanism in Scheme 9 as the dominant pathway,
in agreement with the previous work and consistent with the consumption of only two
equiv of thiol. When only one equiv of benzyl thiol was employed, a transient blue colour
characteristic of the thiolaldehyde formed immediately but faded within a few seconds.
Similarly, the appearance of a faint AB quartet at 4.5 ppm in the 1H NMR spectrum of the
reaction mixture is consistent with the transient formation of the chiral thiolseleninate 19.
The reaction of seleninamide 2 with either one or two equiv of benzyl thiol afforded more
complex mixtures, including several unidentified selenium species that were present in
the 77Se NMR spectra. The formation of dibenzyl disulfide can be rationalized by attack
of the thiol on the sulfur atom of 19 in a minor pathway that would also lead to selenenic
acid 4. (Glass et al. [101] suggested that the disulfide could be produced by the reaction of
selenenic acid 4 with thiobenzaldehyde and benzyl thiol). Moreover, the present reaction
was too fast for rate measurement by NMR spectroscopy, since completion was essentially
reached by the time the second spectrum could be acquired. It therefore appears that in the
case of the unlikely formation of the seleninamide or seleninic acid in vivo (vide supra), it
would have a very limited lifetime, given the abundance of glutathione and other native
thiols in cells and the fast reaction rate observed in this model system.
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2.5. Oxidation of Selenenyl Sulfides 6a

Since selenenyl sulfides 6 are relatively stable and are postulated to act as key interme-
diates in the mechanisms shown in paths B and C in Scheme 1, as well as comprising the
principal product in Scheme 9, it was of interest to investigate their further transformations
in more detail. Thus, the oxidation of 6a with hydrogen peroxide in the absence of thiol was
expected to generate the corresponding thiolseleninate 19 initially, followed by selenoxide
elimination as in Scheme 9.

The oxidation of 6a with one equiv of hydrogen peroxide in CDCl3 was monitored
by 1H NMR spectroscopy (Scheme 10 and Supporting Information). The consumption of
6a reached 50% completion in 45 min, but the presence of 25% of unreacted 6a persisted
even after 100 min. Small amounts of dibenzyl disulfide were also formed, along with
the highly insoluble ebselen diselenide 7, which precipitated from the reaction mixture,
presumably from the disproportionation of 6a. Upon completion, the 77Se NMR spectrum
revealed two signals at 961 and 560 ppm, matching those of ebselen and selenenyl sulfide 6a,
respectively (Scheme 10). Since the accumulation of significant amounts of thiolseleninate
19 was not observed, we conclude that the initial oxidation of 6a is relatively slow compared
to the more facile selenoxide elimination of thiolseleninate 19 or its decomposition via other
pathways. As in Scheme 9, a 1H-NMR signal at 10.02 ppm was attributed to the formation
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of benzaldehyde from the hydrolysis or further oxidation of thiobenzaldehyde. When the
reaction was repeated with 1.15 equiv of hydrogen peroxide in chloroform–methanol (95:5),
ebselen was isolated in 82% yield.
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As seen in path B of Scheme 1, the further reaction of selenenyl sulfides 6 with thiols
can proceed via attack at the sulfur atom of 6, thus generating the selenol 5 and the corre-
sponding disulfide. Alternatively, disproportionation of the selenenyl sulfide results in a
mixture of ebselen diselenide 7 and the disulfide (path C in Scheme 1). The selenol mecha-
nism in path B has been validated by several groups, including via trapping of the selenol
with various electrophiles [63,65,66] and through computational experiments [103,104].

Furthermore, Mugesh et al. [45] have shown that thiol attack at the selenium atom of
6 is also possible, but results in an unproductive thiol exchange process. The presence of
substituents that coordinate with the selenium atom of 6, as well as the use of glutathione
as the thiol, favor the formation of the selenol 5. The disproportionation of ebselen-
derived selenenyl sulfides 6 to the corresponding disulfides and diselenides has also
been studied [31,46,67], as well as that of other selenenyl sulfides (for examples of the
disproportionation of other selenenyl sulfides, see [105–108]).

In separate control experiments, we found that the benzyl derivative 6a is stable in
dichloromethane at room temperature, as well as in the presence of an equivalent amount
of benzyl thiol, 10 mol % of trifluoroacetic acid, or 10 mol % of triethylamine. In each
case, it was recovered unchanged after 28 h. However, in the presence of both 10 mol % of
triethylamine and one equiv of benzyl thiol, the solution rapidly turned yellow and the
highly insoluble diselenide 7 began to precipitate within 3 min. The disproportionation gave
a t1/2 of 25 min and was essentially complete in 1 h, at which time filtration afforded 7 in
80% isolated yield (Scheme 11 and Figure 5). When only 10 mol % of the thiol was employed,
the reaction still progressed to completion, albeit more slowly, with t1/2 = 220 min. The
unchanging concentration of the thiol during these experiments confirms that the role of the
thiol is catalytic. On the other hand, it will be recalled that the ebselen–glutathione selenenyl
sulfide 6b, in contrast to the benzyl analogue 6a, underwent complete disproportionation
within 1 min in DMSO-d6 in the presence of excess glutathione, as shown previously in
Scheme 7. Presumably, excess glutathione provides both the catalytic thiol and amino
groups required for the process. Based on these observations, we propose the process
shown in Scheme 12 for the disproportionation of 6a. The triethylamine is sufficiently
basic to effect partial deprotonation of benzyl thiol (The pKa of both aliphatic thiols and
of trialkylammonium species is ca. 10-11, thereby ensuring that about half of the thiol is
deprotonated by an equimolar amount of triethylamine). The resulting thiolate reacts at
the sulfur atom of 6a to generate dibenzyl disulfide and the corresponding selenolate 21,
the presence of which was verified by trapping with 1-chloro-2,4-dinitrobenzene [65] to
afford 22 in 98% yield. In the absence of the trapping agent, the selenolate then attacks a
second molecule of 6a at the selenium atom, thus producing diselenide 7 and regenerating
the thiol catalyst.
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Figure 5. Disproportionation of selenenyl sulfide 6a in the presence of (A) benzyl thiol (1 equiv) and
triethylamine (10 mol %); (B) benzyl thiol 10 mol% and triethylamine (10%). Reactions in (A) were
conducted using 139 mg (0.35 mmol) of 6a in 10 mL of CDCl3 containing dimethyl sulfone (Me2SO2)
as an internal standard. Reactions were initiated by the addition of 41 µL of BnSH (0.35 mmol)
followed by 4.89 µL (0.035 mmol) of Et3N. In (B), only 0.035 mmol of BnSH was employed. Triplicate
runs were made in (A) and error bars are shown at±1 standard deviation. Only one run was recorded
in (B).

The photolysis of diselenides to produce selanyl radicals is well known [109,110],
but does not appear to have been investigated in the case of selenenyl sulfides. While
photochemical disproportionation of the latter is not relevant to biological antioxidant
activity, it was nevertheless of interest to investigate the possibility. When a solution of
selenenyl sulfide 6a in deuterochloroform was exposed to ambient laboratory light or
irradiated in a reactor containing 360 nm lamps, no disproportionation was evident, even
after several days. However, when four 300 nm lamps were employed, disproportionation
was observed with t1/2 = 24 h. When the latter reaction was repeated on a larger scale
in dichloromethane for 12.5 h, the corresponding diselenide was isolated in 92% yield.
The disproportionation of the selenenyl sulfide was driven to completion under either
base-catalyzed or photochemical conditions by the poor solubility and precipitation of the
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diselenide. The photochemical disproportionation at 300 nm of the phenylthio analogue 6c
in CDCl3 behaved similarly, but at a faster rate, with 40% completion after 2.25 h, and even
proceeded under ambient fluorescent laboratory lighting to 40% completion in 8 h (Figure 6).
(The reason for the zero-order plots in Figure 6 is uncertain, but may be due to steady-state
concentrations of excited states of the selenenyl sulfides). A control experiment where the
phenylthio derivative in CDCl3 was kept in the dark at ambient temperature in the absence
of added base and thiol showed no change even after two months. This confirms that light
is essential for the disproportionation under these conditions and presumably occurs by
homolysis of the S-Se bond, followed by radical substitution and recombination.
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Molecules 2023, 28, 3732 14 of 24

3. Summary and Conclusions

Each of the key steps proposed for the catalytic cycle of ebselen in the presence of
hydrogen peroxide and either benzyl thiol or glutathione was investigated. Oxidation
of ebselen proceeded via the seleninamide 2, which was readily hydrolyzed to seleninic
acid 3 and dehydrated back to 2 when heated under vacuum. The peroxyseleninic acid 15
was not observed and molecular modelling indicated that the isomeric selenonic acid 14 is
considerably more stable, although it too was not isolated. The oxidation of ebselen was
significantly slower than its thiolysis. Furthermore, the concentration of glutathione and of
other thiols is typically much higher in cells than that of hydrogen peroxide, suggesting
that Path A in Scheme 1 is unlikely under physiological conditions. The partial oxidation
of 3 did not cleanly afford the selenonium selenonate salt 16, as was previously observed
with the formation of 11 in the phenyl series. Only the seleninic acid 3 and selenonic
acid 14 could be identified as major constituents by NMR spectroscopy of the resulting
complex mixtures. This suggests that, if formed, the selenonium ion of 16 undergoes
cyclization to 2 and hydrolysis to 3 under these conditions. It was also observed that the
oxidation of ebselen with hydrogen peroxide in methanol resulted in the formation of
methyl esters of 3 as well as dimeric species. These esters are hydrolytically unstable and
generate seleninamide 2 upon evaporation of methanol under vacuum. The esters also
readily undergo selenoxide syn-elimination, followed by cyclization, to regenerate ebselen
in a potentially competing catalytic cycle. This may have as yet undetermined implications
for assay protocols used in the measurement of antioxidant activity that often employ
methanol or CD3OD as the solvent or cosolvent.

The well-known thiolysis of ebselen affords the corresponding selenenyl sulfides.
The rates of these processes vary with the thiol, but typically occur about one order of
magnitude faster than the corresponding oxidation of ebselen with hydrogen peroxide.
Interestingly, the use of excess glutathione resulted in very rapid disproportionation of
the selenenyl sulfide to the corresponding diselenide and disulfide, attributed to the
presence of both catalytic amino and thiol groups. The thiolysis of seleninamide 2 proved
too rapid for rate measurement by NMR spectroscopy and required two equivalents of
thiol to go to completion. A selenoxide elimination of an intermediate thiolsulfinate
19 was implicated, followed by thiolysis of the resulting selenenic acid 4 to produce
selenenyl sulfide 6a. When the thiolseleninate was generated by the oxidation of 6a with
one equivalent of hydrogen peroxide in the absence of thiol, the selenoxide elimination was
again observed, but the product selenenic acid 4 cyclized to produce ebselen in high yield.
Finally, the disproportionation of 6a was investigated via a series of control reactions. The
selenenyl sulfide remained intact when treated with either TFA, triethylamine or benzyl
thiol. In contrast, the disproportionation was rapid in the simultaneous presence of catalytic
amounts of both triethylamine and benzyl thiol. We conclude that a catalytic cycle involving
the sequential generation of thiolate and selenolate anions takes place. Since glutathione
contains both an amino and thiol group, it appears to catalyze the disproportionation
even in the absence of an added amine. The disproportionation can also be effected
photochemically, presumably by a radical mechanism. Although numerous mechanistic
studies of ebselen have been previously reported, the present work thus adds additional
insight into several key steps.

4. Materials and Methods
4.1. General Experimental

All reagents and starting materials were obtained from commercial sources and used
without further purification unless otherwise noted. Tetrahydrofuran was dried over
LiAlH4 and was freshly distilled before use. Dichloromethane was dried over anhydrous
K2CO3 or distilled from CaH2. Hydrogen peroxide was titrated [111] before use and had a
concentration of 50 ± 1%, or 29 ± 1%, unless otherwise indicated. The concentration of
n-butyllithium was determined by titration with N-benzylbenzamide as the indicator [112].
Isolated yields are reported unless otherwise noted. Flash chromatography was performed
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using silica gel (230–400 mesh) as the stationary phase. 1H, 13C and 77Se NMR spectra were
recorded in CDCl3, CD3CN, DMSO-d6, CD3OD, D2O or mixtures thereof as indicated, at
400 MHz, 101 MHz, 377 MHz or 76 MHz, respectively. 1H and 13C NMR spectra were
referenced relative to the residual solvent (CHCl3: 1H at δ 7.26 ppm, 13C at δ 77.2 ppm;
DMSO: 1H at δ 2.50 ppm, 13C at δ 39.5 ppm; acetonitrile: 1H at 1.94 ppm, 13C at δ 118.3 ppm;
CD3OD: 1H at δ 3.31 ppm, 13C at δ 49.0 ppm; D2O: 1H at δ4.79 ppm). An external reference
of Ph2Se2 (δ 463 relative to Me2Se) [113] was used for 77Se NMR spectra, respectively.
13C and 77Se NMR spectra were recorded with broadband proton decoupling and the
UDEFT pulse program, which accelerated the acquisition of signals from nuclei with long
relaxation times [98]. Exact mass determinations were performed using positive or negative
ion electrospray ionization (ESI), unless otherwise noted.

Caution: Although no explosions were observed during the course of this work,
peroxyseleninic and peroxyselenonic acids comprise potential explosion hazards and
should be treated with appropriate precautions.

4.2. Preparation of Ebselen (1)

Ebselen was prepared by the method of Engman and Hallberg [114]. Recrystallization
from ethanol gave the pure product in 63% yield as a light yellow solid: mp 182–183 ◦C
(lit. [114] mp 180–181 ◦C); 1H NMR (400 MHz, CDCl3) δ 8.13 (d, J = 7.6 Hz, 1H), 7.70–7.62
(m, 4H), 7.50–7.40 (m, 3H), 7.29 (t, J = 7.5 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 165.7,
139.1, 137.6, 132.5, 129.4, 129.3, 127.6, 126.7, 126.5, 125.4, 123.7; 77Se NMR (76 MHz, CDCl3)
959.9 (lit. [62] δ 959, DMF-d7).

4.3. Preparation of 2-Phenylbenzo[d][1,2]selenazol-3(2H)-one 1-Oxide (2)

Ebselen (55.2 mg, 0.201 mmol) was stirred in dry CDCl3 (passed through anhydrous
K2CO3) and cooled to −20 ◦C. Ozone was introduced into the reaction mixture for 12 min,
until the yellow color was completely discharged and TLC analysis showed the absence of
the starting material. The solvent was removed in vacuo to give 58.1 mg (99%) of the title
compound as a white solid: mp (sealed tube) 178–182 ◦C (dec) (lit. [86] mp 189–190 ◦C);
1H NMR (400 MHz, CDCl3) δ 8.15 (dd, J = 6.9, 1.9 Hz, 1H), 7.96 (dd, J = 6.9, 1.6 Hz, 1H),
7.86–7.79 (m, 2H), 7.55 (dd, J = 8.7, 1.5 Hz, 2H), 7.49 (t, J = 7.3 Hz, 2H), 7.42 (tt, J = 7.3,
1.2 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 166.9, 135.8, 134.6, 133.2, 130.5, 129.7, 129.0, 128.5,
127.0, 126.3, 115.0; 77Se NMR (76 MHz, CDCl3) δ 1090.1; HRMS calcd. for C13H9NO2

80Se:
291.9877 [M + H]+; found: 291.9878.

4.4. Preparation of 2-(Phenylcarbamoyl)benzeneseleninic Acid (3)

Ebselen (550 mg, 2.01 mmol) was dissolved in 40 mL of dichloromethane. Hydrogen
peroxide (26.5%, 0.28 mL, 2.4 mmol) was added and the reaction was stirred at room tem-
perature overnight. The resulting precipitate was collected by vacuum filtration, washed
with cold dichloromethane and dried in vacuo to give 441 mg (71%) of seleninic acid 3
as an off-white solid: mp 186–189 ◦C (dec.); 1H NMR (400 MHz, DMSO-d6) δ 8.26 (d,
J = 7.4 Hz, 1H), 7.96 (d, J = 7.4 Hz, 1H), 7.90 (t, J = 7.5 Hz, 1H) 7.82 (t, J = 7.5 Hz, 1.0 Hz,
1H), 7.50 (broad s, 4H), 7.41–7.34 (m, 1H); 13C NMR (101 MHz, DMSO-d6) δ 166.9, 148.2,
137.5, 134.6, 132.8, 131.6, 129.7, 127.9, 127.6, 126.9; 77Se NMR (76 MHz, DMSO-d6) δ 1143.3
(lit. [115] δ 1144 ppm, CD3OD); 77Se NMR (76 MHz, CDCl3) δ 1125.4 (lit. [46] δ 1122,
CDCl3). The possibility that the seleninic acid 3 could oxidize the DMSO-d6 solvent under
these conditions was ruled out by a control experiment in which nondeuterated DMSO in
CDCl3 was exposed to 3 and showed no detectable amount of dimethyl sulfone after one
hour. When hydrogen peroxide was added to the mixture, sulfoxide to sulfone oxidation
was observed.

4.5. Preparation of 2-[(Benzylthio)selanyl]-N-phenylbenzamide (6a)

Ebselen (1.00 g, 3.65 mmol) was dissolved in dichloromethane (70 mL), and benzyl
thiol (0.43 mL, 3.7 mmol) was added. The reaction mixture was stirred at room temperature
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for 3 h and volatile material was removed in vacuo. The crude product was purified by
flash chromatography with dichloromethane as eluent to give 1.44 g (99%) of selenenyl
sulfide 6a as a white solid: mp 128–130 ◦C (lit. [101] mp 128–129 ◦C) 1H NMR (400 MHz,
CDCl3) δ 8.16 (dd, J = 8.1, 1.1 Hz, 1H), 7.85 (br s, 1H), 7.68–7.61 (m, 3H), 7.45–7.37 (m, 3H),
7.32–7.27 (m, 3H), 7.27–7.17 (m, 4H), 4.03 (s, 2H); 13C NMR (101 MHz, CDCl3): δ 166.0,
138.3, 137.3, 136.9, 131.9, 131.8, 129.2, 129.0, 128.8, 128.4, 127.2, 126.5, 125.9, 125.0, 120.5, 42.2.
77Se NMR (76 MHz, CDCl3) δ 561.3.

4.6. Preparation of 2-[(Glutathionyl)selanyl]-N-phenylbenzamide (6b)

Ebselen (303 mg, 1.11 mmol) was dissolved in 6 mL of dichloromethane–methanol
(95:5). Glutathione (307 mg, 1.00 mmol) in 3 mL of deionized water was added dropwise
over 5 min with vigorous stirring. After 40 min a white precipitate formed and was filtered,
washed with cold dichloromethane, followed by deionized water and dried in vacuo to
yield 558 mg (95%) of the glutathione selenenyl sulfide 6b (mp: gradual dec from 190 ºC)
(lit. [62]: mp 246 ◦C, dec); 1H NMR (400 MHz, DMSO-d6) δ 10.60 (s, 1H), 8.70 (t, J = 5.5 Hz,
1H), 8.50 (d, J = 8.3 Hz, 1H), 8.20 (d, J = 8.1, 1H), 8.13 (d, J = 7.9 Hz, 1H), 7.74 (d, J = 8.7 Hz,
2H), 7.63 (t, J = 8.2 Hz, 1H), 7.44 (t, J = 7.3 Hz, 1H), 7.37 (t, J = 7.6 Hz, 2H), 7.14 (t, J = 7.4 Hz,
1H), 4.43 (dt, J = 9.6, 4.4, 1H), 3.68 (dd, J = 19.1, 6.0 Hz, 1H), 3.70–2.70 (m and HOD), 2.30
(m, 2H), 1.93 (m, 1H), 1.83 (m, 1H); 13C NMR (101 MHz, DMSO-d6) δ 172.3, 171.4, 171.1,
170.9, 166.7, 138.9, 135.9, 132.8, 132.0, 129.3, 129.1, 127.8, 126.4, 124.7, 121.4, 53.8, 53.5, 41.7,
39.2, 31.9, 27.2; 77Se NMR (76 MHz, DMSO-d6) δ 547.1; HRMS calcd. for C23H26N4O7S80Se:
583.0760 [M + H]+; found: 583.0751.

4.7. Preparation of 2-[(Phenylthio)selanyl]-N-phenylbenzamide (6c)

Ebselen (2.00 g, 7.29 mmol), was dissolved in dichloromethane (150 mL) and thiophe-
nol (0.75 mL, 7.3 mmol) was added. The reaction mixture was stirred at room temperature
for 2.5 h. The volatile material was removed in vacuo and the crude product was purified by
flash chromatography, eluting with 100% dichloromethane to give 1.96 g (70%) of selenenyl
sulfide 6c as a white solid: mp 100–102 ◦C (lit. [45] reported as oil); 1H NMR (400 MHz,
CDCl3) δ 8.24 (dd, J = 8.1, 1.2 Hz, 1H), 7.92 (br s, 1H), 7.70 (dd, J = 7.8, 1.4 Hz, 1H), 7.62 (dd,
J = 8.6, 1.2 Hz, 2H), 7.54–7.47 (m, 3H), 7.39 (dd, J = 8.5, 7.5 Hz, 2H), 7.34 (td, J = 7.5, 1.2 Hz,
1H), 7.26–7.08 (m, 4H); 13C NMR (101 MHz, CDCl3) δ 166.2, 137.9, 137.3, 136.7, 132.6, 131.5,
129.4, 129.1, 129.1, 129.0, 126.7, 126.3, 125.3, 120.8; 77Se NMR (76 MHz, CDCl3): δ 591.1.
HRMS (ESI) m/z calcd for C19H15NOS80Se: 386.0112 [M − H]−; found: 386.0112.

4.8. Preparation of 2,2′-Diselenobis(benzanilide) (7)

Diselenide 7 was prepared by the method of Engman and Hallberg [114]. Benzanilide
(1.00 g, 5.07 mmol) was dissolved in 30 mL of dry THF and cooled to 0 ◦C in an ice-water
bath. n-Butyllithium (2.5 M, 4.1 mL, 10.2 mmol) was then added dropwise and the reaction
mixture was stirred at 0 ◦C for 30 min. Elemental selenium (0.40 g, 5.07 mmol) was added
in one portion and the reaction was stirred at 0 ◦C for an additional 30 min. The reaction
mixture was then poured into a solution of K3Fe(CN)6 (1.70 g, 5.16 mmol) in water (100 mL).
The resulting off-yellow precipitate was collected by vacuum filtration and washed with
water. The crude product was recrystallized from 1,2-dichlorobenzene to afford 91% of
the title compound as a light yellow solid: The crude product was recrystallized from 1,2-
dichlorobenzene to afford 91% of the title compound as a light yellow solid: mp 262–264 ◦C
(lit. mp [114] 256–257 ◦C); 1H NMR (400 MHz, DMSO-d6) δ 10.54 (br s, 2H), 7.95 (dd, J = 7.4,
1.5 Hz, 2H), 7.79 (dd, J = 8.1, 1.3 Hz, 2H), 7.77 (dd, J = 9.0, 1.4 Hz, 4H), 7.46 (dt, J = 7.4,
1.5 Hz, 2H), 7.42 (dd, J = 7.5, 1.5 Hz, 2H), 7.39 (t, J = 8.7 Hz, 4H), 7.15 (t, J = 7.4 Hz, 2H);
13C NMR (101 MHz, DMSO-d6) δ 166.8, 139.1, 134.3, 132.5, 132.4, 130.6, 129.2, 129.1, 126.9,
124.6, 121.0; 77Se NMR (76 MHz, DMSO-d6) δ 417.8.
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4.9. General Procedure for Kinetic Experiments

The following procedure was employed, unless otherwise noted. Kinetic measure-
ments were conducted in new 20 mL vials using disposable glass stir bars, with a constant
stirring rate of 1200 rpm, unless otherwise noted. Reactions were performed in 10 mL of
CDCl3 at room temperature. Each data point was acquired by removing 100 µL aliquots
of the reaction mixture, diluting with 400 µL of CDCl3 and analyzing by 1H NMR spec-
troscopy. Concentrations were determined by integration of distinct peaks of the reactant
and/or product against the signal of the internal standard (2.98 ppm for dimethyl sulfone).

4.10. Oxidation of Ebselen with Hydrogen Peroxide (See Figure 2)

Ebselen (97 mg, 0.35 mmol) was dissolved in 10 mL of CDCl3 containing dimethyl
sulfone (6.58 mg, 0.070 mmol) as an internal standard. Hydrogen peroxide (30%, 36.0 µL,
0.35 mmol) was added and the solution was stirred for 160 min. Integration of the peak at
7.65 ppm from 1 and 7.90 ppm from 3 relative to that at 2.98 ppm from dimethyl sulfone
was employed to measure the concentrations of 1 and 3. The t1/2 was determined to be
40 min and the reaction was 90% complete after 140 min.

The preceding experiment was repeated, except that seleninic acid 3 (11 mg, 0.035 mmol)
was included in the reaction mixture. The 10 min induction period in the absence of 3
(Figure 2A) was reduced to 5 min in its presence (Figure 2B).

4.11. Further Oxidation of Seleninamide 2 with 0.5 Equiv of Hydrogen Peroxide

Seleninamide 2 (107 mg, 0.347 mmol) was dissolved in 1.5 mL of acetonitrile and
hydrogen peroxide, (50%, 10.0 µL, 0.176 mmol) was added and the reaction was stirred
vigorously for 40 min, resulting in the formation of 104 mg of a white precipitate that was
filtered and dried. It displayed two faint peaks in the UDEFT 77Se NMR spectrum at 1162.4
and 1020.3 ppm in DMSO-d6. Longer acquisition times to obtain better 77Se spectra were
precluded by the decomposition of the initial product.

4.12. Esterification of Seleninamide 2 with Methanol: Formation of Methyl
2-(Phenylcarbamoyl)benzeneseleninate (17a) and Its Dimers 18a and 18b

Seleninamide 2 (15.1 mg) was dissolved in 0.5 mL of methanol and the solution was
stirred at room temperature for 70 min. Excess methanol was removed under high vacuum
to yield 16.5 mg of a clear oil. The 1H, 13C and 77Se NMR spectra indicated the presence of
seleninamide 2 and a trace of residual methanol.

In a similar experiment, 2 (10.4 mg) was dissolved in 1 mL of dry CHCl3-MeOH (95:5)
and the mixture was analyzed by ESI HRMS after standing at room temperature for 1 h.
The following signals were observed: HRMS of 17a calcd for C14H13NO3

80Se: 324.0139
[M + H]+; found: 324.0130; HRMS of 18a calcd for C26H18N2O4

80Se2: 582.9675 [M + H]+;
found: 582.9660; HRMS of 18b calcd for C27H22N2O5

80Se2: [M + H]+614.9937; found:
614.9922. (See Supporting Information for additional 1H NMR and mass specroscopic data).

Exposure of 2 to methanol for 24 h resulted in the formation of ebselen (1), identical to
an authentic sample and consistent with a selenoxide elimination, such as the one shown
in Scheme 6 for 17b.

4.13. Esterification of Seleninamide 2 with Benzyl Alcohol

Seleninamide 2 (109 mg, 0.376 mmol) was dissolved in 9.5 mL of CDCl3 containing
dimethyl sulfone (6.58 mg, 0.070 mmol) as an internal standard. Benzyl alcohol (0.50 mL,
4.8 mmol) was added and the solution was stirred at room temperature for 45 min, while
monitored by 1H NMR spectroscopy. The formation of benzaldehyde (ca. 20%) was evident
from the NMR signal at 10.02 ppm and NMR spectroscopy indicated that ebselen was the
major product after removal of volatile material under vacuum.
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4.14. Thiolysis of Ebselen with Benzyl Thiol (Figure 3)

Ebselen (96 mg, 0.35 mmol) was dissolved in 10 mL of CDCl3 containing dimethyl
sulfone (6.58 mg, 0.070 mmol) as an internal standard. Benzyl thiol (41.0 µL, 0.35 mmol) was
added and the mixture was stirred at 1200 rpm at room temperature for 45 min. Integration
of the 1H NMR peak at 4.02 ppm from selenenyl sulfide 6a relative to that at 2.98 ppm from
dimethyl sulfone was employed to measure the concentration of 6a. The reaction reached
59% completion by the time the first data point was collected (<5 min).

4.15. Thiolysis of Ebselen with Glutathione (Figure 4)

Ebselen (138 mg, 0.503 mmol) was dissolved in 4 mL of CDCl3-CD3OD (95:5) contain-
ing dimethyl sulfone (9.2 mg, 0.098 mmol) as an internal standard. Glutathione (153 mg,
0.498 mmol) dissolved in 1 mL of D2O was added and the mixture was stirred as vigorously
as possible at room temperature for 60 min. A white precipitate began to form within
2 min after the addition of glutathione. Data points were acquired by briefly stopping
the stirring to enable the layers to separate and taking 100 µL aliquots from the lower
organic layer. Each aliquot was then diluted with 400 µL of CDCl3 and analyzed by 1H
NMR spectroscopy. Integration of the peak at 8.14 ppm from 1 relative to that at 2.98 ppm
from dimethyl sulfone was employed to measure the concentration of 1. The reaction was
complete in ca. 1 h. The concentration of selenenyl sulfide 6b in the reaction mixture could
not be determined due to its precipitation, but it was isolated at the end of the reaction by
filtration, washing with water and dichloromethane, and drying in vacuo to afford a yield
of 266 mg (92%).

When the reaction was repeated in DMSO-d6 -D2O (85:15) under homogeneous con-
ditions, the formation of 6b was complete in ca. 1 min. Repetition with two equiv of
glutathione was equally rapid, but complete disproportionation of 6b to diselenide 7 and
glutathione disulfide was observed.

4.16. Reaction of Seleninamide 2 with Benzyl Thiol

Seleninamide 2 (109 mg, 0.375 mmol) was dissolved in 10 mL of CDCl3 containing
dimethyl sulfone (6.58 mg, 0.07 mmol) as an internal standard. Benzyl thiol (123 µL,
1.05 mmol) was added and the mixture was stirred at room temperature for 40 min. The
reaction was complete (<5 min) before the next spectrum could be acquired. It revealed
the presence of one equiv of unreacted thiol along with one equiv of selenenyl sulfide 6a.
Minor amounts of benzaldehyde (10.02 ppm) and dibenzyl disulfide were also observed.
The 77Se NMR spectrum showed a single peak at 535.4 ppm, indicative of 6a. When the
reaction was repeated with one or two equivs of benzyl thiol, more complex mixtures were
obtained containing unidentified products.

4.17. Oxidation of Selenenyl Sulfide 6a with Hydrogen Peroxide

Selenenyl sulfide 6a (139 mg, 0.349 mmol) was dissolved in 10 mL of CDCl3 contain-
ing dimethyl sulfone (6.6 mg, 0.070 mmol) as an internal standard. Hydrogen peroxide
(30%, 35.7 µL, 0.35 mmol) was added and the mixture was stirred at room temperature
and monitored by 1H NMR spectroscopy for 60 min. The reaction reached 50% comple-
tion in 45 min, but 25% of unreacted 6a persisted even after 100 min. Minor amounts of
dibenzyl disulfide and benzaldehyde were also detected, along with a small amount of
diselenide 7 that precipitated. In a separate reaction conducted with 1.1 equiv of hydro-
gen peroxide, ebselen was isolated in 82% yield by flash chromatography (eluent 100%
dichloromethane—dichloromethane–methanol (9:1)), identical to an authentic sample.

4.18. Disproportionation of Selenenyl Sulfide 6a

With benzyl thiol as additive: Selenenyl sulfide 6a (40.0 mg, 0.100 mmol) was dissolved
in 2.0 mL of dry dichloromethane. Benzyl thiol (12 µL, 0.10 mmol) was added and the
mixture was stirred at room temperature for 27.5 h. The reaction mixture was purified
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by flash chromatography using dichloromethane as eluent, affording 39.7 mg (99%) of
recovered 6a.

With benzyl thiol and TFA as additives: The reaction was repeated with 6a (40.5 mg,
0.102 mmol) benzyl thiol (12 µL, 0.10 mmol) and 10 mol % of TFA (1 µL, 0.01 mmol) for
28 h. The selenenyl sulfide 6a was recovered in 98% yield.

With benzyl thiol and triethylamine as additives (Figure 5): Selenenyl sulfide 6a (139 mg,
0.349 mmol) was dissolved in 10 mL of CDCl3 containing dimethyl sulfone (6.6 mg,
0.070 mmol) as an internal standard. Benzyl thiol (41.0 µL, 0.349 mmol) was added,
followed by triethylamine (4.89 µL, 0.035 mmol), and the mixture was stirred at room
temperature and monitored by 1H NMR spectroscopy for 60 min. The consumption of
6a and the formation of dibenzyl disulfide were 50% complete after 25 min, while the
concentration of benzyl thiol remained unchanged. A white precipitate of diselenide 7
began to form within 3 min of the addition of triethylamine.

When the above reaction was repeated with only 10 mol % of benzyl thiol, the reaction
was 50% complete in 220 min and there was again no change in the concentration of the thiol.

4.19. Trapping of Selenolate 21 [65]

Selenenyl sulfide 6a (198 mg, 0.497 mmol) and 2,4-dinitrochlorobenzene (202 mg,
1.00 mmol) were dissolved in 10 mL of dichloromethane. Benzyl thiol (59 µL, 0.50 mmol)
was added, followed by triethylamine (70 µL, 0.50 mmol). The solution immediately began
to take on a deep yellow color. The mixture was stirred at room temperature for 2 h and
concentrated in vacuo. The crude product was purified by flash chromatography, with
100% dichloromethane—10:1 dichloromethane–methanol as eluent to give 217 mg (98%
of selenide 22 as a bright yellow solid: mp 175–180 ◦C (lit. [65] mp 177–178 ◦C); 1H NMR
(400 MHz, CDCl3) δ 9.08 (d, J = 2.5 Hz, 1H), 8.12 (dd, J = 8.9, 2.5 Hz, 1H), 7.82 (t, J = 9.4 Hz,
1H), 7.69 (td, J = 7.6, 1.3 Hz, 1H), 7.59 (td, J = 7.6, 1.5 Hz, 2H), 7.47 (d, J = 7.3 Hz, 2H),
7.32 (t, J = 7.9 Hz, 2H), 7.28 (d, J = 9.0 Hz, 1H), 7.14 (t, J 6.9 Hz, 1H). 13C NMR (101 MHz,
CDCl3): δ 166.4, 145.8, 145.4, 144.5, 143.1, 139.1, 137.3, 132.6, 132.2, 131.5, 129.4, 128.8, 127.0,
125.7, 125.3, 121.3, 120.2. 77Se NMR (76 MHz, CDCl3): δ 498.3. HRMS (ESI) m/z calcd for
C19H13N3O5

80Se: 465.9913 [M + Na]+; found: 465.9917.

4.20. Photolytic Disproportionation of Selenenyl Sulfide 6a

Selenenyl sulfide 6a (139 mg, 0.349 mmol) was dissolved in 10 mL of CDCl3 containing
dimethyl sulfone (6.6 mg, 0.070 mmol) as an internal standard. The solution was irradiated
at 300 nm (4 × 3.9 W lamps) for 24 h, at which time the yield of dibenzyl disulfide was
ca. 50%.

4.21. Photolytic Disproportionation of Selenenyl Sulfide 6c

A sample of the phenylthio analogue 6c in CDCl3 in an NMR tube wrapped in alu-
minum foil was kept in the dark at ambient temperature for two months. The 1H NMR
spectrum remained unchanged.

When a similar sample was instead exposed to ambient fluorescent laboratory lighting
for 8 h, ca. 40% underwent disproportionation. Irradiation at 300 nm for 135 min also
resulted in ca. 40% disproportionation.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28093732/s1, Supporting Information: Figures S1–S29.
Reference [116] is cited in the supplementary materials.
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