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Abstract: The reaction of 3,3-diaminoacrylonitriles with DMAD and 1,2-dibenzoylacetylene was
studied. It is shown that the direction of the reaction depends on the structure both of acetylene and of
diaminoacrylonitrile. In the reaction of DMAD with acrylonitriles bearing a monosubstituted amidine
group, 1-substituted 5-amino-2-oxo-pyrrole-3(2H)ylidenes are formed. On the other hand, a similar
reaction of acrylonitriles containing the N,N-dialkylamidine group affords 1-NH-5-aminopyrroles. In
both cases, pyrroles containing two exocyclic double bonds are formed in high yields. A radically
different type of pyrroles containing one exocyclic C=C bond and sp3 hybrid carbon in the cycle
is formed in reactions of 3,3-diaminoacrylonitriles with 1,2-diaroylacetylenes. As in reactions with
DMAD, the interaction of 3,3-diaminoacrylonitriles with 1,2-dibenzoylacetylene can lead, depending
on the structure of the amidine fragment, both to NH- and 1-substituted pyrroles. The formation of
the obtained pyrrole derivatives is explained by the proposed mechanisms of the studied reactions.

Keywords: 3,3-diaminoacrylonitriles; acetylenedicarboxylate (DMAD); 1,2-dibenzoylacetylene;
5-aminopyrroles; pyrrol-3(2H)-ylidene acetates

1. Introduction

Esters of acetylenedicarboxylic acid, mostly dimethyl acetylenedicarboxylate (DMAD)
(1), bearing highly electrophylic triple bond show a broad range of reactivity and are widely
used in organic synthesis [1–3]. They serve as a two-electron component in formal [2+2]-
cycloaddition to arylphosphine oxide to generate four-membered oxaphoshetene [1–3].
They can also react with azirines and aziridines as sources of azomethyne ylides to form
4-acylpyrroles [2]. 1,3-Dipolar cycloaddition of DMAD (1) to 1,3-dipoles such as azides [2],
diazoalkanes [1], nitrile oxides [4], and azomethine ylides [5] affords 1,2,3-triazoles [2],
pyrazoles [2], isoxazoles [4,5] and pyrroles [6–8]. They can be used in Diels–Alder reac-
tions [9,10] and in reaction with thiolates [11], giving rise to 1:1 adducts and undergoing
[8+2]-cycloaddition to form furanophane derivatives [12]. Therefore, DMAD (1) can also be
involved in a three-component reaction with isocyanides and nucleophilic reagents [13–15]
to furnish (a) a variety of acyclic and heterocyclic compounds, (b) hybrids of furans with
quinolones, and (c) bis(4H-chromene)-3,4-dicarboxylate derivatives [15].

In 1998 we discovered that malonothioamides could react with DMAD (1) to form
2-oxoethylidene-4-oxothiazolidin-5-ylidenes (Scheme 1, path A) [16]. This reaction was
also used to prepare various derivatives of 4-oxothiazolidin-5-ylidenes [1–3].
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Scheme 1. Reaction of Carbonyl Derivatives of Acetylene with Thiocarbamoyl- and Amidine-Con-
taining Compounds. See references [16] for path A, [17] for B and [18] for C. 

We have paid a ention to the data of Taran and colleagues [17], who developed a 
method for the synthesis of 4-arylidene-5-imidazolones based on phosphine-catalyzed 
tandem umpolung addition and intramolecular cyclization of amidine pronucleophiles 
with arylpropiolates. Our earlier study of malonothioamides reaction with DMAD (1) [16] 
and the paper of Taran [17] inspired an idea to study the reaction of 3,3-diaminoacryloni-
triles 3 with DMAD (1) and dibenzoylacetylene (2) (Scheme 1, Paths D, E). 

Cocco and colleagues [18] have reported the formation of ethyl 5-cyano-2-oxo-1,2-
dihydropyridine-4-carboxylates in the reaction of 3,3-diaminoacrylonitriles with diethyl 
1,2-acetylenedicarboxylate (Scheme 1, Path C). Here, we present the formation of NH- and 
1-substituted pyrrol-3(2)-ylidenes 4 in a similar reaction with DMAD (1) (Scheme 1, Path 
D). The present paper also contains the data on our study of the reaction of 3,3-diamino-
acrylonitriles 3 with 1,2-dibenzoylacetylene (2) leading to novel pyrrole derivatives 5, 
bearing an exocyclic C=C bond and an sp3-hybride carbon atom (Scheme 1, Path E). It is 
worth noting that in the reactions in Scheme 1 (Paths A, B), two heteroatoms (S,N or N,N) 
of the starting compounds are involved in the structure of products, while in reactions in 
Paths C, D, E (Scheme 1), only one heteroatom of a reagent is incorporated in the product. 

Scheme 1. Reaction of Carbonyl Derivatives of Acetylene with Thiocarbamoyl- and Amidine-
Containing Compounds. See references [16] for path A, [17] for B and [18] for C.

We have paid attention to the data of Taran and colleagues [17], who developed
a method for the synthesis of 4-arylidene-5-imidazolones based on phosphine-catalyzed
tandem umpolung addition and intramolecular cyclization of amidine pronucleophiles with
arylpropiolates. Our earlier study of malonothioamides reaction with DMAD (1) [16] and
the paper of Taran [17] inspired an idea to study the reaction of 3,3-diaminoacrylonitriles 3
with DMAD (1) and dibenzoylacetylene (2) (Scheme 1, Paths D, E).

Cocco and colleagues [18] have reported the formation of ethyl 5-cyano-2-oxo-1,2-
dihydropyridine-4-carboxylates in the reaction of 3,3-diaminoacrylonitriles with diethyl
1,2-acetylenedicarboxylate (Scheme 1, Path C). Here, we present the formation of NH-
and 1-substituted pyrrol-3(2)-ylidenes 4 in a similar reaction with DMAD (1) (Scheme 1,
Path D). The present paper also contains the data on our study of the reaction of 3,3-
diaminoacrylonitriles 3 with 1,2-dibenzoylacetylene (2) leading to novel pyrrole derivatives
5, bearing an exocyclic C=C bond and an sp3-hybride carbon atom (Scheme 1, Path E). It is
worth noting that in the reactions in Scheme 1 (Paths A, B), two heteroatoms (S,N or N,N)
of the starting compounds are involved in the structure of products, while in reactions in
Paths C, D, E (Scheme 1), only one heteroatom of a reagent is incorporated in the product.
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2. Results and Discussions
2.1. Reactions of DMAD (1) and 1,2-Dibenzoylacetylene (2) with 3,3-Diaminoacrylonitriles 3
2.1.1. Synthesis of 2-oxo-1H-pyrrol-3(2H)-ylidenes

To study the reactions of DMAD (1) and 1,2-dibenzoylacetylene (2) with 3,3-diamino-
acrylonitriles (2-cyanoacetamidines, 3), the following starting reagents were used (Figure 1).
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Figure 1. Structures of Starting Materials 3.

It is worth mentioning that Cocco and colleagues have already studied the reaction of
3,3-diaminoacrylonitriles with diethyl 1,2-acetylenedicarboxylates in ethanol and, based on
IR and 1H NMR spectra, proposed the formation of 2(1H)-pyridones [18] (Scheme 1, Path
C). We have found that DMAD (1) smoothly reacts with 3,3-diaminoacrylonitriles 3a m in
DCM at room temperature to form sole products 4a–g or 5a–f at a 71–98% yield (Scheme 2).

We have shown the formation of NH-pyrroles 4a–g in the reaction of DMAD (1) with
N,N-disubstituted 3,3-diaminoacrylonitriles 3a–f. On the other hand, in the reaction of
compounds 3g–k,m bearing monosubstituted amidine group 1-substituted 5-amino-2-
oxopyrrolidenes 5a–f are formed. Interestingly, the reaction of acrylonitrile 3l with DMAD
affords 5-cyclohexylamino-NH-pyrrole 4g instead of 1-cyclohexylpyrrole 5g proposed [18].
Probably, the initially formed pyrrole 5g bearing bulky substituent in position 1 of the
ring undergoes the Dimroth rearrangement to form NH-pyrrole 4g. It should be noted
that the data of IR, 1H and 13C NMR spectra, including 2D NMR spectra obtained for
compounds 4b and 5a, are in agreement with the structures of 2H(1H)-pyridones [18]. The
final decision in favor of the pyrrole structure came from X-ray data analysis for compound
4e (Scheme 2). These data are in agreement with the formation of a rather 2-oxo-1H-pyrrol-
3(2H)-ylidene acetate structure than of pyridine-2-one ring in this reaction [18]. Thus, we
have first demonstrated the formation of 1H-pyrrol-3(2H)-ylidenes 4 and 5 bearing various
primary and secondary amino groups and a variety of substituents (H, alkyl) in position 1
of the ring in the reaction of DMAD (1) with 3,3-diaminoacrylonitriles 3a–m.

Scheme 3 illustrates the plausible mechanism for the formation of pyrroles 4 and 5 in
the reaction of 3,3-diaminoacrylonitriles 3 with DMAD (1).
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Scheme 2. Reaction of DMAD (1) with 3,3-Diaminoacrylonitriles 3a–m. Substrate Scope of 3,3-
Diaminoacrylonitriles 3. Conditions: 1 (0.5 mmol), 3 (0.5 mmol), CH2Cl2 (2 mL), rt, 30 min.

It is reasonable to assume that the initial addition of a highly electrophilic alkyne
group of DMAD (1) to position 2 of 2-cyanoacetamidine A results in the formation of
intermediate B. The nucleophilicity of A is increased by the tert-amino effect of the amino
group (Scheme 3). Then, the rotation around the single bond in the intermediate occurs.
It is followed by an H-shift in C, generating key intermediate D. Interaction of ester and
amino groups finalizes the process of formation of either NH-pyrrole 4 (when R3 = H) or
1-substituted pyrrole 5 (in the case when R3 6= H).



Molecules 2023, 28, 3576 5 of 14Molecules 2023, 28, x FOR PEER REVIEW 5 of 14 
 

 

N NH2O

CO2Me
CN

R3

N
H

NR1R2O

CO2Me
CN

NC HN R3

NR1R2

NC N R3

NR1R2

H

CO2MeMeO2C

NC N R3

NR1R2

H-shift

NC

N
OMe

O

H

R3

3

1

4

5

A B

CD

NC NR1R2

N
MeO2C

O
OMe

R3 = H

R3 = H

NR1R2 = NH2

- MeOH

- MeOH

MeO2C

MeO2C

CO2Me

NR1R2

R3

 
Scheme 3. Plausible Mechanism for the Formation of 1-Substituted- (4) and NH-Pyrroles 5. 

Pyrroles are important scaffolds due to their presence in various biologically active 
naturally occurring compounds (porphyrin, hemoglobin, chlorophyll, Vitamin B12). 
These compounds exhibit anti-inflammatory, antioxidant, and anticancer activities [19]. 
With the purpose of expanding the scope of pyrrole derivatives prepared from 3,3-dia-
minoacrylonitriles 3, we have also carried out a detailed study of the reactions of 3,3-dia-
minoacrylonitriles 3a–g, k, l with 1,2-dibenzoylacetylene (2). To the best of our 
knowledge, the reaction of 3,3-diaminoacrylonitriles 3 with 1,2-dibenzoylacetylene (2) was 
not studied so far. 

2.1.2. Synthesis of 5-Hydroxypyrroles 
Similar to the reaction of DMAD (1), the reaction of 3,3-diaminoacrylonitriles 3 with 

1,2-dibenzoylacetylene (2) in DCM leads to the formation of two types of products (de-
pending on the structure of amidine group), 1-nonsubstituted NH-pyrroles 6a–g or N-
substituted pyrroles 7a,b in 83‒98 and in 76‒92% yield, respectively (Scheme 4). The struc-
ture of the prepared compounds is in good agreement with IR, 1H and 13C NMR spectra, 
including the data of HSQC and HMBC NMR spectra of compound 6b (Figures S37 and 
S38) and with the data of high-resolution mass spectrometry (HRMS). The final proof of 
the structure of compounds 6 and 7 came from X-ray data analysis for compounds 6e and 
7a (Scheme 4). Thus, we have elaborated on an effective novel method of the synthesis of 
nonaromatic pyrroles bearing C=C bond and sp3 hybrid carbon atom in the ring. 

The mechanism of formation of pyrroles 6 and 7 (Scheme 5) is similar to that of pyr-
roles 4 and 5 (Scheme 2). The first C‒C bond in both compounds 6 and 7 is formed simi-
larly to the formation of compounds 3 and 4 via the interaction of a negatively charged 
carbon atom of intermediate A with a triple bond of dibenzoylacetylene (2). The N‒C bond 
of pyrroles 6 and 7 is formed via the addition of an amino group to the C=O bond in 
intermediate D. It is different from the mechanism depictured in Scheme 2, where the N‒
C bond is formed via the interaction of ester and amino groups. 

Scheme 3. Plausible Mechanism for the Formation of 1-Substituted- (4) and NH-Pyrroles 5.

Pyrroles are important scaffolds due to their presence in various biologically active
naturally occurring compounds (porphyrin, hemoglobin, chlorophyll, Vitamin B12). These
compounds exhibit anti-inflammatory, antioxidant, and anticancer activities [19]. With the
purpose of expanding the scope of pyrrole derivatives prepared from 3,3-diaminoacrylonitriles
3, we have also carried out a detailed study of the reactions of 3,3-diaminoacrylonitriles
3a–g, k, l with 1,2-dibenzoylacetylene (2). To the best of our knowledge, the reaction of
3,3-diaminoacrylonitriles 3 with 1,2-dibenzoylacetylene (2) was not studied so far.

2.1.2. Synthesis of 5-Hydroxypyrroles

Similar to the reaction of DMAD (1), the reaction of 3,3-diaminoacrylonitriles 3 with 1,2-
dibenzoylacetylene (2) in DCM leads to the formation of two types of products (depending
on the structure of amidine group), 1-nonsubstituted NH-pyrroles 6a–g or N-substituted
pyrroles 7a,b in 83–98 and in 76–92% yield, respectively (Scheme 4). The structure of the
prepared compounds is in good agreement with IR, 1H and 13C NMR spectra, including
the data of HSQC and HMBC NMR spectra of compound 6b (Figures S37 and S38) and
with the data of high-resolution mass spectrometry (HRMS). The final proof of the structure
of compounds 6 and 7 came from X-ray data analysis for compounds 6e and 7a (Scheme 4).
Thus, we have elaborated on an effective novel method of the synthesis of nonaromatic
pyrroles bearing C=C bond and sp3 hybrid carbon atom in the ring.

The mechanism of formation of pyrroles 6 and 7 (Scheme 5) is similar to that of
pyrroles 4 and 5 (Scheme 2). The first C–C bond in both compounds 6 and 7 is formed
similarly to the formation of compounds 3 and 4 via the interaction of a negatively charged
carbon atom of intermediate A with a triple bond of dibenzoylacetylene (2). The N–C
bond of pyrroles 6 and 7 is formed via the addition of an amino group to the C=O bond in
intermediate D. It is different from the mechanism depictured in Scheme 2, where the N–C
bond is formed via the interaction of ester and amino groups.
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30 min.
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3. Materials and Methods

All chemicals were purchased from commercial sources and were used without fur-
ther purification. Analytical thin-layer chromatography was performed on aluminium foil
plates Sorbfil UV-254 coated with 0.2 mm silica gel and visualized with UV-lamp 254 nm in
an EtOAc/petroleum ether (PE) system (3:1, 2:1 or 1:2). Melting points were determined
on a melting point apparatus Stuart SMP10 (Staffordshire, ST15 OSA, UK) and are uncor-
rected. All NMR spectra were recorded with a Bruker Avance II (Karlsruhe, Germany)
spectrometer at 400 MHz, 600 MHz (1H NMR) and 100 MHz (13C NMR) in CDCl3 and
DMSO-d6. The chemical shifts are given in ppm relative to the resonance of the solvents
[1H: δ (CHCl3) = 7.26, 13C: δ (CDCl3) = 77.16 ppm; 1H: δ (DMSO-d5) = 2.50, 13C: δ (DMSO-
d6) = 39.52 ppm]. Multiplicities were given as: s (singlet); br. s (broad singlet); d (doublet);
t (triplet); dd (double of doublet); m (multiplet). Coupling constants are reported as J
value in Hz. The minor isomer signal is highlighted with an asterisk (*). High-resolution
mass spectra (HRMS) were recorded using ultrahigh resolution quadrupole time-of-flight
mass spectrometer Bruker maXis impact HD (Billerica, MA, USA) with the electrospray
ionization probe coupled with Agilent 1260 HPLC system. The Fourier-transform infrared
(FT-IR) spectra were obtained using a Bruker Alpha (ATR, ZnSe) spectrometer (Ettlingen,
Germany) in the 4000–500 cm–1 region.

3.1. Synthesis
3.1.1. Preparation of 3,3-Diaminoacrylonitriles 3

3,3-Diaminoacrylonitriles 3a–f, h, l were synthesized from ethyl 2-cyanoacetimidate
and corresponding amines according to the literature procedures [20–23]; the compounds
3g, i–k, m are commercially available.

3.1.2. Synthesis of Pyrroles 4a–g, 5a–f. General Procedure

DMAD (1) (0.5 mmol, 71 mg) was added to the solution of corresponding 3,3-diaminoa-
crylonitryle 3 (0.5 mmol) in DCM (2 mL) at room temperature. The reaction mixture was
stirred for 30 min at room temperature, then PE (10 mL) was added, and the resulting
solution was stirred for 5 min more. The formed precipitate was filtered off, washed with
DCM/PE (1:5) and dried.

Methyl (E)-2-(4-cyano-5-(dimethylamino)-2-oxo-1,2-dihydro-3H-pyrrol-3-ylidene)acetate (4a).
Compound 4a was obtained at a 98% yield (109 mg), according to the general proce-
dure (amidine 3a: 56 mg, 0.5 mmol; acetylene 1: 71 mg, 0.5 mmol; DCM (2 mL)) as a yellow
solid, mp 241–243 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 3.29 (s, 6H), 3.64 (s, 3H), 5.71
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(s, 1H), 11.27 (br. s, 1H). 13C NMR (100 MHz, DMSO-d6): δ 40.7, 50.4, 60.7, 102.4, 117.4,
139.1, 161.5, 165.8, 168.3. IR (ATR, ZnSe, cm−1): ν, 3131, 3057, 2776, 2202, 1744, 1696, 1637,
1596, 1449, 1395, 1352, 1297, 1154, 1137, 1011. HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for
C10H12N3O3 222.0873; Found: 222.0880.

Methyl (E)-2-(4-cyano-2-oxo-5-(pyrrolidin-1-yl)-1,2-dihydro-3H-pyrrol-3-ylidene)acetate (4b).
Compound 4b was obtained at a 79% yield (97 mg), according to the general procedure
(amidine 3b: 69 mg, 0.5 mmol; acetylene 1: 71 mg, 0.5 mmol; DCM (2 mL)) as a yellow
solid, mp 254–255 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 1.91–1.98 (m, 4H), 3.57 (br. s, 2H),
3.63 (s, 3H), 3.88 (br. s, 2H), 5.66 (s, 1H), 11.32 (br. s, 1H). 13C NMR (100 MHz, DMSO-d6): δ
24.0, 25.2, 49.2, 50.4, 50.9, 60.9, 101.7, 117.5, 139.0, 158.8, 166.0, 168.5. IR (ATR, ZnSe, cm−1):
ν, 3131, 3057, 2776, 2202, 1744, 1696, 1637, 1596, 1449, 1395, 1352, 1297, 1154, 1137, 1011.
HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for C12H14N3O3 248.1030; Found: 248.1028.

Methyl (E)-2-(4-cyano-2-oxo-5-(piperidin-1-yl)-1,2-dihydro-3H-pyrrol-3-ylidene)acetate (4c).
Compound 4c was obtained at a 97% yield (128 mg), according to the general proce-
dure (amidine 3c: 76 mg, 0.5 mmol; acetylene 1: 71 mg, 0.5 mmol; DCM (2 mL)) as a yellow
solid, mp 216–218 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 1.66 (br. s, 6H), 3.64 (s, 3H), 3.76
(br. s, 4H), 5.71 (s, 1H), 11.34 (br. s, 1H). 13C NMR (100 MHz, DMSO-d6): δ 23.1, 25.7, 49.4,
50.5, 60.7, 102.4, 117.2, 139.3, 160.2, 165.8, 168.4. IR (ATR, ZnSe, cm−1): ν, 3271, 3062, 2929,
2854, 2196, 1744, 1694, 1634, 1589, 1558, 1447, 1368, 1256, 1151, 1020. HRMS (ESI-TOF) m/z:
[M + H]+ Calcd. for C13H16N3O3 262.1186; Found: 262.1188.

Methyl (E)-2-(5-(4-benzylpiperidin-1-yl)-4-cyano-2-oxo-1,2-dihydro-3H-pyrrol-3-ylidene)acetate
(4d). Compound 4d was obtained at an 83% yield (146 mg), according to the general
procedure (amidine 3d: 121 mg, 0.5 mmol; acetylene 1: 71 mg, 0.5 mmol; DCM (2 mL)) as a
yellow solid, mp 232–234 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 1.27–1.37 (m, 2H), 1.70–1.73
(m, 2H), 1.86–1.97 (m, 1H), 2.53 (d, J = 8 Hz, 2H), 3.22–3.25 (m, 2H), 3.64 (s, 3H), 4.26 (br. s,
2H), 5.73 (s, 1H), 7.17–7.21 (m, 3H), 7.27–7.31 (m, 2H), 11.29 (br. s, 1H). 13C NMR (100 MHz,
DMSO-d6): δ 31.5, 36.2, 41.4, 48.4, 50.4, 60.8, 102.7, 117.0, 125.9, 128.1, 128.9, 139.1, 139.6,
160.2, 165.7, 168.3. IR (ATR, ZnSe, cm−1): ν 3149, 3083, 2918, 2200, 1718, 1688, 1627, 1597,
1493, 1452, 1375, 1281, 1185, 1153, 1111, 1091, 1072, 1040. HRMS (ESI-TOF) m/z: [M + Na]+

Calcd. for C20H21N3NaO3 374.1475; Found: 374.1472.

Methyl (E)-2-(5-(azepan-1-yl)-4-cyano-2-oxo-1,2-dihydro-3H-pyrrol-3-ylidene)acetate (4e). Com-
pound 4e was obtained at an 82% yield (113 mg), according to the general procedure
(amidine 3e: 83 mg, 0.5 mmol; acetylene 1: 71 mg, 0.5 mmol; DCM (2 mL)) as a yellow solid,
mp 235–236 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 1.55 (br. s, 4H), 1.64–1.80 (m, 4H), 3.64
(s, 3H), 3.68–3.95 (m, 4H), 5.72 (s, 1H), 11.25 (br. s, 1H). 13C NMR (100 MHz, DMSO-d6): δ
25.7, 27.7, 50.4, 51.2, 60.1, 102.6, 117.1, 138.9, 160.4, 165.8, 168.3. IR (ATR, ZnSe, cm−1): ν
3159, 3089, 2923, 2857, 2184, 1725, 1688, 1631, 1585, 1451, 1403, 1355, 1261, 1158, 1097, 1045.
HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for C14H18N3O3 276.1343; Found: 276.1347.

Methyl (E)-2-(4-cyano-5-morpholino-2-oxo-1,2-dihydro-3H-pyrrol-3-ylidene)acetate (4f). Com-
pound 4f was obtained at a 76% yield (100 mg), according to the general procedure (amidine
3f: 77 mg, 0.5 mmol; acetylene 1: 71 mg, 0.5 mmol; DCM (2 mL)) as a yellow solid, mp
235–237 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 3.65 (s, 3H), 3.73–3.75 (m, 4H), 3.78–3.80 (m,
4H), 5.78 (s, 1H); 11.35 (br. s, 1H). 13C NMR (100 MHz, DMSO-d6): δ 48.3, 50.5, 61.0, 65.5,
103.6, 117.0, 138.8, 160.8, 165.7, 168.1. IR (ATR, ZnSe, cm−1): ν 3184, 2981, 2875, 2187, 1755,
1713, 1700, 1575, 1461, 1432, 1357, 1297, 1266, 1202, 1145, 1114, 1066, 1002. HRMS (ESI-TOF)
m/z: [M + Na]+ Calcd. for C12H13N3NaO4 286.0798; Found: 286.0800.

Methyl (E)-2-(4-cyano-5-(cyclohexylamino)-2-oxo-1,2-dihydro-3H-pyrrol-3-ylidene)acetate (4g).
Compound 4g was obtained at an 89% yield (122 mg), according to the general procedure
(amidine 3l: 83 mg, 0.5 mmol; acetylene 1: 71 mg, 0.5 mmol; DCM (2 mL)) as a yellow solid,
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mp 236–237 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 1.04–1.11 (m, 1H), 1.21–1.31 (m, 2H),
1.41–1.49 (m, 2H), 1.57–1.60 (m, 1H), 1.70–1.82 (m, 4H), 3.53 (br. s, 1H), 3.63 (s, 3H), 5.60 (s,
1H), 8.78 (br. s, 1H), 11.45 (br. s, 1H). 13C NMR (100 MHz, DMSO-d6): δ 24.4, 24.5, 32.1, 50.2,
53.5, 60.8, 100.1, 116.0, 138.0, 161.9, 166.3, 169.1. IR (ATR, ZnSe, cm−1): ν 3210, 3139, 3026,
2951, 2937, 2859, 2199, 1731, 1705, 1650, 1598, 1517, 1452, 1439, 1398, 1357, 1334, 1306, 1272,
1258, 1192, 1171, 1150, 1123, 1077, 1053, 1044. HRMS (ESI-TOF) m/z: [M + Na]+ Calcd. for
C14H17N3NaO3 298.1162; Found: 298.1159.

Methyl (E)-2-(5-amino-1-benzyl-4-cyano-2-oxo-1,2-dihydro-3H-pyrrol-3-ylidene)acetate (5a). Com-
pound 5a was obtained at a 72% yield (102 mg), according to the general procedure (amidine
3g: 87 mg, 0.5 mmol; acetylene 1: 71 mg, 0.5 mmol; DCM (2 mL)) as a yellow solid, mp
192–193 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 3.66 (s, 3H), 4.88 (s, 2H), 5.76 (s, 1H), 7.18–7.28
(m, 2H), 7.30–7.37 (m, 3H), 8.97 (br. s, 2H). 13C NMR (100 MHz, DMSO-d6): δ 42.1, 50.5,
60.5, 102.7, 115.7, 126.7, 127.5, 128.6, 135.7, 136.6, 163.7, 166.1, 167.6. IR (ATR, ZnSe, cm−1):
ν 3140, 3117, 2991, 2198, 1736, 1707, 1651, 1607, 1555, 1495, 1441, 1408, 1362, 1317, 1169, 1118,
1079, 1047, 1025. HRMS (ESI-TOF) m/z: [M + Na]+ Calcd. for C15H13N3NaO3 306.0849;
Found: 306.0847.

Methyl (E)-2-(5-amino-4-cyano-1-(2,4-difluorobenzyl)-2-oxo-1,2-dihydro-3H-pyrrol-3-ylidene)acetate
(5b). Compound 5b was obtained at a 98% yield (78 mg), according to the general procedure
(amidine 3h: 105 mg, 0.5 mmol; acetylene 1: 71 mg, 0.5 mmol; DCM (2 mL)) as a yellow
solid, mp 208–210 ◦C. 1H NMR (600 MHz, DMSO-d6): δ 3.66/3.61* (s, 3H), 4.89/4.82* (s,
2H), 5.74/5.69* (s, 1H), 7.03–7.07 (m, 1H), 7.13–7.19 (m, 1H), 7.24–7.29 (m, 1H), 8.97 (br. s,
2H). 13C NMR (100 MHz, DMSO-d6): δ 37.1/37.0*, 50.5, 60.7, 102.7, 104.1 (t, J = 25.7 Hz),
111.5 (dd, J = 21.2, 3.5 Hz), 115.7, 118.9 (dd, J = 14.7, 3.6 Hz), 129.3 (dd, J = 10.0, 5.6 Hz),
136.5, 159.8 (dd, J = 248.4, 12.4 Hz), 161.7 (dd, J = 246.2, 12.2 Hz), 163.6, 166.1, 167.4. IR (ATR,
ZnSe, cm−1): ν 3153, 2947, 2824, 2197, 1742, 1691, 1632, 1591, 1436, 1421, 1376, 1279, 1163,
1080, 1084, 1072, 1065, 1044. HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for C15H12F2N3O3
320.0841; Found: 320.0843.

Methyl (E)-2-(5-amino-4-cyano-2-oxo-1-propyl-1,2-dihydro-3H-pyrrol-3-ylidene)acetate (5c). Com-
pound 5c was obtained at a 71% yield (83 mg), according to the general procedure (amidine
3i: 63 mg, 0.5 mmol; acetylene 1: 71 mg, 0.5 mmol; DCM (2 mL)) as a yellow solid, mp
182–183 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 0.82/0.86* (t, J = 7.2 Hz, 3H), 1.46–1.51 (m,
2H), 3.56 (t, J = 7.2 Hz, 2H), 3.65/3.63* (s, 3H), 5.72 (s, 1H), 8.82 (br. s, 2H). 13C NMR
(100 MHz, DMSO-d6): δ 10.6, 21.2/22.7*, 40.5, 50.4/50.3*, 60.1, 102.2, 115.8, 136.8, 163.9,
166.1, 167.5. IR (ATR, ZnSe, cm−1): ν 3320, 3279, 3236, 3198, 3169, 2969, 2951, 2879, 2197,
1748, 1730, 1706, 1658,1614, 1561, 1499, 1451, 1412, 1385, 1348, 1318, 1277, 1199, 1177,
1115, 1051, 1042, 1025. HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for C11H14N3O3 236.1030;
Found: 236.1027.

Methyl (E)-2-(1-allyl-5-amino-4-cyano-2-oxo-1,2-dihydro-3H-pyrrol-3-ylidene)acetate (5d). Com-
pound 5d was obtained at a 94% yield (110 mg), according to the general procedure
(amidine 3j: 62 mg, 0.5 mmol; acetylene 1: 71 mg, 0.5 mmol; DCM (2 mL)) as a yellow solid,
mp 176–177 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 3.66/3.64* (s, 3H), 4.25–4.27 (m, 2H),
5.00–5.05 (m, 1H), 5.12–5.15 (m, 1H), 5.73–5.83 (m, 2H), 8.81 (br. s, 2H). 13C NMR (100 MHz,
DMSO-d6): δ 40.9, 50.4, 60.2, 102.5, 115.7, 116.3, 131.6/133.5*, 136.6, 163.6, 166.1, 167.2. IR
(ATR, ZnSe, cm−1): ν 3395, 3316, 3279, 3238, 3199, 3169, 2950, 2197, 1749, 1730, 1706, 1697,
1657, 1613, 1562, 1494, 1448, 1411, 1385, 1319, 1201, 1183, 1136, 1116, 1050. HRMS (ESI-TOF)
m/z: [M + H]+ Calcd. for C11H12N3O3 234.0873; Found: 234.0853.

Methyl (E)-2-(5-amino-4-cyano-2-oxo-1-(prop-2-yn-1-yl)-1,2-dihydro-3H-pyrrol-3-ylidene)acetate
(5e). Compound 5e was obtained at a 96% yield (111 mg), according to the general proce-
dure (amidine 3k: 61 mg, 0.5 mmol; acetylene 1: 71 mg, 0.5 mmol; DCM (2 mL)) as a yellow
solid, mp 202–203 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 3.66 (s, 3H), 4.47 (d, J = 2.2 Hz, 2H),



Molecules 2023, 28, 3576 10 of 14

5.76 (s, 1H), 8.97 (br. s, 2H). 13C NMR (100 MHz, DMSO-d6): δ 28.9, 50.5, 60.7, 74.8, 77.3,
103.0, 115.4, 136.3, 162.7, 165.9, 166.7. IR (ATR, ZnSe, cm−1): ν 3382, 3301, 3281, 3238, 3205,
3175, 2950, 2201, 2193, 2129, 1753, 1704, 1665, 1618, 1563, 1498, 1450, 1427, 1408, 1385, 1323,
1305, 1197, 1182, 1167, 1137, 1089. HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for C11H10N3O3
232.0717; Found: 232.0710.

Methyl (E)-2-(5-amino-4-cyano-1-(2,2-dimethoxyethyl)-2-oxo-1,2-dihydro-3H-pyrrol-3-ylidene)acetate
(5f). Compound 5f was obtained at a 92% yield (129 mg), according to the general procedure
(amidine 3m: 86 mg, 0.5 mmol; acetylene 1: 71 mg, 0.5 mmol; DCM (2 mL)) as a yellow
solid, mp 178–179 ◦C. 1H NMR (400 MHz, DMSO-d6): δ 3.29 (s, 6H), 3.65 (s, 3H), 3.76 (d,
J = 5.5 Hz, 2H), 4.50 (t, J = 5.5 Hz, 1H), 5.73 (s, 1H), 8.78 (br. s, 2H). 13C NMR (100 MHz,
DMSO-d6): δ 40.9, 50.4, 54.3, 60.4, 100.7, 102.4, 115.6, 136.5, 163.9, 166.1, 167.5. IR (ATR,
ZnSe, cm−1): ν 3371, 3293, 3141, 3006, 2962, 2944, 2841, 2801, 2202, 1756, 1706, 1686, 1623,
1567, 1502, 1464, 1435, 1416, 1402, 1385, 1361, 1318, 1219, 1198, 1175, 1134, 1100, 1037, 1006.
HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for C12H16N3O5 282.1084; Found: 282.1089.

3.1.3. Synthesis of Pyrroles 6a–g, 7a,b. General Procedure

Corresponding 3,3-diaminoacrylonitryle 3 (0.5 mmol) was added to the solution of
dibenzoylacetylene 2 (0.5 mmol, 117 mg) in DCM (2 mL) at room temperature. The reaction
mixture was stirred for 30 min at room temperature, then ethanol (4 mL) was added, and
the resulting solution was stirred for 5 min more. The formed precipitate was filtered off,
washed with cold ethanol (1:5) and dried.

(Z)-2-(Dimethylamino)-5-hydroxy-4-(2-oxo-2-phenylethylidene)-5-phenyl-4,5-dihydro-1H-pyrrole-
3-carbonitrile (6a). Compound 6a was obtained at a 96% yield (158 mg), according to the
general procedure (amidine 3a: 56 mg, 0.5 mmol; acetylene 2: 117 mg, 0.5 mmol; DCM
(2 mL)) as a yellow solid, mp 162–164 ◦C. 1H NMR (400 MHz, CDCl3): δ 3.26 (br. s, 6H),
5.78 (br. s, 1H), 6.65 (s, 1H), 7.26–7.36 (m, 5H), 7.41–7.45 (m, 1H), 7.59 (d, J 8.0 Hz, 2H), 7.82
(d, J 8.0 Hz, 2H), 9.24 (br. s, 1H). 13C NMR (100 MHz, CDCl3): δ 40.2, 68.4, 92.0, 101.4, 117.4,
124.9, 128.3, 128.4, 128.6, 128.8, 132.0, 139.4, 141.4, 161.9, 169.6, 188.9. IR (ATR, ZnSe, cm−1):
ν 3414, 3228, 3059, 3025, 2937, 2190, 1638, 1596, 1573, 1521, 1458, 1432, 1400, 1329, 1307, 1218,
1199, 1177, 1158, 1132, 1069, 1047, 1024, 1001. HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for
C21H20N3O2 346.1550; Found: 346.1545.

(Z)-5-Hydroxy-4-(2-oxo-2-phenylethylidene)-5-phenyl-2-(pyrrolidin-1-yl)-4,5-dihydro-1H-pyrrole-
3-carbonitrile (6b). Compound 6b was obtained at a 97% yield (170 mg), according to the
general procedure (amidine 3b: 70 mg, 0.5 mmol; acetylene 2: 117 mg, 0.5 mmol; DCM
(2 mL)) as a yellow solid, mp 205–206 ◦C. 1H NMR (400 MHz, CDCl3): δ 1.88–1.94 (m, 4H),
3.18 (br. s, 1H), 3.35 (br. s, 1H), 3.90 (br. s, 2H), 6.44 (s, 1H), 6.51 (s, 1H), 7.19–7.27 (m, 5H),
7.34 (t, 1H, J = 7.2 Hz), 7.50 (d, 2H, J = 6.7 Hz), 7.71 (d, 2H, J = 7.4 Hz), 8.45 (br. s, 1H). 13C
NMR (100 MHz, CDCl3): δ 24.8, 25.9, 49.2, 68.9, 92.4, 100.3, 117.4, 125.1, 128.2, 128.3, 128.4,
128.5, 131.8, 139.6, 141.5, 159.1, 170.2, 188.3. IR (ATR, ZnSe, cm−1): ν 3419, 3268, 3216, 3171,
3057, 2991, 2960, 2881, 2200, 1639, 1594, 1568, 1524, 1490, 1451, 1432, 1386, 1355, 1325, 1301,
1244, 1230, 1214, 1194, 1180, 1156, 1137, 1111, 1084, 1072, 1065, 1048, 1025. HRMS (ESI-TOF)
m/z: [M + H]+ Calcd. for C23H22N3O2 372.1707; Found: 372.1704.

(Z)-5-Hydroxy-4-(2-oxo-2-phenylethylidene)-5-phenyl-2-(piperidin-1-yl)-4,5-dihydro-1H-pyrrole-3-
carbonitrile (6c). Compound 6c was obtained at a 98% yield (180 mg), according to the
general procedure (amidine 3c: 76 mg, 0.5 mmol; acetylene 2: 117 mg, 0.5 mmol; DCM
(2 mL)) as a yellow solid, mp 148–150 ◦C. 1H NMR (400 MHz, CDCl3): δ 1.63 (s, 6H),
3.46–3.67 (m, 4H), 6.36 (s, 1H), 6.55 (br. s, 1H), 7.19–7.28 (m, 5H), 7.35 (t, J = 7.4 Hz, 1H),
7.51 (d, J 6.8 Hz, 2H), 7.73 (d, J = 7.2 Hz, 2H,), 8.48 (br. s, 1H). 13C NMR (100 MHz, CDCl3):
δ 23.7, 25.9, 49.2, 68.6, 91.9, 100.6, 117.3, 125.0, 128.3, 128.3, 128.5, 128.7, 131.9, 139.5, 141.4,
160.5, 170.3, 188.5. IR (ATR, ZnSe, cm−1): ν 3418, 3195, 3061, 3031, 2941, 2858, 2189, 1622,
1595, 1569, 1519, 1491, 1450, 1435, 1400, 1385, 1355, 1326, 1300, 1232, 1219, 1198, 1178, 1131,
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1085, 1071, 1051, 1022, 1004. HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for C24H24N3O2
386.1863; Found: 386.1861.

(Z)-2-(4-Benzylpiperidin-1-yl)-5-hydroxy-4-(2-oxo-2-phenylethylidene)-5-phenyl-4,5-dihydro-1H-
pyrrole-3-carbonitrile (6d). Compound 6d was obtained at an 83% yield (198 mg), according
to the general procedure (amidine 3d: 120 mg, 0.5 mmol; acetylene 2: 117 mg, 0.5 mmol;
DCM (2 mL)) as a yellow solid, mp 143–145 ◦C. 1H NMR (400 MHz, CDCl3): δ 1.20–1.31
(m, 2H), 1.67–1.81 (m, 3H), 2.50 (d, J = 8.0 Hz, 2H), 2.92–3.01 (m, 2H), 4.02–4.25 (m, 2H),
6.32 (br. s, 1H), 6.56 (s, 1H), 7.04 (d, J = 7.4 Hz, 2H), 7.12 (t, J = 7.6 Hz, 1H), 7.18–7.28 (m,
7H), 7.36 (t, J = 7.6 Hz, 1H), 7.51 (d, J = 6.9 Hz, 2H), 7.72 (d, J = 7.4 Hz, 2H), 8.69 (br. s, 1H).
13C NMR (100 MHz, CDCl3): δ 31.9, 32.0, 37.6, 42.7, 48.4, 48.5, 68.7, 91.9, 100.8, 117.2, 125.0,
126.5, 128.28, 128.34, 128.5, 128.6, 128.7, 129.2, 132.0, 139.2, 139.4, 141.4, 160.5, 170.1, 188.6.
IR (ATR, ZnSe, cm−1): ν 3417, 3169, 3060, 3025, 2919, 2851, 2191, 1623, 1596, 1571, 1517,
1491, 1451, 1429, 1401, 1384, 1326, 1299, 1223, 1198, 1178, 1156, 1085, 1069, 1051, 1025, 1001.
HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for C31H30N3O2 476.2332; Found: 476.2332.

(Z)-2-(Azepan-1-yl)-5-hydroxy-4-(2-oxo-2-phenylethylidene)-5-phenyl-4,5-dihydro-1H-pyrrole-3-
carbonitrile (6e). Compound 6e was obtained at a 92% yield (174 mg), according to the
general procedure (amidine 3e: 82 mg, 0.5 mmol; acetylene 2: 117 mg, 0.5 mmol; DCM
(2 mL)) as a yellow solid, mp 212–214 ◦C. 1H NMR (400 MHz, CDCl3): δ 1.50–1.83 (m, 8H),
3.36–3.91 (m, 4H), 6.52 (s, 1H), 6.67 (br. s, 1H), 7.17–7.29 (m, 5H), 7.34 (t, J = 7.6 Hz, 1H), 7.49
(d, J = 8.3 Hz, 2H), 7.72 (d, J = 8.3 Hz, 2H), 8.58 (br. s, 1H). 13C NMR (100 MHz, CDCl3): δ
26.9, 29.4, 50.6, 68.5, 91.9, 100.2, 117.3, 125.0, 128.2, 128.3, 128.4, 128.6, 131.8, 139.5, 141.3,
161.0, 170.6, 188.3. IR (ATR, ZnSe, cm−1): ν 3430, 3227, 3060, 2928, 2915, 2859, 2192, 1630,
1595, 1573, 1521, 1493, 1470, 1453, 1437, 1420, 1402, 1385, 1368, 1345, 1309, 1221, 1201, 1177,
1157, 1119, 1101, 1083, 1068, 1051, 1027, 1013. HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for
C25H26N3O2 400.2020; Found: 400.2015.

5-(Z)-5-Hydroxy-2-morpholino-4-(2-oxo-2-phenylethylidene)-5-phenyl-4,5-dihydro-1H-pyrrole-3-
carbonitrile (6f). Compound 6f was obtained at an 86% yield (158 mg), according to the
general procedure (amidine 3f: 76 mg, 0.5 mmol; acetylene 2: 117 mg, 0.5 mmol; DCM
(2 mL)) as a yellow solid, mp 207–209 ◦C. 1H NMR (400 MHz, CDCl3): δ 3.54–3.69 (m, 8H),
6.17 (br. s, 1H), 6.60 (s, 1H), 7.19–7.29 (m, 5H), 7.37 (t, J = 7.3 Hz, 1H), 7.52 (d, J = 8.2 Hz,
2H), 7.70 (d, J = 7.6 Hz, 2H), 8.88 (br. s, 1H). 13C NMR (100 MHz, CDCl3): δ 47.5, 66.1, 68.5,
91.9, 101.9, 117.1, 125.0, 128.3, 128.4, 128.6, 128.9, 132.2, 139.2, 141.2, 161.2, 169.4, 189.0. IR
(ATR, ZnSe, cm−1): ν 3414, 3196, 3058, 2965, 2922, 2893, 2856, 2191, 1621, 1594, 1569, 1518,
1491, 1454, 1429, 1384, 1353, 1332, 1306, 1288, 1267, 1224, 1201, 1172, 1158, 1115, 1085, 1070,
1048, 1033, 1022, 1002. HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for C23H22N3O3 388.1656;
Found: 388.1654.

(Z)-2-(Cyclohexylamino)-5-hydroxy-4-(2-oxo-2-phenylethylidene)-5-phenyl-4,5-dihydro-1H-pyrrole-
3-carbonitrile (6g). Compound 6g was obtained at a 95% yield (190 mg), according to the
general procedure (amidine 3l: 82 mg, 0.5 mmol; acetylene 2: 118 mg, 0.5 mmol; DCM
(2 mL)) as a yellow solid, mp 216–218 ◦C. 1H NMR (400 MHz, CDCl3): 1.11–1.344 (m, 5H),
1.59 (br. s, 1H), 1.75 (br. s, 2H), 1.91–1.99 (m, 2H), 3.27–3.42 (m, 1H), 5.60 (d, J = 8.2 Hz,
1H), 6.48 (br. s, 1H), 7.30–7.36 (m, 2H), 7.41–7.44 (m, 1H), 7.55 (d, J = 8.0 Hz, 2H), 7.78 (d,
J = 8.0 Hz, 2H), 10.22 (br. s, 1H). 13C NMR (100 MHz, CDCl3): 24.6, 24.7, 25.0, 33.2, 33.5,
53.4, 68.2, 93.5, 115.9, 125.2, 128.2, 128.4, 128.5, 128.9, 132.0, 139.4, 140.6, 161.1, 183.4. IR
(ATR, ZnSe, cm−1): ν 3298, 3229, 3182, 2185, 1638, 1575, 1484, 1359, 1325, 1298, 1247, 1117,
1044. HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for C25H26N3O2 400.2020; Found: 400.2018.

(Z)-2-Amino-1-benzyl-5-hydroxy-4-(2-oxo-2-phenylethylidene)-5-phenyl-4,5-dihydro-1H-pyrrole-3-
carbonitrile (7a). Compound 7a was obtained at a 92% yield (94 mg), according to the general
procedure (amidine 3g: 43 mg, 250 µmol; acetylene 2: 59 mg, 250 µmol; DCM (1 mL)) as a
yellow solid, mp 230–232 ◦C. 1H NMR (400 MHz, CDCl3): 4.16 (d, J = 16.6 Hz, 1H), 4.49
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(d, J = 16.6 Hz, 1H), 5.11 (br. s, 1H), 6.55 (s, 1H), 7.17 (d, J = 6.6 Hz, 2H), 7.29–7.36 (m, 8H),
7.41–7.46 (m, 1H), 7.66 (d, J = 7.4 Hz, 2H), 7.81 (d, J = 7.4 Hz, 2H), 9.40 (s, 1H). IR (ATR,
ZnSe, cm−1): ν 3445, 3333, 3275, 3181, 3056, 3027, 2197, 1683, 1674, 1595, 1573, 1543, 1473,
1439, 1383, 1357, 1337, 1325, 1314, 1304, 1296, 1258, 1215, 1201, 1172, 1155, 1126, 1109, 1076,
1059, 1026, 1003. HRMS (ESI-TOF) m/z: [M + H]+ Calcd. for C26H22N3O2 408.1707; Found:
408.1706.

5-(Z)-2-Amino-5-hydroxy-4-(2-oxo-2-phenylethylidene)-5-phenyl-1-(prop-2-yn-1-yl)-4,5-dihydro-
1H-pyrrole-3-carbonitrile (7b). Compound 7b was obtained at a 76% yield (136 mg), according
to the general procedure (amidine 3k: 60 mg, 0.5 mmol; acetylene 2: 117 mg, 0.5 mmol;
DCM (2 mL)) as a yellow solid, mp 187–187 ◦C. 1H NMR (400 MHz, CDCl3): δ 2.29 (s, 1H),
3.85 (dd, J = 18.4, 2.5 Hz, 1H), 4.02 (dd, J = 18.4, 2.5 Hz, 1H,), 6.07 (br. s, 2H), 6.52 (s, 1H),
7.30–7.41 (m, 5H), 7.41–7.45 (m, 1H), 7.59 (d, J = 7.6 Hz, 2H), 7.79 (d, J = 7.6 Hz, 2H), 9.30
(s, 1H). 13C NMR (100 MHz, CDCl3): δ 30.4, 68.1, 74.7, 76.0, 95.5, 100.8, 116.0, 125.8 128.2,
128.3, 129.1, 132.0, 138.3, 139.4, 162.6, 167.6, 188.7. IR (ATR, ZnSe, cm−1): ν 3432, 3340, 3288,
3263, 3195, 2190, 1663, 1613, 1597, 1576, 1546, 1498, 1477, 1450, 1423, 1385, 1343, 1322, 1304,
1297, 1235, 1211, 1175, 1156, 1106, 1078, 1059, 1033, 1025, 1017, 1003. HRMS (ESI-TOF) m/z:
[M + H]+ Calcd. for C22H18N3O2 356.1394; Found: 356.1391.

3.2. X-ray Structure Determination

4e: Crystal Data for C14H17N3O3 (M = 275.30 g/mol): monoclinic, space group P21/c
(no. 14), a = 5.5382(12) Å, b = 23.708(6) Å, c = 10.245(2) Å, β = 91.08(2)◦, V = 1344.9(5)
Å3, Z = 4, T = 295(2) K, µ(MoKα) = 0.71073 mm−1, Dcalc = 1.360 g/cm3, 6120 reflections
measured (2.166◦ ≤ Θ ≤ 29.683◦), 3119 unique (Rint = 0.0719, Rsigma = 0.0942), which were
used in all calculations. The final R1 was 0.0823 (I > 2σ(I)), and wR2 was 0.2489 (all data).

6e: Crystal Data for C25H25N3O2 (M = 399.48 g/mol): orthorhombic, space group
Pna21 (no. 33), a = 13.549(3) Å, b = 19.212(6) Å, c = 8.2516(15) Å, V = 2147.8(9) Å3, Z = 4,
T = 295(2) K, µ(MoKα) = 0.71073 mm−1, Dcalc = 1.235 g/cm3, 10,842 reflections measured
(2.120◦ ≤ Θ ≤ 29.465◦), 4991 unique (Rint = 0.0390, Rsigma = 0.0564), which were used in
all calculations. The final R1 was 0.0494 (I > 2σ(I)), and wR2 was 0.1232 (all data).

7a: Crystal Data for C26H21N3O2 (M = 407.46 g/mol): monoclinic, space group P21/c
(no. 14), a = 13.216(4) Å, b = 9.084(3) Å, c = 18.091(4) Å, β = 91.62(2)◦, V = 2170.9(10) Å3,
Z = 4, T = 295(2) K, µ(MoKα) = 0.71073 mm−1, Dcalc = 1.247 g/cm3, 11,891 reflections
measured (2.766◦ ≤ Θ ≤ 29.723◦), 5137 unique (Rint = 0.0590, Rsigma = 0.0946), which were
used in all calculations. The final R1 was 0.0656 (I > 2σ(I)), and wR2 was 0.1904 (all data).

The experiment was accomplished on the automated X-ray diffractometer «Xcalibur 3»
with CCD detector following standard procedures (MoKα-irradiation, graphite monochro-
mator,ω-scans with 1o step at T = 295(2) K). Empirical absorption correction was applied.
The structure was solved using the intrinsic phases in the ShelXT program [24] and refined
by ShelXL [25] using a full-matrix least-squared method for non-hydrogen atoms. The H-
atoms were placed in the calculated positions and were refined in isotropic approximation.
The solution and refinement of the structures were accomplished with the Olex program
package [26].

CCDC 2254801 (4e), 2254802 (6e), and 2244496 (7a) contains the supplementary crys-
tallographic data for this paper. These data can be obtained free of charge via http:
//www.ccdc.cam.ac.uk/conts/retrieving.html (accessed on 17 April 2023) (or from the
CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: de-
posit@ccdc.cam.ac.uk).

4. Conclusions

In order to develop an efficient method for the synthesis of aromatic pyrroles, the
reaction of DMAD (1) and dibenzoylacetylene (2) with 3,3-diaminoacrylonitriles 3 was
studied. It was shown that the reaction between these compounds proceeds smoothly in

http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://www.ccdc.cam.ac.uk/conts/retrieving.html
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dichloromethane with the formation of functionalized nonaromatic pyrroles containing
amino, cyano and hydroxy groups, as well as exocyclic C=C and C=O bonds, in high yields.

A revision of the structure of compounds obtained by Cocco and colleagues [18] in
the reaction of DMAD (1) with 3,3-diaminoacrylonitriles 3a–m was carried out, and based
on 2D HMBC NMR and HRMS spectroscopy data, it was concluded that in the studied
reaction rather 2-oxo-1H-pyrrol-3(2H)-ylidenes than 2(1H)-pyridones are formed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28083576/s1, 1H, 13C NMR spectra for compounds
4a–g, 5a–f, 6a–g, 7a,b, 2D HMBS and HSQC spectra for compounds 4a, 4b, 5a and 6b (Figures S1–S50).
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