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Czechowska

Received: 21 February 2023

Revised: 13 April 2023

Accepted: 19 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Monocyte Differentiation on Atomic Layer-Deposited (ALD)
Hydroxyapatite Coating on Titanium Substrate
Elina Kylmäoja 1 , Faleh Abushahba 2 , Jani Holopainen 3, Mikko Ritala 3,* and Juha Tuukkanen 1

1 Department of Anatomy and Cell Biology, Institute of Cancer Research and Translational Medicine,
Medical Research Center, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland

2 Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry,
University of Turku, 20520 Turku, Finland

3 Department of Chemistry, University of Helsinki, P.O. Box 55, 00014 Helsinki, Finland
* Correspondence: mikko.ritala@helsinki.fi

Abstract: Hydroxyapatite (HA; Ca10(PO4)6(OH)2) coating of bone implants has many beneficial
properties as it improves osseointegration and eventually becomes degraded and replaced with
new bone. We prepared HA coating on a titanium substrate with atomic layer deposition (ALD)
and compared monocyte differentiation and material resorption between ALD-HA and bone. After
stimulation with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear
factor kappa-B ligand (RANKL), human peripheral blood monocytes differentiated into resorbing
osteoclasts on bovine bone, but non-resorbing foreign body cells were observed on ALD-HA. The
analysis of the topography of ALD-HA and bone showed no differences in wettability (water contact
angle on ALD-HA 86.2◦ vs. 86.7◦ on the bone), but the surface roughness of ALD-HA (Ra 0.713 µm)
was significantly lower compared to bone (Ra 2.30 µm). The cellular reaction observed on ALD-HA
might be a consequence of the topographical properties of the coating. The absence of resorptive
osteoclasts on ALD-HA might indicate inhibition of their differentiation or the need to modify the
coating to induce osteoclast differentiation.

Keywords: atomic layer deposition; hydroxyapatite; titanium; osteoclast; resorption

1. Introduction

Besides the ancient efforts to replace missing teeth and repair injured tissues and the
progression to the first documented use of a metal implant in 1565, it was not until the
beginning of the 20th century that implants became a vastly used treatment for tissue
replacement. During the last century, several types of metals, polymers, and ceramics with
various coatings and surface modifications have been developed in an attempt to meet the
increasing demand for implantable devices [1].

Orthopedic implants are one of the most common synthetic devices for tissue engineer-
ing [2]. The properties of an ideal bone biomaterial have been described by Bose et al. [3],
including biocompatibility, suitable mechanical properties, porosity, and resorbability. Con-
cerning biocompatibility in bone tissue, the terms osteoconductive and osteoinductive
have been used to describe the necessary bone cell adhesion, proliferation, and bone in-
growth, as well as the promotion of new bone formation by immature cell differentiation
and osteogenesis, respectively [3,4]. Together, osteoconduction and osteoinduction lead
to osseointegration, described as a direct contact between living bone and the implant [5].
Failed osseointegration is the main reason for implant failure, often leading to implant
loosening and the need for revision surgery. This causes a burden for the patients and the
whole healthcare system and increases the total costs of orthopedic treatment [6–9].

The natural bone and teeth mineral hydroxyapatite (HA; Ca10(PO4)6(OH)2) has been
utilized in bone implant coating since it can improve osseointegration [10–15]. The sta-
ble fixation of the implant is based on the direct growth of bone tissue into the HA
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coating [14,16,17], the subsequent degradation of HA, and the final replacement by new
bone [18–21]. The bone degradation phase is conducted by the special multinuclear bone
cells, osteoclasts, which are also active during normal bone homeostasis. The complex
bone microarchitecture is sustained and renewed by the cooperation of the bone-resorbing
osteoclasts, bone-forming osteoblasts, and mechanosensing osteocytes [22]. This activity,
termed remodeling, also occurs at the bone-HA interface and is a crucial process for implant
fixation into bone tissue [18,20,23–29].

Upon implantation of a foreign material in the body, a foreign-body reaction begins
around the implant. The reaction includes the migration of mononuclear cells at the
implantation site and their differentiation into multinuclear macrophages, also termed
foreign body giant cells (FBGC), which try to phagocytose the foreign material or degrade
it by secreting reactive oxygen species (ROS) and matrix metalloproteases (MMPs) [30,31].
FBGCs cells bear a resemblance to the bone-resorbing osteoclasts, except that the FBGCs are
larger and cannot resorb bone tissue [31–34]. However, the foreign body cells can produce
cytokines and other mediators promoting osteoclastogenesis [35–37], or they can directly
differentiate into functional osteoclasts [38,39]. This leads to increased bone resorption and
osteolysis around the implant, a common reason for implant loosening.

Considering HA, several studies have shown that FBGCs are induced by HA-particle
stimulation [40–43] and that the HA-induced FBGCs from mouse subcutaneous tissue can
differentiate into osteoclasts [44]. Furthermore, although FBGCs do not resorb bone, they
have been shown to dissolve HA-like calcium phosphate coating [32].

Osteoclasts can resorb HA [18,19,21,25,32,45,46], but there are also contrary results
showing no resorption on pure HA [47,48]. The contradictory results can be explained
by the studies, which suggested that the surface topography of the HA coating has major
consequences on osteoclast differentiation and function [49–55] and that increasing the HA
content in calcium phosphate materials inhibits osteoclastogenesis [56]. In fact, the implant
chemistry and topography affect the whole initial foreign body reaction and the complex
cellular interactions thereafter [57–60].

A variety of methods have been utilized to synthesize calcium phosphate coatings.
Examples include sol-gel, plasma spraying, laser ablation, electrophoretic deposition, and
sputter coating, but all these methods have been found to have challenges concerning the
phase or the stability of the coatings. With plasma spraying and electrophoretic deposition,
the most common problems are cracking and flaking of the coatings, which are obviously
a non-wanted property concerning implantable devices intended to survive years inside
the body. Furthermore, laser ablation and sol-gel techniques are expensive, whereas
high temperatures are required for plasma spraying, laser ablation, and electrophoretic
deposition [61–63].

Atomic layer deposition (ALD) is a method that has many beneficial properties in
contrast to the other methods described above. For instance, ALD can be used for coating
complex three-dimensional surfaces on a nanometer scale, and the coating thickness can be
controlled in detail, leading to very uniform and conformal coatings [64,65].

We have previously described the preparation of a nanocrystalline HA coating on Ti
substrate by converting ALD-CaCO3 to HA by chemical treatment in a dilute phosphate
solution [66]. We have also shown that the coating is intact [67] and suitable for cell
culture, as osteoblast line cells attached to the coating, and the cell viability was normal [68].
Further, we have also successfully cultured human bone marrow-derived cells on the
coating [66]. However, we have not previously characterized the foreign body reaction or
osteoclast actions on the coating. To our knowledge, this is the first study of the cellular
reactions occurring on the ALD-HA coating when monocytes come into contact with it. We
hypothesized that a foreign body reaction follows, with the possible subsequent resorption
of the coating. A resorbable coating could offer new insights for developing implant
materials with improved osseointegration properties since most of the bone remodeling
takes place at previously resorbed surfaces [22]. Previous studies have utilized different
methods in producing the HA coating, but the coating produced by the ALD method
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utilized in this study has not been characterized before in regard to monocyte differentiation
and resorbability. This is the first study of ALD-HA coating and primary human monocyte
culture with 14 days culture period, which is considerably longer than the previously
studied initial cellular reactions performed mostly with cell lines.

2. Results
2.1. Contact Angle and Surface Roughness Measurements

The contact angle and surface roughness (Ra) values are shown in Table 1. The non-
coated Ti sample, ALD-HA, and bovine bone slice showed similar hydrophilic contact
angle values. However, the ALD-HA surfaces demonstrated significantly lower surface
roughness (Ra 0.713 µm) compared to the bovine bone slice (Ra 2.30 µm; p < 0.001). The
surface roughness of the non-coated Ti sample was 1.21 µm, which is between the values
of ALD-HA and bone and differs from both (p < 0.001). The ALD-HA coating, therefore,
smoothens the surface of the Ti sample. Figure 1 displays the surface of the non-coated
Ti sample and ALD-HA. HA crystals can be seen on ALD-HA, whereas the non-coated
sample is devoid of crystals. Figure 2 displays the 3D surface profiles of non-coated Ti
sample, ALD-HA, and bovine bone slices. Note that the 0.713 µm roughness is much more
than the HA film thickness (380 nm).

Table 1. Mean and standard deviation of water contact angle and surface roughness determination
on non-coated Ti sample, ALD-HA, and bovine bone slice. a p < 0.001, non-coated Ti sample vs.
ALD-HA or bone; b p < 0.001, ALD-HA vs. bone.

Contact Angle (◦),
Mean (SD)

Surface Roughness (Ra; µm),
Mean (SD)

Non-coated Ti sample 86.9 (3.2) 1.21 a (0.05)
ALD-HA 86.2 (4.5) 0.713 b (0.08)

Bone 86.7 (4.5) 2.30 (0.18)
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Figure 1. FESEM images of non-coated Ti sample (A,C) and ALD-HA (B,D). HA crystals appear
on ALD-HA, whereas the non-coated Ti sample is devoid of them. Magnification 4000× (A,B) and
10,000× (C,D).
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Figure 2. Typical 3D surface profile of non-coated Ti, ALD-HA, and bovine bone slice samples. The
surface profiles of non-coated Ti sample (A) and ALD-HA surface (B) demonstrated a lower surface
roughness value compared to the bovine bone slice profile (C). Images were captured using a 5×
objective lens and a 0.5 multiplier.

2.2. Multinuclear Foreign Body Cells Generated on ALD-HA

We have previously studied osteoclast formation from peripheral blood monocytes
on bone [69]. During the 14 days culture, stimulated with the growth factors RANKL and
M-CSF, the monocytes undergo differentiation into multinuclear bone-resorbing osteoclasts.
This setup was used as a control in this study. The multinuclear cells on the bone surface
with actin rings are shown in Figure 3A, and the resorption pits imaged with FESEM are
shown in Figure 3C. When monocytes were cultured on ALD-HA with the osteoclastogenic
growth factors, large multinuclear cells were observed in the samples (Figure 3B). The
actin rings in multinuclear cells on bone were bright and thick, whereas, on ALD-HA, the
rings were paler and more diffuse. Our previous study [69] shows that the average nuclei
number in human osteoclasts differentiated from peripheral blood monocytes is 4. In this
study, we did not analyze the nuclei number due to the limited number of samples. Still,
the confocal microscopy images show that the nuclei number of multinuclear cells on the
ALD-HA surface is substantially larger than on bone. In addition, the FESEM images show
the large flat multinuclear cells covering the ALD-HA surfaces uniformly, whereas, on
bone, only occasional, smaller osteoclasts are observed in or near the resorption pits. The
total lack of resorption pits on ALD-HA suggests that the multinuclear cells on ALD-HA
are foreign body cells instead of osteoclasts.
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Figure 3. Confocal microscope (A,B) and FESEM (C) images of multinuclear cells and resorption
on bone and ALD-HA. When stimulated with osteoclastogenic growth factors RANKL and M-CSF,
peripheral blood monocytes differentiated into small multinuclear cells (arrowheads) with actin rings
on bone (A), whereas on ALD-HA large multinuclear cells were generated (B). Bone resorption was
evident on bone surface ((C); asterisks), and occasional small osteoclasts (arrowheads) were observed
in or near the resorption pits. ALD-HA was devoid of resorption pits but was covered with large, flat
multinuclear cells (arrowheads).

3. Discussion

We have previously demonstrated osteoblast lineage cell adhesion on the ALD-HA
surface with focal adhesion-like structures [68]. The purpose of this work was to continue
cell adhesion studies with monocytes and to investigate whether osteoclastogenesis or
foreign body reaction follows the cell attachment. To our knowledge, these important
cellular reactions have not been previously studied on ALD-HA. Our results show that
peripheral blood monocytes undergo differentiation into bone-resorbing osteoclasts on
the bone surface, but on the ALD-HA coating, the monocytes differentiate into foreign
body cells without the capacity to resorb the coating. Similar results were obtained in our
previous study, where human bone marrow mononuclear cells were cultured on bone and
ALD-HA and differentiated into multinuclear cells [66]. Other studies have also observed
the large, flat morphology of the multinuclear cells cultured on HA [45,52]. Compara-
ble morphology was also present in studies where large multinuclear cells appeared on
nacre [70] or HA [46,71], compared to smaller osteoclasts on bone. Chappard et al. [70]
described the properties of different types of giant cells and suggested that a certain type
of giant cell is induced on biomaterials. This giant cell has a nonuniform distribution of
nuclei, and their differentiation is not associated with inflammation. In addition to HA
and nacre, various other biomaterials have been shown to induce different types of giant
cells. Their morphology and characteristics were reviewed by Al-Maawi et al. [72]. In our
samples, the multinuclear cells on ALD-HA had a fairly central location of the nuclei, but
also a few Touton cell-like (crown-resembling central organization of nuclei) and Langhans
cell-like (horseshoe-resembling organization of nuclei) giant cells were observed. Therefore,
it is possible that several different types of giant cells are induced on our ALD-HA coating.

Considering biomaterial degradation by multinuclear cells, Ghanaati et al. [73] demon-
strated faster degradation of beta-tricalcium phosphate (β-TCP) granules compared to HA
granules implanted into goat muscle tissue. In their study, HA granules remained intact in
the implanted tissue for a longer time compared to β-TCP, but eventually, HA granules
started to show dissolution by multinuclear cells. In addition, the multinuclear cells in-
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duced with β-TCP presented a more intense TRACP-staining, probably depicting their
increased degradation ability compared to cells on HA granules. Although the multinuclear
cell types in their study were not specifically identified as foreign body cells or osteoclasts,
it is possible that β-TCP induced resorptive osteoclasts, but HA induced foreign body cells
with limited dissolution capacity. This would be in line with our results concerning the
multinuclear cells on bone and HA. In addition, the slow degradation process of implanted
HA materials has also been noted by Okuda et al. [74] Therefore, it is possible that our 14
days cell culture period was sufficient to induce the initial foreign body reaction, but not
the possible subsequent osteoclastogenesis and resorption of the material, as described
by Sabokbar et al. [44]. Furthermore, we could not detect any dissolution of the ALD-HA
surface by the multinuclear cells, contrary to a study by ten Harkel et al. [32], which demon-
strated that although not capable of bone resorption, the FBGCs dissolved HA-like calcium
phosphate coating. However, even when human peripheral blood monocytes were differen-
tiated into osteoclasts and cultured for 21 days by Ciapetti et al. [54], no resorption pits were
observed on biomimetic HA coatings. In contrast, resorption was evident on stoichiometric
sintered HA, which is additional proof of the major effects the surface topography has on
osteoclast fusion and activity, also observed in other studies [53–55,75–79].

Surface wettability can be estimated by measuring the CA, which represents the angle
between the tangent line to a drop surface of the liquid at the three-phase boundary and
the horizontal surface of the solid interface. Generally, the water CA ranges from 0 to
180◦ and is considered hydrophilic at a value lower than 90◦ and hydrophobic when the
value is more than 90◦. CA values close to 0◦ are regarded as superhydrophilic, whereas
above 150 are regarded as superhydrophobic [80]. In our study, the CA values were 86.9
(3.2), 86.2 (4.5), and 86.7 (4.5) for the non-coated Ti sample, ALD-HA, and bovine bone
slice, respectively, indicating slightly hydrophilic surfaces for all investigated materials.
Surface chemistry plays an essential role in determining wettability, as indicated in a study
by Surmeneva et al. [81]. Their study showed that the deposition of a nano-HA film onto
the titanium surface led to a decrease in the water contact angle from 130 ± 5◦ to 50 ± 5◦.
Additionally, the surface topography and roughness can affect wettability. However, similar
wettability behavior was observed for the ALD-HA and bovine bone slice surfaces despite
the significant difference in roughness values of (0.713 µm) and (2.30 µm), respectively.
ALD-HA coating of the titanium surface used in this study decreased the surface roughness
from 1.21 (±0.05) to 0.713 (±0.08) µm.

Studies have shown that the implant surface topography and chemical composition
impact osteoclast activity [53–55,75–79]. In general, rough surfaces promote increased osteo-
clastogenesis compared to smooth surfaces [75–78]. The same applies to calcium phosphate
coatings as well. However, considering osteoclastogenesis and osteoclast activity, there
seems to be a window for the optimal surface architecture since submicron-scale (≤1 µm)
coatings were found more favorable compared to micron-size (≥1 µm) [50,52,82–84] or
nanoscale (1–100 nm) coatings [49,51,85]. This could explain the contradictory results about
the capacity of osteoclasts to resorb the HA coating [18,19,21,25,32,45,47,48]. Considering
our results, it is possible that some of the multinuclear cells on ALD-HA are osteoclasts,
but the surface topography of our samples does not support resorption, although the Ra
value of ALD-HA (0.713 µm) is in the optimal range. In fact, the actin rings we observed in
the cells on ALD-HA very much resembled the ones that Costa et al. [52] described as the
characteristics of non-resorbing cells since the rings are more diffuse and paler compared
to the thick and bright structures observed in osteoclasts on bone. It seems that the rougher
surface of the bone (Ra 2.300 µm) supports osteoclastogenesis and resorption, but the
topography of the ALD-HA surface does not induce the same reaction from peripheral
blood monocytes in our study. In addition to the topographical and chemical differences
between the bone and ALD-HA surfaces, it is of note that several other factors, such as pH
and the ions released from the surface can have a major impact on the cellular reactions,
as reviewed recently [86]. This especially concerns osteoclasts, as they are also in vivo
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regulated by H+, Ca2+, and PO4
3− ions, which are the components of both bone and HA

and might be released from these materials in different amounts [54].
Although the foreign body reaction, including the differentiation of multinuclear FBGs

and osteoclasts, is often thought to be the unwanted process leading to implant loosen-
ing, different perspectives consider these events natural and crucial for osseointegration.
Trindade et al. [87] discussed these events in a recent review and expressed an opinion of
osseointegration being a consequence of the foreign body reaction, upon the condition that
the cellular responses are tightly controlled and in equilibrium, without excess differenti-
ation of multinuclear cells and the following osteolysis. Furthermore, considering ALD
coatings, Smieszek et al. [88] observed increased viability and activity of osteoblast lineage
MC3T3 cells on ALD TiO2 coating, but osteoclast activity on the coating was decreased. We
obtained previously similar results with MC3T3 osteoblasts on ALD-HA [68]. It is possible
that the observation of Smieszek et al. on the inhibited preosteoclast invasion on the ALD
TiO2 coating could also explain our results in this present study. Although the observa-
tion in the study by Smieszek et al. considered a co-culture of MC3T3 osteoblasts and
preosteoclasts, it is of note that peripheral blood contains small amounts of mesenchymal
stem/stromal cells [89,90], which might behave in a similar way to osteoblast lineage cells
on the ALD coating, i.e., prevent the attachment of osteoclast lineage cells. The mesenchy-
mal stromal cells are osteoblast precursors, which regulate osteoclastogenesis [91,92] and
could be the mediators behind the effects observed in this study. If these cells attach firmly
to the smoother ALD coating, they prevent preosteoclast attachment, and further, their
altered metabolic activity favors FBGC differentiation instead of osteoclasts. As Smieszek
et al. discussed, this is beneficial for osseointegration since excess osteoclast activity is
inhibited. However, these explanations concerning this study are hypothetical and require
further investigation, but nevertheless offer an interesting approach for studying the initial
cellular reactions on ALD-produced coatings, which, at present, are mainly unknown.
Moreover, as Ciapetti et al. [54] and He et al. [55] noted, the optimal biomaterial surface
should support all types of cells in contact with it, such as osteoblasts, osteoclasts, and
macrophages, but the properties of different materials might not be beneficial for all these
cells at the same time. Therefore, further studies, including co-cultures with all types of
bone cells, are required, especially as recent studies have focused mainly on one cell type at
a time, which does not represent the complex situation in vivo.

4. Materials and Methods
4.1. Preparation of Nanocrystalline HA Coating (ALD-HA) on Ti Substrates with ALD Method

The HA coatings were fabricated on Ti substrates as described by Avila et al. and
Holopainen et al. [66,67]. The substrate for ALD-HA coating was a 5 cm × 5 cm (25 cm2),
1 mm thick titanium sheet (Grade 2, ASTM B265 specification, William Gregor Ltd., London,
UK). The ALD coating was started by depositing a thin film of CaCO3 in an F-120 ALD
reactor (ASM Microchemistry Ltd., Helsinki, Finland) with nitrogen carrier and purging
gas. The CaCO3 films were deposited using the Ca(thd)2—O3 process previously reported
in the literature [93]. Ca(thd)2 (Volatec Oy, Vantaa, Finland) was evaporated at 188 ◦C, and
O3 was generated from O2 (99.9999%) with a Wedeco Ozomatic Modular 4 HC Lab ozone
generator. Samples were produced with 4000 ALD cycles resulting in a thickness of 380 nm.
Pulses and purges of 1 s were used for all precursors. The depositions were conducted
at 250 ◦C. Conversion of CaCO3 to HA was achieved by using 0.2 M (NH4)2HPO4 (99%;
Merck KGaA, Darmstadt, Germany) solution at 95 ◦C. After conversion, the samples were
rinsed with deionized water and blown dry with compressed air. A manual plate cutter
(Bernardo PTS 1050 S Manual disc cutter, Linz, Austria) was used for cutting the ALD-
coated titanium plates. The Ti plate was firmly placed in a disc pressing to keep it in place
during the cutting process. The plate was cut to produce 1 cm2 square-shaped size discs.
Before cell culture, the samples were soaked in 70% ethanol for 10 min and air-dried.
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4.2. Contact Angle and Surface Roughness Measurements

The surface contact angle (CA), which represents surface wettability, of ALD-HA
and bovine bone slice were evaluated using the sessile drop method described by Jong
et al. [94]. An Optical tensiometer (Theta, Biolin Scientific Oy, Espoo, Finland) was used for
water CA measurements. Five randomly selected points per sample were evaluated. For
each droplet, 120 images were recorded in 20 s. The Young–Laplace equation was used to
define the CA around the droplet. The surface roughness averages (Ra) of ALD-HA and
the bovine bone specimens were measured using a 3D non-contact optical profilometer
(Bruker Nano GmbH, Billerica, MA, USA). A total of 5 randomly selected points per
sample were evaluated with a 5× objective lens and a 0.5 multiplier, using a back scan
and length parameters of 20 µm and 60 µm in VSI/VXI mode to obtain a 3D image of the
specimen surfaces. Software (Vision 64) was used to generate surface areas and roughness
parameters.

4.3. Monocyte Differentiation on Bone and ALD-HA

The isolation and culture protocol for peripheral blood monocytes were modified
from [95]. The cells were collected from whole blood samples from 3 healthy female donors
aged between 39–45 years, who provided informed consent. The study was approved by
the Ethical Committee of The Northern Ostrobothnia Hospital District (Oulu University
Hospital EETTMK: 180 and 191/2001; 12/2004; 35/2009; 29/2011). Blood was diluted 1:1 in
PBS and layered over Ficoll-Paque Premium solution (GE Healthcare, Little Chalfont, UK).
The samples were centrifuged at 400× g for 35 min following the manufacturer’s protocol.
Mononuclear cell layer was collected and centrifuged twice at 190× g for 10 min in PBS
and finally suspended in α-MEM (Corning Life Sciences) containing 10% FBS (Biowest,
Riverside, MO, USA), 100 IU/mL penicillin, and 100 µg/mL streptomycin (Sigma-Aldrich,
St. Louis, MO, USA). A total of 300 000 cells (9.4 × 105 cells/cm2) were layered on sonicated
bovine cortical bone slices (0.28 cm2; Lehenkari Consulting, Oulu, Finland) in 96-well plates
(Cellstar; Greiner Bio-One, Kremsmünster, Austria) in a final volume of 200 µL. Then,
2 × 106 cells (1.05 × 106 cells/cm2) were layered on ALD-HA samples (1 cm2) in 24-well
plates (Cellstar; Greiner Bio-One) in a final volume of 1 mL. Osteoclastogenesis was induced
with 20 ng/mL RANKL (PeproTech EC, London, UK) and 10 ng/mL M-CSF (R&D Systems,
Minneapolis, MN, USA). Half of the media was changed every 3–4 days (100 µL/well for
bone slices and 500 µL/well for ALD-HA). At 1-week time point, all media was changed
(200 µL/well for bone slices and 1 mL/well for ALD-HA). Cells were cultured at +37 ◦C
(5% CO2, 95% air) for 14 days.

4.4. Confocal Microscopy

The cells were fixed with 4% paraformaldehyde (PFA) in PBS for 10 min. The actin
cytoskeleton was stained with Alexa 488-conjugated phalloidin (200 U/mL stock diluted
1:100 in PBS; Invitrogen Europe, Paisley, UK) for 20 min at +37 ◦C. Nuclei were stained
with Hoechst 33258 (1 mg/mL stock diluted 1:800 in PBS; Sigma-Aldrich) for 10 min at
RT. The samples were mounted in 70% glycerol-PBS. The cells were viewed with Leica
TCS SP8 confocal with a DMI8 microscope using LAS X 3.5.2 acquisition software. The
used objective was an HC PL APO CS2 CS2 20 × 0.75 DRY. Samples were imaged with
488 nm and 405 nm solid-state lasers; the pinhole was set to Airy 1 and scan speed to
600 Hz. Maximum intensity projections (MIP) were created from the Z-stacks.

4.5. Field Emission Scanning Electron Microscopy (FESEM)

The bone slices, non-coated Ti samples, and ALD-HA samples were dehydrated in
ascending ethanol series and dried with a critical point drying equipment K850 (Quorum
Technologies, Lewes, UK). Samples were coated with 5 nm platinum by Q150T ES sputter
coater (Quorum Technologies, Lewes, UK) and viewed with Sigma HD VP FE-SEM (Carl
Zeiss Microscopy GmbH, Oberkochen, Germany). FESEM images were taken with 5.0 kV
voltage.
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5. Conclusions

We demonstrated for the first time that human peripheral blood monocyte differen-
tiation on bone and ALD-HA leads to different outcomes, as on bone osteoclastogenesis
is induced, but on ALD-HA, a foreign body reaction is observed. On bone slices, the
small multinuclear cells were able to resorb the substrate generating typical osteoclastic
resorption pits. In contrast, on ALD-HA, the multinuclear cells were remarkably large
with several nuclei but lacked the resorption capacity of the surface. We did not detect
differences in the surface wettability between bone and ALD-HA, and both surfaces were
found to be hydrophilic. The surface roughness, however, was found to be greater on bone,
which might support osteoclastogenesis, compared to the smoother surface in the ALD-HA
samples. These results provide knowledge about the initial cellular reactions of ALD-HA,
which is of great importance when developing new types of implant surfaces with modern
methods. With the modifications of this technique, new types of nanothin coatings can be
produced for orthopedic and dental implants with conformal and porous surfaces.
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