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Abstract: Extracts from plants have been one of the main sources of antioxidants, namely polyphe-
nols. The associated drawbacks, such as instability against environmental factors, low bioavailability,
and loss of activity, must be considered during microencapsulation for a better application. Electro-
hydrodynamic processes have been investigated as promising tools to fabricate crucial vectors to
minimize these limitations. The developed microstructures present high potential to encapsulate
active compounds and for controlling their release. The fabricated electrospun/electrosprayed struc-
tures present different benefits when compared with structures developed by other techniques; they
present a high surface-area-to-volume ratio as well as porosity, great materials handling, and scalable
production—among other advantages—which make them able to be widely applied in different
fields, namely in the food industry. This review presents a summary of the electrohydrodynamic
processes, main studies, and their application.

Keywords: antioxidant; delivery systems; electrospinning; electrospraying; microencapsulation;
natural extract; polyphenols

1. Introduction

Recent consumer demands associated with health and natural issues are a focus
of global interest within the scientific community [1]. Natural sources of active com-
pounds can promote a better quality of life in different fields, such as food, nutraceuticals,
pharmaceuticals, and medicine. Their properties, such as their antioxidant, antibacterial,
anti-inflammatory, and antitumor activities, prevent several diseases and symptoms. The
extract from plants rich in polyphenols has been one of the main sources of these natural
and active compounds.

In fact, the quality and efficient improvement of these compounds’ benefits are the
main strategies being considered when developing new products [2]. In this regard,
microencapsulation technologies of compounds are an option to preserve and enhance the
quality of the active ingredients [3,4]. These technologies involve the coating and protection
of bioactive compounds by a produced barrier (wall material) (Figure 1); they allow for the
improvement of the compound’s stability and solubility, thereby slowing down the release
profile, and masking the flavour, odour, or taste [5].

Examples of these processes include spray drying, liposomes, spray chilling, freeze-
drying, solvent evaporation, melt extrusion, liposome preparation, complex coacervation,
fluidized bed coating, ionic gelation, layer-by-layer, and electrohydrodynamic techniques [6,7].
The most common technique is the spray drying [8]. In this case, the compounds are
emulsified in a polymeric solution; the solution is atomized and dried in contact with
hot air [9,10].
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material) that are able to minimize the associated limitations of bioactive compounds, 
improving their stability and bioavailability [13,14]. 

 
Figure 1. Encapsulation of bioactive compounds in different types of structures produced with 
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electron microscopy at Centro de Materiais da Universidade do Porto. 

Electrospinning is a simple, flexible, low-cost, and versatile technique of fibre 
production involving an electrical field, which is applied to the polymer solution from the 
needle to the collector [15,16]. This system is composed of a high voltage power supply, a 
feeding unit, and a grounded collector, as visualized in Figure 2A. The polymer is 
dissolved in a solvent and placed in a feeding unit. This method involves the use of high 
voltage electrostatic repulsive forces (Coulomb forces) to elongate and fabricate fibres [17–
19]. When the electrical force overcomes the surface tension of the polymer, a charged jet 
is ejected from the Taylor cone, the fibres are formed, the solvent evaporates, and the 
matrix is deposited on the collector [3,17]. 

Figure 1. Encapsulation of bioactive compounds in different types of structures produced with
electrohydrodynamic techniques. Scanning electron microscopy (SEM) images obtained by the
authors with different formulations in previous works. The morphology was evaluated by scanning
electron microscopy at Centro de Materiais da Universidade do Porto.

Recently, among the different microencapsulation techniques, electrohydrodynamic
processes—electrospinning and electrospraying (Figure 2)—have garnered relevant con-
sideration regarding the spray drying method [11,12]. These techniques allow for the
production of structures (matrix type—the core compound is dispersed in the wall material)
that are able to minimize the associated limitations of bioactive compounds, improving
their stability and bioavailability [13,14].
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Figure 2. Schematic illustration of electrohydrodynamic technologies: (A) electrospinning, (B) elec-
trospraying setups [3].

Electrospinning is a simple, flexible, low-cost, and versatile technique of fibre produc-
tion involving an electrical field, which is applied to the polymer solution from the needle
to the collector [15,16]. This system is composed of a high voltage power supply, a feeding
unit, and a grounded collector, as visualized in Figure 2A. The polymer is dissolved in a
solvent and placed in a feeding unit. This method involves the use of high voltage electro-
static repulsive forces (Coulomb forces) to elongate and fabricate fibres [17–19]. When the
electrical force overcomes the surface tension of the polymer, a charged jet is ejected from
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the Taylor cone, the fibres are formed, the solvent evaporates, and the matrix is deposited
on the collector [3,17].

Electrospraying is a technique involving fabrication by using droplets in combination
with electrical forces. Similar to the electrospinning process, the highly charged droplets are
produced by the elongation of the polymer solution from a capillary nozzle by the Taylor
cone (Figure 2B) [3,20]. The developed microparticles usually have smaller diameters (1 µm)
and a low polydispersity index. As well as electrospun structures, electrospraying particles
are easily produced with a low amount of associated costs. The systems are controlled
through adjustments to the voltage, flow rate, and the distance to the collector. Compared
with spray drying structures, electrosprayed systems have higher product yield values [9].

Electrospinning and electrospraying methods exhibit various advantages (Table 1):
They are simple to use, low cost, high efficiency, and biocompounds can be easily loaded [21].
Several studies report these emergent techniques with pertinent benefits, such as the high
encapsulation efficiency and an enhancement of thermosensitive biocompounds’ stabil-
ity [22]. Compared with the traditional methods, an essential advantage of electrohy-
drodynamic techniques is the non-use of heat, thereby avoiding the loss of activity and
allowing the functionality of the sensitive compounds [6,23]. On the other hand, these
kinds of processes present low associated production costs when compared with traditional
microencapsulation methods, such as spray drying [24]; however, all these positive charac-
teristics enable them to be suitable methods for the design and optimization of functional
nano/microsystems. The systems can be applied to food and pharmaceutical packaging to
enhance the viability, controlled release, and stability of the active compounds as well as
their nutraceutical properties [25].

Table 1. Advantages and disadvantages of electrohydrodynamic techniques [6,17].

Advantages Disadvantages

Non-use of heat Low production rate
Versatile and simple process Expensive industrial installation
High surface-area-to-volume ratio (production of very thin fibers to
the order of few nanometers with large surface areas)

Limitations in the selection of the encapsulating agents
(polymers) used considering the viscosity and conductivity

High porosity Toxicity of the residual solvent used
High encapsulation efficiency High operating voltage
Stability of the microstructures
Low-cost process
Easy scale-up
Microstructures with a wide range of applications

The fabricated electrospun/electrosprayed structures present different benefits when
compared with structures developed by other techniques. They present a high surface-area-
to-volume ratio as well as porosity. The structures have diameters in a range of nanometres
to several micrometres. For example, the electrospinning fibres have a high surface-area-to-
volume ratio and porous structure, great materials handling, easy manipulation of fibre
properties, and scalable production, which make them widely employed in different fields,
namely in tissue engineering and regenerative medicine [25].

According to the application areas, such as food, drug delivery, pharmaceuticals, or
medicine, it is possible to optimize the size and morphology of the structures. The polymer
solution characteristics (type of polymer, concentration, viscosity, conductivity, surface ten-
sion, and dielectric constant), the processing parameters (flow rate, applied voltage, and dis-
tance from the needle to collector), and the external environmental conditions (temperature,
humidity, oxygen, pH, and light) have a significant influence on the morphology and me-
chanical characteristics of the formed structures [9]. The solution characteristics are the most
relevant in the microstructures’ morphology when compared with the other parameters [18].
Natural and synthetic polymers, such as whey protein, poly(ε-caprolactone) (PCL), gelatin,
zein, polylactic acid (PLA), chitosan (CS), polyethylene oxide (PEO), polyvinylpyrrolidone



Molecules 2023, 28, 3592 4 of 17

(PVP), polyvinyl alcohol (PVA), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV),
carboxymethylcellulose sodium (CMC), and their combination with different polymers
were used for the production of electrospun/electrosprayed structures with low toxicity
and good biocompatibility and biodegradability [17,26,27].

The viscosity, conductivity, surface charge, and tension are essential for obtaining
uniform structures. Modifications in the viscosity of the polymer solution parameter
(polymer chain entanglements) correspond to the stability/instability of the jet that changes
the morphology of the developed structures [3]. Conductivity has an influence on the
charges of the polymer jet; in fact, high conductivity allows an elongated jet and, therefore,
the fabrication of uniform structures [9]. If the conductivity is too high, the jet will have a
stretching response. It is essential to optimize the processing factors, thereby guaranteeing
a stable Taylor cone. High voltage will allow a high amount of repulsion that leads to
structures with small diameters, but excessive voltage will destabilize the Taylor cone.

This review provides an overview of the recent developments in state-of-the-art
encapsulation methods that use electrohydrodynamic techniques—electrospinning and
electrospraying—through the use of natural sources of active compounds, such as ex-
tracts from plants, which are rich in polyphenols and natural antioxidant compounds.
Therefore, this paper begins with an introduction of the aspects of the relevant natural
and active compounds, such as antioxidants and polyphenols, that are encapsulated by
electrohydrodynamic processes. Likewise, the recent electrospun/electrosprayed struc-
tures that have been developed are highlighted. Several examples of natural compounds
microencapsulated by electrohydrodynamic were presented and discussed. Finally, the
review concludes with a summary as well as the challenges associated with the current
applications of these structures.

2. Challenges of Microencapsulation by Electrohydrodynamic Techniques

Electrospun/electroprayed structures with functional advantages can be applied
to several applications, such as active food (functional products, packaging, preserva-
tion/industry), pharmaceuticals, drug delivery, enzyme immobilization, tissue engineering,
and wound dressing, as observed in Figure 3 [6,28].
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2.1. Main Applications Fields
2.1.1. Food

Electrospun/electrosprayed structures with characteristics such as biocompatibility
and antibacterial and antioxidant properties can be applied to the functional products, food
packaging, and preservation fields [19,29–31]. The developed structures should maintain
the food’s active compounds, which are isolated and protected from external environmental
conditions, such as oxygen, odours, and moisture, which will have an impact on their
activity and antimicrobial effects [17].

Therefore, functional polymeric nanofibers have emerged as promising packaging
materials and remarkable breakthroughs have been made in the food packaging field [31].
As mentioned before, the electrospinning technique is recognized as a versatile and high-
efficiency method to produce nanofibers with multifunctional properties and flexible
structures [29,32,33]. For example, Duan et al. (2023) explored new solutions to electrospun
pullulan-carboxymethyl chitosan/PEO core-shell nanofibers loaded with nanogels for food
antibacterial packaging [30].

2.1.2. Nutraceuticals

Nowadays, food products are not only intended to satisfy one’s hunger but also to
prevent and eliminate nutrition-related diseases. In this context, the nutraceutical concept
is founded. The micro/nanostructures developed by electrohydrodynamic techniques
are able to be used as drug delivery systems for a dietary supplement or even preven-
tion/treatment of diseases [34]. Nutraceutical goods allow the development of products
that enhance human health and quality of life [34,35].

Given this, the term nutraceuticals itself incorporates a wide class of products that in-
cludes many categories and subcategories of compounds. One example of the application of
electrodynamic methods in the food industry is in the case of prebiotics and probiotics [36].
To enhance the probiotics’ viability, Ma et al. (2023) prepared novel vehicles consisting of
synthetic/natural biopolymers (polyvinyl alcohol, polyvinylpyrrolidone, whey protein
concentrates, and maltodextrin), encapsulated with L. plantarum KLDS 1.0328 and gum
Arabic. This prebiotic was fabricated by electrohydrodynamic techniques [36].

2.1.3. Drug Delivery

Drug delivery systems can have a significant impact for medical and pharmaceutical
applications [37]. Thus, they are able to target the drug in situ, thereby increasing their
activity and minimizing their toxicity [38]. There are different types of compounds that
can be incorporated into electrospun/electrosprayed structures to be delivered [39]. In fact,
antitumor agents, antibiotics, ribonucleic acid, deoxyribonucleic acid, and proteins can be
encapsulated by different biodegradable and biocompatible solutions that act as coating
materials in electrohydrodynamic techniques. For example, Norouzi and Abdouss (2023)
prepared electrospun nanofibers using β-cyclodextrin-grafted chitosan macromolecules
loaded with indomethacin as an innovative drug delivery system [40].

2.1.4. Wound Dressing

The skin is the largest organ, in terms of surface area, and protects the vital organs
from the external environment. A chronic or hard-to-heal wound is also characterized
by loss of residual stem cells for regeneration. The loss of residual skin stem cells for
regeneration and differentiation results in the requirement of skin regeneration products
to complete physiological healing [41]. Therefore, dressings play an important role in
the treatment of wounds, acting both to prevent infection and accelerate healing [42].
The production of electrospun/electroprayed systems for this application has advantages
compared to conventional methods [42]. An example is the inter- and intra-fibre pores and
the high surface-area-to-volume that incite the reaction of fibroblastic cells and, therefore,
result in better tissue formation [38,41]. Lee et al. (2023) studied the enhancement of the
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antibacterial activity of nanofibrous polyurethane membranes by incorporating glycyrrhizic
acid-conjugated β-Cyclodextrin [43].

A specific case with regards to wounds is the wounds of diabetic people. Kumar
et al. (2023) reviewed the application of polysaccharides-mediated electrospun nanofibers
for diabetic wound healing [44]. Diabetic wound healing is a complex physiological
process that involves a combination of various biological situations, such as hemostasis,
inflammation, and remodeling. Polymeric nanofibers (electrospun fibres) offer a promising
approach for the treatment of diabetic wounds and have emerged as viable options for
wound management [44].

Other examples involve applications in the cosmetics field. In fact, the high surface-
area-to-volume ratio of electrohydrodynamic structures improves the number of additives
that can enter/exit the skin [45].

2.1.5. Tissue Engineering

In regenerative medicine and bone tissue engineering, various composite materials
have enormous popularity [46,47]. In terms of this, complete tissue restoration is expected,
but is not always satisfactory [19,48]. Want et al. (2023) studied Chitosan/silk fibroin
composite bilayer PCL (poly (ε-caprolactone)) nanofibrous mats for bone regeneration with
enhanced antibacterial properties and improved osteogenic potential, which exemplified
the excellent prospects of applying PCSP (combination of PCL(poly (ε-caprolactone)/CS
(chitosan)-SF (silk fibroin)/PCL) mats for bone regeneration [48].

2.1.6. Enzyme Immobilization

In biological processes, enzymes are normally immobilized on inert materials in order
to enhance their stability and preserve their activity [38,49,50]. Some of the main challenges
of enzyme application are their sensitivity to temperature, pH, and chemical conditions, as
well as the excessive expenses associated with performing the enzymatic processes on a
large scale (industrial plants) [51,52]. These limitations allow the development of structures
that immobilize these natural biocatalysts, thereby maintaining their specificity, efficacy,
and safety [27].

Another important application of enzymes is as biosensors, which represent advanced
analytical devices with a fast response, as well as high selectivity and sensitivity in analyte
detection. Sanz et al. (2023) prepared novel cells that integrated biosensors based on
superoxide dismutase on electrospun fibre scaffolds for the electrochemical screening of
cellular stress [53], and Çetin et al. (2023) prepared a compound with a highly sensitive
threshold for detection of glucose via glucose oxidase immobilization on conducting
polymer-coated composite polyacrylonitrile nanofibers [54].

Given this, the electrohydrodynamic techniques are being applied in numerous fields.
Different projects are being developed—with interesting results—especially for food and
biomedical applications. There is no doubt that electrospun and electrosprayed materials
are going to have an important role in the future, namely for these types of applications.
However, new studies on these subjects should be done in order to provide better solutions
for existing and new problems, and to simplify the scale-up of these processes from
laboratory to industrial scales.

2.2. Natural Biocompounds

Natural biocompounds present significant benefits for that are vital to human health.
They have been investigated for pharmaceuticals, nutraceuticals, and food as well as appli-
cations related to medicine and well-being, such as tissue engineering [6]. Their properties,
such as their antioxidant, antibacterial, anti-inflammatory, and antitumor activities, prevent
several diseases and symptoms [55]. However, poor stability, low bioavailability, and
loss of activity are inherent limits that should be considered when they are used. Mi-
croencapsulation is an attractive field that allows different tools to avoid and minimize
these restrictions.
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2.2.1. Importance of Natural Antioxidants

Making wrong lifestyle choices can often contribute to the development of obesity,
type-2 diabetes, cancer, and cardiovascular and neurodegenerative diseases [12]. An
adequate diet rich in antioxidants could manage prevention at the early stages of diseases
and prior to the need for therapeutic intervention.

Antioxidants are substances that may protect our cells against free radicals, which
may play a role in the prevention or treatment of several diseases [56,57]. Therefore,
antioxidants are compounds that have the ability to minimize oxidation [19,29]. The sources
of antioxidants can be natural or artificial. In general plant-based foods are known to be rich
in antioxidants [56]. Other important sources of antioxidants are vitamins. For example,
Vitamin C and anthocyanins from sources such as berries and grapes are incorporated
into several food products and recognized for their high antioxidant activity [11,58,59].
Another example are the carotenoids (Provitamin A, carotenoids (β-carotene, α-carotene,
γ-carotene, and β-cryptoxanthin)), which are natural lipophilic pigments and antioxidants
that are present in many fruits and vegetables [60]. They have a high antioxidant activity
and promote free radical scavenging, which helps protect against chronic diseases [57].

However, some of these active ingredients cannot permeate into the small intestine in
a sufficient enough concentration for efficacy without an efficient oral delivery system [12].
Moreover, protection during food processing and packaging can be a sensitive step that
preserves the antioxidant compounds. Electrodynamic techniques are one of the options
to produce active compounds with valuable therapeutic and nutraceutical applications.
For example, α-tocopherol, also known as vitamin E, is a strong antioxidant that loses
its activity during the packaging process [17]. Thus, the developed structures in this
specific situation might be considered for the protection of vitamin E. Dumitriu et al. (2021)
produced 6 µm of vitamin E-loaded PCL fibres for food packaging products with good
antioxidant action [58].

Gómez-Mascaraque et al. (2019) highlighted the use of the electrospinning technique
to encapsulate catechin (EGCG) and α-linoleic acid (ALA) into zein and gelatin microstruc-
tures for food-grade applications [61]. The coaxial electrospraying method allows for the
enhancement of the encapsulation efficiency of the systems and, at the same time, an
improvement of the EGCG and ALA protection.

Locilento et al. (2019) reported a 90% encapsulation efficiency of grape seed extract
(GSE) into PLA/PEO nanofibers [62]. These biocompatible structures that were developed
can be used for wound dressings. In fact, after 48 h it is observed that the GSE in the
fibres will enhance the cell proliferation on fibroblast cells. The results suggested the high
capacity of the system to improve viability and cell growth.

Table 2 summarizes some examples of common antioxidants (vitamins, polyphenols,
carotenoids, and extracts rich in polyphenols) that have been encapsulated by electrospin-
ning/electrospraying techniques.

Table 2. Examples of antioxidants encapsulated, namely vitamins, polyphenols, carotenoids, and
extracts rich in polyphenols, by electrospinning/electrospraying techniques.

Antioxidant Encapsulation
Agent Processing Parameters Encapsulation

Efficiency, %
Structures Average

Size, µm Application Reference

Epigallocatechin gallate
(EGCG) Zein 0.15 mL/h, 10 cm, 13 kV 80 0.30 microparticles food-grade

materials
[61]

α-linolenic acid (ALA) gelatin 0.15 mL/h, 10 cm, 18 kV 100 0.80 microparticles

ß-carotene whey protein 0.5 mL/h, 12 cm, 20 kV - 0.27 nanocapsules

food packaging

[63]

α-tocopherol PCL 0.18 mL/min,
15 cm, 15 kV 6.0 fibres [58]

Grape seed extract PLA/PEO 1 mL/h, 9 cm, 17 kV 90 0.30 fibres wound
dressing [62]

Rosemary (Rosmarinus
officinalis) polyphenols PVA 2.2 mL/h, 20 cm, 30 kV 0.22 fibres active

packaging [64]

PCL—poly(ε-caprolactone), PLA—polylactic acid, PEO—polyethylene oxide, PVA—polyvinyl alcohol.
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2.2.2. Extracts of Plants

Plants and their extracts were used in traditional medicine by different civilizations
over the centuries [65,66]. Plant extracts have high concentrations of bioactive compounds
in their composition [65,67] (Table 3).

The extracts of plants can be prepared by different techniques and can promote
antimicrobial, antioxidant, anticancer, and anti-inflammatory activities [68–70]. These
extracts can be obtained using different solvents, such as water, ethanol, and methanol,
among others [71,72]. The solvent extraction method is the most used, but new technologies
that are considered to be green are being applied [68]. For example, according to Lee et al.
(2014), the ethanolic extract of yellow onion skin has 327.5 mg gallic acid equivalent per
gram (GAE/g) of total phenolic and 183.95 mg quercetin equivalent per gram (QE/g) of
total flavonoids.

However, several times the bioactive compounds found in the extracts of plants
have low stability to processing and environmental factors, including heat, humidity, and
oxygen, or chemical instability when inserted in a specific matrix [2,68,73]. Thus, they
must be protected from the external environment. The microencapsulation of these extracts
has been explored, namely using electrohydrodynamic techniques, as a way to protect,
to maintain their bioavailability and functionality, and to facilitate the delivery of active
compounds in food products [65,71,74]. For example, Vargas Romero et al. (2021) studied
the effect of propolis extract encapsulation by polycaprolactone nonwovens containing
chitosan that was achieved for active packaging applications, namely the protection of
meat products [75]. The colour and microbial stability of fresh pork is enhanced by the
propolis-PCL electrospun fibres.

Specific cases of extracts are the oleoresins and the essential oils. The oleoresins are
concentrated extracts from spices, plants, and herbs that have been studied as additives
in foods. The oleoresins are different from essential oils because they include volatile
compounds and non-volatile compounds (pigments and pungency), making them more
complex extracts, and resulting in a more complete aromatic and flavor profile. These
extracts are extremely rich in compounds capable of providing aroma, taste, colour, and
pungency, making oleoresins additives of interest to the food industry [68].

Table 3. Extracts of plants rich in antioxidant compounds, namely polyphenols and essential oils,
encapsulated by electrospinning/electrospraying techniques for food and nutraceutical applications.

Extract of
Plant/Antioxidant Encapsulation Agent Processing Parameters Encapsulation

Efficiency, %
Structures Average

Size, µm Application Reference

Antocyanin CS/gelatin 0.3 mL/h, 10 cm, 13 kV 40–60 micro/nanopheres food products [76]

Carvacrol

zein 1 mL/h, 20 cm, 0.54–0.65 fibres

active packaging

[77]
PLA 15 kV 1.82–2.27 fibres

potato starch 0.6 mL/h, 20 cm, −3 and
25 cm 0.07–0.10 fibres [78]

D-limonene PVA 0.2 mL/h, 2 cm, 18 kV 1.75–2.84 fibers [79]

Curcumin
PLA 15 cm, 24 kV 0.33–0.39 fibres wound dressing [80]

gliadin 0.5 mL/h, 10 cm, 15 kV 81–85 0.38–0.41 fibres food [81]

Ferulic acid gliadin 1 mL/h, 10 cm, 18 kV 94–97 0.27 active packaging [82]

Quercetin
zein 1 mL/h, 10 cm, 15 kV 0.75 nanofiber

food packaging,
pharmaceutical

healthcare
[83]

PCL 0.6 mL/h, 8–10 cm, 16 kV 94 0.10 fibres wound healing [84]

Gallic acid

lentil flour/PEO 0.6 mL/h, 30 cm, 15 kV 62.2 0.31 fibres active packaging
material [85]

cellulose acetate 1 mL/h; 15 cm; 15, 18,
21 kV 0.30–0.79 fibres wound dressing [86]

Ginger soy protein, PEO, zein 1 mL/h, 15 cm, 24 kV 0.21–0.63 food packaging [87]

Green tea PVP 0.5 mL/h, 10 cm, 12.5 kV 0.34–0.39 fibres oral products [88]
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Table 3. Cont.

Extract of
Plant/Antioxidant Encapsulation Agent Processing Parameters Encapsulation

Efficiency, %
Structures Average

Size, µm Application Reference

Tea tree oil PEO 0.6 mL/h, 15 cm, 19–25 kV 73.2 (nanofibers) antibacterial
packaging [89]

Cinnamaldehyde
essential oil zein 0.3 mL/h, 12 cm, 13–15 kV 0.15–0.22 fibers antibacterial

package [90]

Oregano essential
oil

rosemary extract
green tea extract

PHBV 4 mL/h, 20 cm, 38 kV 0.80 fibres biopackaging [91]

Peppermint +
chamomile essential

oils
gelatin 0.3 mL/h, 10 cm, 15 kV 0.33–0.46 fibres edible packaging [92]

Thyme essential oil gelatin 0.4 mL/h, 15 cm, 20 kV 0.21 fibers active packaging [93]

Propolis
Polycaprolactone

(PCL) Nonwovens
Containing Chitosan

50 mm/s, 18 cm, 80 kV fibres active packaging [75]

Chrysin PCL/PEG 2 mL/h, 20 cm, 18–22 kV 0.25–0.75 fibres wound healing [94]

Chilto zein 0.15 mL/h, 10 cm, 11 kV 90 0.06–0.27 fibers food packaging [95]

Açai fruit zein 0.4 mL/h, 10 cm, 13 kV 72.1 0.92 processed foods [22]

Microalgal phenolic
compounds CS/PEO 300 µL/h, 10 cm, 20 kV 0.21 fibers active packaging [96]

Tea polyphenols

pullulan-
carboxymethylcellulose

sodium

0.36–0.6 mL/h, 15 cm,
19–21 kV - 0.13 nanofibres fruit preservation [97]

PLA 20 mL/h, 15 cm, 20 kV 0.49 fibres food packaging [23]

CS—chitosan, PLA—polylactic acid, PVA—polyvinyl alcohol, PCL—poly(ε-caprolactone), PEO—polyethylene
oxide, PVP—Polyvinylpyrrolidone, PHBV—Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate).

On the other hand, essential oils have been widely exploited for their biological prop-
erties (mainly as antimicrobials) in the food industry and pharmaceutical and biomedical
fields [98]. Essential oils derived from aromatic plants have been investigated due to their
nutritional and therapeutic potentials, such as their antioxidant, antimicrobial, antitumor,
anti-inflammatory, and analgesic properties [42,99]. For example, lavender oil is an essen-
tial oil that can be used directly on the skin and is also commonly used in wound dressings
due to its antibacterial properties and promotion of wound healing. Wang et al., (2022)
used cellulose acetate and polycaprolactone as polymer carriers for silver nanoparticles
and lavender oil, processing them into Janus fibres. Dede et al. (2023) used angelica root
(Angelica sylvestris) oil encapsulated into a zein/hyaluronic acid/gelatin-based biofibre by
an electrospinning process to fabricate edible food packaging materials [100]. Shao et al.
(2019) reported the development of cinnamaldehyde essential oil that was incorporated into
zein nanofibers by electrospinning for the active food packaging field [90]. It is verified that
the combination of surfactants into zein solution allows the production of structures with
small diameters. The system was investigated to preserve fresh food, wherein a decrease of
microorganism growth was observed, meaning the food was in good condition.

Another study reported the potential antibacterial and antioxidant characteristics of
oregano essential oil, rosemary extract, and green tea extract encapsulated into PHBV
(Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)) electrospun fibres to be used in packag-
ing applications [91]. A high antimicrobial effect against E. coli and S. aureus bacteria was
shown. This effect was observed for oregano essential oil, which corresponded to a high
inhibition that was verified by the DPPH assay.

Electrospinning has proven to be a convenient and versatile method for the encapsula-
tion of essential oils. The electrospinning technique is able to overcome limitations of the
chemical preservatives, such as low aqueous solubility and shelf life, high volatility, and
activity in active food products [13].
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2.2.3. Polyphenols

Polyphenols are a special type of bioactive compound contained in the extracts of
plants. Polyphenols are one of the main constituents of plant extracts [74]. Polyphenols are
secondary metabolites that are regularly referred to as various groups of natural compounds
containing phenolic functionalities, which can be found in vascular plants and present a
perfect combination of biological, physiological, and chemical activities [65,74,101]. Thou-
sands of polyphenolic compounds have been distinguished in plants and classified into
various categories, depending on the number of phenol groups [2]. They are classified
as flavonoids, phenolic acid, anthocyanins, and tannins, with the most significant being
phenolic acids and flavonoids [2]. Flavonoids are present in fruits and vegetables that
depend on the species variety, growing conditions, and maturation. They act on enzyme
and vitamin synthesis. Moreover, they are essential to the colour and taste of the products’
composition. Phenolic acids are found naturally in fruits and vegetables. These compounds
possess anti-inflammatory, neuroprotective, anticancer, and antidepressant activities. An-
thocyanins are plant pigments that act against cancer, inflammation, and cardiovascular
illnesses. Finally, tannins are compounds capable of acting in plants against UV radiation
and free radical chemical signaling, as well as animal attacks [2,7,67].

The application of plant extracts rich in polyphenols has attracted pronounced interest
in the nutraceutical, food, cosmetics, and pharmaceutical industries. They have been the
focus of investigation due to their potential antioxidant effects against diseases and, at
the same time, their ability to enhance and protect several products with regards to the
food preservation and packaging, pharmaceutical, cosmetics, and chemical engineering
fields [102]. They present attributes to prevent several diseases such as cancer, diabetes,
and cardiovascular and neurodegenerative diseases [2,103].

Electrospinning encapsulation is a highly viable method to protect bioactive ingredi-
ents and prevent their degradation. Cruz et al. (2023) used red onion skin extract rich in
flavonoids encapsulated in ultrafine fibres of sweet potato starch by electrospinning [71].
Aydin et al. (2023) used Quercus infectoria gall-loaded patches for wound dressing [104]
and they checked that the effect of the electrospinning, 3D printing, and hydrogel casting
techniques on the properties of the wound dressings was exhibited. They concluded that
the highest area of the antibacterial effect belongs to the electrospinning technique [104].
Krongrawa et al. (2023) studied a Kaempferia parviflora extract based on electrospun shellac
fibres capable of transporting methoxyflavones. The extract of this plant is used in tradi-
tional medicine to treat inflammation, swelling, wounds, bacterial infection, and ringworm,
among other problems [105].

More cases of recent studies are presented in Table 3. For example, a study reported
the ability of 0.1 µm quercetin-loaded PCL electrospun fibres to inhibit bacterial load and
excess free radical activity in wound healing [84]. Experimental assays were performed
against S. aureus. The non-toxicity of the nanofibers was also verified against mouse
fibroblast cell lines. Aydogu et al. (2019) suggested gallic acid encapsulated into lentil
flour-based electrospun fibres for active packaging applications [85]. The oxidative stability
of walnuts was studied, and the results showed a reduction in walnuts’ oxidation by the
use of the developed system. The development of uniform tea-loaded PLA nanofibers
for food packaging is archived by Liu et al. (2018) [23]. Its antimicrobial activity against
E. coli and S. aureus was examined, which verified the promising and positive results
(92.26% ± 5.93% and 94.58% ± 6.53%, respectively). Another study suggested tea-loaded
pullulan-CMC electrospun fibres for fruit preservation [97]. The results based on weight
loss and titratable acidity demonstrated the ability of the delivery system to enhance fruit
quality during storage.

Given this, electrohydrodynamic techniques are being applied to the microencap-
sulation of several types of antioxidant (extracts of plants, essential oils, oleoresins, or
polyphenols) compounds with success. Antioxidants are natural compounds that are
extremely important for our life and health and are attributed with important properties
(antioxidant, antibacterial, anti-inflammatory, and antitumor activity). On the other hand,
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the properties of the microstructures prepared with the electrohydrodynamic techniques,
such as the high surface-area-to-volume ratio (production of very thin fibres with large
surface areas) are extremely important for the success of these techniques and to maintain
and potentiate the biological activity of the bioactive compounds. The authors believe that
electrospun fibres will have an important role in the development of new solutions for
pharmaceutical and medical problems in the near future.

3. Relevant Physico-Chemical Analysis of Microstructures Containing
Bioactive Compounds

Several physico-chemical factors might be influenced by the biocompounds’ charac-
teristics when they are developed into the microstructures. There are several techniques
that could be used to verify and characterize the systems [106,107]. Some examples are
the following:

- Size, morphology/shape, and colour are the main physical properties that should
be considered in the development of the polymeric microsystems. Transmission
electron microscopy (TEM) and scanning electron microscopy (SEM) are methods that
have been studied to observe the morphology and estimate the size of the structures.
Differential scanning calorimetry (DSC) and thermogravimetric analyses (TGA) are
important methods to understand the morphology of the formulated structures. In a
packaging study, the behaviour of the structures can be evaluated by these techniques.

- Encapsulation efficiency is the main system characteristic to determine the compound
loaded/incorporated into the microstructures. Several reports suggested the essen-
tial methods for quantifying the encapsulation efficiency: high-performance liquid
chromatography (HPLC) and UV-vis spectroscopy.

- Chemical Characteristics—Fourier transform infrared spectroscopy (FTIR) is the most
used technique to chemically characterize the systems and the reaction with the
compounds/polymers [59,108].

- Storage Stability—The effect of environmental conditions such as temperature, oxygen,
and air have an influence on the structures. For this reason, the systems must be
studied in these conditions. The stability of the compounds incorporated into the
electrospinning/electrosprayed structures could be evaluated and compared with the
systems alone.

- Bioavailability of Biocompounds—In vitro/In vivo bioavailability of the compounds
is achieved in order to simulate the compound’s effect on the system against specific
conditions, such as a simulated gastrointestinal tract.

- Biological activity studies—Depending on the active compound microencapsulated,
different tests can be performed to evaluate the biological activity, such as antioxidant
evaluation and phenolic determination, among others [72,109–111].

Thus, different methods can be applied to characterize the micro/nanostructures
produced by electrospinning/electrospraying techniques. These methods will be also
selected by considering the type of application of the structures formed and the type of
active compound incorporated.

4. Concluding Remarks and Future Trends

Over the past few decades, the electrohydrodynamic techniques have developed rapidly;
however, some drawbacks continue to crop up, many related to the industrial scale-up.

This review covers the latest studies of improved electrospinning/electrosprayed
microstructures of natural antioxidants, namely from extracts of plants and polyphenols.
Antioxidants are compounds that are extremely important for our life and health that possess
important properties (antioxidant, antibacterial, anti-inflammatory, and antitumor activity).

The electrohydrodynamic techniques have proven to be a convenient and versatile
method for the encapsulation of antioxidants. The electrohydrodynamic processes have sev-
eral advantages, thereby allowing the production of structures with natural and synthetic
polymers in their composition while protecting the compounds and their properties. The
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fabricated electrospun/electrosprayed structures present different benefits when compared
with structures developed by other techniques. They have a high surface-area-to-volume
ratio as well as porosity. For example, electrospinning fibres have a high surface-area-to-
volume ratio and porous structure, great materials handling, easy manipulation of fibre
properties, and scalable production.

The electrohydrodynamic techniques are being applied in numerous fields, namely
for food and biomedical applications. There is no doubt that electrospun and electro-
sprayed materials are going to have an important role in the future, namely for food and
biomedical applications.

A gradual enhancement of the application of electrospinning/electrosprayed struc-
tures is expected in the next years. Future developments and processing technologies must
find a way to optimize the production of electrospun/electrosprayed structures, namely in
terms of industrial scale. This improvement might lead to the continuous application of the
developed structures in different areas, such as food, pharmaceuticals, and biomedicine.
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