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Abstract: Rapidly increasing industrialisation has human needs, but the consequences have added to
the environmental harm. The pollution caused by several industries, including the dye industries,
generates a large volume of wastewater containing dyes and hazardous chemicals that drains indus-
trial effluents. The growing demand for readily available water, as well as the problem of polluted
organic waste in reservoirs and streams, is a critical challenge for proper and sustainable development.
Remediation has resulted in the need for an appropriate alternative to clear up the implications.
Nanotechnology is an efficient and effective path to improve wastewater treatment/remediation.
The effective surface properties and chemical activity of nanoparticles give them a better chance to
remove or degrade the dye material from wastewater treatment. AgNPs (silver nanoparticles) are an
efficient nanoparticle for the treatment of dye effluent that have been explored in many studies. The
antimicrobial activity of AgNPs against several pathogens is well-recognised in the health and agricul-
ture sectors. This review article summarises the applications of nanosilver-based particles in the dye
removal/degradation process, effective water management strategies, and the field of agriculture.

Keywords: dye removal; agriculture wastes; water management; silver nanoparticle

1. Introduction

Rapid progress has made nanotechnology research integral to metal nanoparticles
in recent years. Nanoparticles are 1–100 nm in diameter and have distinctive properties
(physicochemical). Nanoparticles can be described by their massive surface-to-volume
ratios in quantum effects and electronic attributes [1,2]. The rapid growth of this nan-
otechnology brings new options in several fields: agriculture, pharmaceutical, engineering,
text, etc. [3–5]. Noble-metal nanomaterials with, among others, a bottom-up approach
with discrete morphologies such as cubes, spheres, wires, flowers, and stars; synthetic
versatility; and low cost show notable chemical/physical properties that allow distinctive
interactions with the environment [6–9]. Especially purely made inorganic nanoparticles,
such as gold, silver, copper, etc., have distinctive photothermal and optical properties and
absorb of a broad area of electromagnetic radiation (visible spectrum). Nanoparticles of
gold (Au) and silver (Ag) have magnified the properties of optoelectronic biocompatibility
and stability [10]. Silver nanoparticles (AgNPs) have great market value and hold good
antibacterial properties.
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Therefore, they have been used in different fields and products for industrial purposes,
including therapeutics, biomaterials, sensing, food, dye-sensitised solar cells, catalysis,
and photocatalysis, and the effect of the factors on synthesis is shown in Figure 1. Their
production is expected to reach roughly 800 tones in 2025 [11]. The successful utilisation of
silver nanoparticles (AgNPs) against water pollutants (heavy metals and organic materials)
as plasmonic sensors works for photocatalysts that encourage the degradation (oxidation)
of pesticides and dyes, amplifying the environmental functions [7,8,12]. Today, engineered
nanomaterials are receiving more attention to study their environmental impact. Many
works have been devoted to surviving the toxicity of silver nanoparticles in flowing
environments [13,14]. The toxicity mechanism is still the subject of argument, but the main
toxicity factors depend on the size and coating surface [15,16]. According to the literature,
the toxicity of silver nanoparticles (AgNPs) is partly associated with their liberation and
dissolution of Ag+ ions, although it is difficult to evaluate the relative contribution of
AgNPs to this development. The toxicity of silver nanoparticle levels differs conditionally
on the accumulation of exposure, and their highest levels vary in every taxon and depend
on the biological community that appears in the environment [17–20]. The arrival of AgNPs
in various environmental compartments as a result of their release is shown in Figure 2
(production/application use, green colour; the environmental compartments, brown colour;
and technical compartments, blue colour).
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Figure 1. Factors that have an effect on the synthesis of metallic nanoparticles (adapted from [21]). Figure 1. Factors that have an effect on the synthesis of metallic nanoparticles (adapted from [21]).

The term nano-remediation currently refers to the application of nanotechnology that
contains the use of fabricated nanomaterials to clean contaminated phases such as air, soil
and water, groundwater, and polluted/wastewater [22,23]. Well-established technology
holds potential and efficacy, but full-scale applications have some drawbacks to overcome.
Engineered nanomaterials (ENMs) have many strange features such as size, shape, energy
surface, and chemical core, showing sustainability that affects their end properties, and
seawater reflects their released complex properties [11].
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Nanoparticles have remarkable potential for use in environmental scanning appli-
cations, and silver nanoparticles exclusively have versatile, very simple-to-prepare, and
low-cost materials [24,25]. Nanoparticles have been used in agricultural output, especially
in crop growth and yield, in a variety of ways. Among several nanoparticles in metals, the
silver nano-particle in particular is gaining a lot of attention in the fields of crop production,
enhancement, detection of plant disease, and pest management. The nanoparticles of Ag,
TiO2, Fe, Cu, Zn, Mo, Mn, Zn, carbon nanotubes, and several nanometals are used for plant
pesticides and fertilisers. AgNPs have been reported to be used for sustainability, crop
yield, crop improvement, and pest control. Antibacterial and fungal activities protect the
crop and improve the regulation of plant nutrition [26]. Ultimately, deserved innovations in
the applications of nanomaterials in the broad area of agriculture would be an impressive
development in the future. They transform agricultural procedures and food production
into the proper sustainable agricultural products.

The methodology of the research provided on the systematic review was provided
using the following databases: ScienceDirect, Scopus, ACS Publications, Wiley Online
Library, IEEE Xplore Digital Library, and Google Scholar. Keywords were associated with
silver nanoparticles and water treatment, especially dye removal. This review summarises
the potential solutions in dye removal treatment by silver nanoparticles (AgNPs) in the
examination, remediation, and applications of water systems in agriculture, with a specific
importance on their environmental safety challenges, especially taking into account the
articles from the last 5 years. Several articles describe the recent progress on the review
topic and perspectives of the development of technology based on silver nanoparticles.
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2. AgNPs in Wastewater Management

The metallic AgNPs have excellent beneficial properties for a wide range of sec-
tors utilized other than wastewater treatment, such as biology, coating, DNA sequenc-
ing, food products, drug therapy, cosmetics, biomedicine, and other varieties have been
covered [27,28]. However, much of the AgNP research focuses on the antimicrobial activ-
ity against the several types of microorganisms and is related to water purification, dye
removal, and wastewater treatments [29]. The synthesis of AgNPs can be based on repro-
ducibility and a cost-effective manner, and synthesis methods depend on the differences
in reactants and reaction conditions during the process [30]. Green synthesis of AgNPs
from either plants or microorganisms has been surrounded by intra and extracellular ap-
proaches. Extracellular methods have commonly been preferred to avoid the difficulty of
extracting intracellular AgNPs for down-streaming processing. Biological methods are
more environmentally friendly and cost-effective than physical/chemically synthesised
methods [31,32]. AgNP characterisation has been used to analyse the properties, but the
most basic characterisation method for qualitative analysis is to show the visualisation of
colour changes [33]. The degradation of toxic chemicals in aqueous solution using AgNPs
has occurred in two ways: first, commonly used AgNPs assist in reducing the contaminants
using chemical reducing agents by catalytic reduction. Moreover, AgNPs are used under
the induced light degradation method called catalytic degradation [27].

3. Effects of Nanoparticle Composites in Textile Dye Removal

The sizes range from 1 to 100 nm in different distinctive features that are not found
in their bulk configurations. The chemical reactivity of nanoparticles (NPs) in all fields
is attributed to the significance of high available surface area. The new advancement in
this regard makes use of combined membranes with biogenic nanoparticles to degrade
toxic chlorinated mixtures. Functional classes of nanoparticles such as carbonaceous, ze-
olite, dendrimers, and metal-containing nanoparticles are used in the process of waste
purification [34]. Dendrimer ultrafilters apply more strong working pressures in high-
molecular-mass solutes in the range between 1000 and 3000 Da than micro- and nanofillers.
Metal-containing nanoparticles play the antibacterial activity against gram-positive bacteria
and have a negative and efficient method to kill the number of bacteria and biocides [35].
In addition, heavy metals are easily removed from arsenic and halogens. Zeolite removes
heavy metals from water as an ion-exchange medium [36]. Carbonaceous substances can
act as sorbents in an aqueous environment in organic solutes. Experimental studies have
discussed better-performing enzyme reactions that perform better in biologically synthe-
sised functionalized nanoparticles with a membrane than enhanced nanoparticle stability
with single-phase reaction [34]. Table 1 explains the tabulated nanoparticles for textile dye
removal. The fabricated nanoparticles were prepared by conventional methods as well as
from several textile dyes with ranges from 65 to 99% through catalytic and photocatalytic
degradation processes. Additionally, novel degradation processes, such as enzymatic and
biogenic processes, showed 80–95% textile dye degradation [37]. The novel combination
degradation method, involving photocatalytic and microwave-assisted methods, showed
better removal efficiency (85%) for textile dye [38]. Parametrically optimised synthesis and
adsorptive performance for the magnetic nanocomposite of chitosan-benzil/ZnO/Fe3O4
showed the best removal recorded in 98.8% of Remazol Brilliant Blue R dye (RBBR). The
adsorptive mechanism in this nanocomposite explained the multi-interactions that are
electrostatic attractions, hydrogen and H bonding, and interactions of n–π and π–π. This
nanocomposite is suggested to be a promising composite in biosorption for the removal of
anionic dyes from an aqueous environment [39].
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Table 1. Nanoparticles for textile dye removal.

No Nanomaterial Type Type of Process Nanoparticle
Material Textile Dyes Removal Efficiency References

1 Powder
Photocatalytic and

microwave-assisted
degradation method

ZnO/poly
(1-naphthylamine)

nanohybrids
Alizarin red 85% [38]

2 Powder Catalytic degradation method Pd Azo dyes 93 and 91% [40]

3 Powder Catalytic degradation method Cu Methyl orange Less than 80% [41]

4 Powder Photocatalytic degradation
method Fe2O3 Acid blue 87% [42]

5 Decorated Enzymatic reaction Fe3O4 Acid fuchsin Up to 80% [43]

6 Powder Photocatalytic degradation
method Ag

Methyl orange and
Coomassie

brilliant blue
60%; 70% [44]

7 Powder Biogenic method Biogenic Pd
Acid blue 1 and red,

methyl orange and reactive
black 5

Less than 95% [37]

8 Powder Photocatalytic degradation
method Ag–ZnO/GO Methylene blue 85% [45]

9 Powder Photocatalytic degradation
method ZnO/CuO Methylene blue 93% [46]

10 Powder Adsorption Fe3O4 Optilan blue 50 mg/L with
0.6 g/L [47]

11 Powder Desalination GO-PEG-NB Ternary dyes 99% [48]

12 Powder Adsorption–photocatalysis Ze-nanZnO; nanZnO Tartrazine 87 and 81% [49]

13 Film Adsorption CS/MgO Reactive blue (RB) 19 77.62% [50]

14 Powder Adsorption CS–ZnO Malachite green (MG) 98.5% [51]

15 Powder Photocatalytic degradation
method

TiO2 + MC (micro
cellulose)

Methylene blue, methyl violet
and acid violet 99% [52]

16 Powder Photo degradation method CS/ZnO Methylene blue CS: 86.7%; MB: 81% [53]

17 Powder Photocatalytic degradation
method ZnO/AC Methylene blue 92.2% [54]

18 Powder Adsorption CHT-
GLA/ZnO/Fe3O4

Brilliant Blue R 176.6 mg/g at 60 ◦C [39]

19 Ni@FP Coated on Cellulose filter paper Dyeing wastewater Methylene orange 93.4% [55]

20 Dry powdered gel Photocatalytic degradation LaFeO3-
RGO–NiO Congo red 96.5% [56]

21 Powder Photocatalytic degradation
method Ag–ZnO

Methylene blue, methyl orange
and

rhodamine B dyes
98.5% [57]

22 Powder Photocatalytic degradation
method ZnO Methylene blue 90% [58]

23 Powder Photocatalytic method ZnO Alizarin red S (AZ) and
methylene blue (MB) dyes 99.9 and 96.8% [59]

24 Powder Photocatalytic degradation
method CuO Methylene blue (MB) 93% [60]

A Schiff base cross-linked hybrid inorganic–organic synthesised nanocomposite (CS-
GLA/TNC) showed an effective bio-absorbent and improved the removability of reactive
azo dyes (RR120 dye) from an aqueous environment. It achieved the highest adsorp-
tion capacity recorded at 103.1 mg/g and involved the mechanism of many interactions
(electrostatic attraction, n–π stacking, and H bonding) [49]. The magnetic Schiff base
nanocomposite of CHT-GLA/ZnO/Fe3O4 (chitosan-glutaraldehyde/zincoxide/Fe3O4)
was fabricated to remove the dye in Remazol Brilliant Blue R through an effective mecha-
nism of adsorption. The Box–Behnken design-based optimisation method was employed
for the fabrication of the magnetic adsorbent against dye degradation. This study showed
that the highest RBBR-removal efficiency (75.8%) was achieved using the multi-interaction
mechanism [52,61]. Alcantara-Cobos et al. [62] studied the coupled process of adsorption
and photocatalytic degradation (adsorption–photocatalysis). The tartrazine removal study
explained the preparation of ZnO nanoparticles and zeolite-ZnO composites for a coupled
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(adsorption–photocatalysis) process. The ZnO nanoparticles (nanoZnO) showed better effi-
ciency compared to the composite in the processes of adsorption and degradation inclusive
of UV light. Furthermore, nanoZnO was difficult to remove from the aqueous solution [49].

During the degradation of the photocatalytic process in methylene blue, methyl violet
(cationic) and acid violet (anionic) dyes were synthesised by synthesised TiO2 doped on
microcellulose nanocomposite (TiO2 + MC). This study showed that the combination of
photocatalytic degradation of TiO2 + MC + H2O2 with the hydrogen peroxide-assisted
process removed 200 mg/L (99%) of methylene blue (MB) in 150 min, and 6–7 h were
required to complete the removal of the methyl violet and acid violet dyes. The mecha-
nism of dye degradation is combined with adsorption and direct photocatalytic oxidation
(by hydroxyl radicals (OH)) by nanocomposite (TiO2 + MC). The integrated process of
AOPs (advanced oxidised process) followed by adsorption, biological treatment, and sand
filtration is widely used for complete industrial wastewater [62]. The nanocomposite of
single molecular pectin-starch magnetite hybrid nanoparticles showed higher efficiency
of removing methylene blue dye from an aqueous solution. This adsorption depends on
temperature and pH, and the hybrid decomposes magnetite temperatures between 250
and 550 ◦C. The developed nanocomposite showed higher adsorption efficiency and addi-
tional benefits such as lower polymer concentration, ease of synthesis, cost-effectiveness,
environmental friendliness, and the absence of secondary pollutants [63].

Physical, chemical, and biological methods are receiving less attention due to their
high costs, low efficiency, and low biodegradability. Rashid et al. [64] explained that the
advanced oxidation process (AOP) is another method of removing/degrading dyes from
industrial effluents [64]. Figure 3 shows the general hypothesis behind the removal of
nanoparticles and dyes. The AOP discussed in determining the dye degradation/removal
of organic contaminants of the dyes is oxidized by highly reactive species, which are OH
(hydroxy radicals), H2O2 (hydrogen peroxide), SO4 (sulfate radical), and O3 (ozone). The
above-mentioned process (AOP) provides satisfactory or potential degradation of dyes from
industrial effluents and other contaminants, unlike another conventional process [3]. The
fabrication of a Ni nanoparticle coated with filter paper (Ni@FP material) showed strong
magnetic ability and strong antibacterial activity, explaining that an optimum photocatalytic
degradation reached 93.4%. This study showed a low-cost material composite (Ni@FP) [65].
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4. Silver Nanoparticles-Composite Activity for Wastewater Treatment

The role of the noble material silver has been studied and used in different fields of
applications focused mainly on medicine and water treatment. Now, silver has rebuilt
its character and performance in various forms as a nanoparticle. The biological/green
synthesis of AgNPs reforms and maintains a safe environment from harmful works created
by the enormous utilisation of chemicals (organic/inorganic) and addition of metal salt.
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Furthermore, the silver NP supplies are free from the use of stabilizing agents in the manu-
facturing system for chemical and physical processes [27,36]. Several research studies have
discussed that the fabrication of silver nanoparticles (NPs) from various natural/biological
fields and their application in the effluent/wastewater removed dyes.

Silver nanoparticles (AgNPs) have been used to remove organic pollutants/dyes from
wastewater and are presented in Table 2. The fabricated hybrid aerogel graphene–carbon
sphere decorated with AgNPs (G/AgCS) used the reduction of anionicdye (CR/congo
red) and cationic dye (MB/methylene blue) in the presence of NaBH4. Furthermore, hy-
drogels supported by the prepared reduced graphene oxide in polyethyleneimine (PEI)
have been utilised to examine the degradation (photocatalytic) of methylene blue and
rhodamine B solutions [66–68]. Silver NPs are capable of being used for the fast destruc-
tion/degradation of organic pollutants reduced into toxic/harmful materials [27]. Induced
biogenic AgNPs extracted from Citrus paradisi degrade and speed up the reduction rate
of toxic chemicals in the textile industry wastewater [69]. The fabricated silver nanocom-
posites (Ag@MGO-TA/Fe3+) showed excellent performance of catalytic reduction and
antimicrobial activity [70]. The piezoelectric thin film (FTO/BaTiO3/AgNPs) produced
by the tape-casting method with the deposition of barium titanate/AgNPs degraded the
pollutants of methylene blue and ciprofloxacin (pharmaceutical) in wastewater using piezo-
photocatalytic degradation. The AgNPs and nanocomposites described above show great
potential for several environmental applications with functional implications.

Table 2. Sliver nanoparticles for dye removal.

No AgNPs-Composites AgNPs-Composites
Synthesis Method Type of Pollutant Name of the Pollutant Treatment Efficiency References

1
AgNPs capped 2-hydroxypropyl

β-cyclodextrin/alginate
nanocomposite

Leave extract from
Jasminum

subtriplinerve

Organic pollutant
and dyes 4-NP, MO, rhodamineB

Kinetic (pseudo-first
order) rate

1.51 × 10−3 s−1 to
2.23 × 10−3 s−1

[71]

812 Silver nanoparticles (AgNPs) Leave extract from
Thymbra spicata

Organic pollutant
and dyes

4-NP, MO
andrhodamine B Catalytic activity loss [72]

3 FeO/AgNPs (Fe–Ag core-shell
nanoparticles)

Pomegranate
fruit peel

extract
Dyes Aniline blue dye 90%; 0.25 mg mL−1 [73]

4 Fe3O4/PPy-MAA/Ag Polymer matrix Organic pollutant
and dyes 4-NP and MB, MO 42.5 wt% (20 min) [74]

5 Silver-doped Mg4Ta2O9
nanoparticles

Irradiation of UV
lamp

Dyes
herbicide

rhodamine B, methyl
orange, atrazine 2.0 wt% [75]

6 Cellulose polymer paper in silver
nanoparticles

Leave extract from
Durantaerecta Organic pollutant

4-NP, 2-NP
(2-nitrophenol),

(2-Nitroaniline) 2-NA,
TNP

6–12 min,
Stable catalyst for five

cycles. 95–99%
[76]

7 TiO2/CNTs/AgNPs/Surfactant
(C10) nanocomposite

Trisodium citrate
solution Dye Methylene blue (MB) Degraded in 180 min;

0.5 gL−1, 100% [77]

8 CAg-NPs Citrus paradisi Dye

Congo red (CR), MB,
malachite green (MG),

rhodamine B (RhB)
and 4-NP

MB: 93.29; MG: 83.73;
4-NP: 88.9; RhB: 60.53 [78]

9 CNF/PEI/Ag NPs composite Bleached birch
kraft pulp Organic dye MB 96% after 4 min [79]

10
rGO-AgNP (graphene oxide silver

nanoparticle hybrid
nanocomposite)

Brassica nigra
aqueous extract Dye Direct blue-14 (DB-14) 95.41% [80]

11 GO−ZnO−Ag Simple one-pot
method Organic dye MB 100%, 40 min [69]

12 AgNPs/holocellulosenanofibrils
(AgNPs/HCNF) Microwave-assisted Dye MB 94–98%, catalytic activity

with five cycles [81]

13 AgNPs/ZIF-8 composite
NaBH4 and

trisodium citrate
solution

Dyes MB and CR MB: 97.25%; CR: 100%
pH ≥ 7 [82]

14
AgNPs impregnated

sub-micrometercrystalline jute
cellulose (SCJC) particles

Extract of leaves of
M. erythrophylla Dyes CR and MB 100%, 14 min with

0.005 mg/mL [83]
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Table 2. Cont.

No AgNPs-Composites AgNPs-Composites
Synthesis Method Type of Pollutant Name of the Pollutant Treatment Efficiency References

15 AgNPs

Extract of
leaves from

Portulacaoleracea
(PNL)

Textile dyes

Reactive green
19A, R blue

59, R red 120, R red 141,
and R red 2

180 min, 50; 35% fourth
and fifth cycles [84]

16 Ag@MGO-TA/Fe3+

nanocomposite Graphite flakes Organic pollutants Methylene blue 0.05 mg/mL [85]

17 CH-AgNPs Trisodium citrate
solution Dye Orange and blue dyes 97.4 and 100% [86]

18 MMT/Ag nanocomposite
Montmorillonite

(MMT) clay
and AgNPs

Dye Methylene blue

99.90% for 25 ppm;
96.50% for 50 ppm; 89%
for 100 ppm and 81.14%

for 200 ppm

[87]

19 Ag/CTAB/NCCnanohybride Microcrystalline
cellulose Dye Methyl orange,

4-nitrophenol
14.2 × 10−3 (s−1);
5.4 × 10−3 (s−1) [88]

20 Ag/rGO nanocomposite and
Ag/rGO/CA/TFC membranes - Organic compounds Methylene blue 98%; 92% [78]

21 FBN-GO-Ag - Wastewater Reactive black 5 and
reactive red 120 88.9 and 77.7% [89]

22 BaTiO3/AgNPs BaTiO3 Dye Methylene blue and
ciprofloxacin 72 and 98% [90]

23 AgNP/WPI-AF Whey protein
isolate Dye Methylene blue - [85]

24 AgNPs decorated on
nanostructured porous silicon Peumo extract Organic dyes Methylene blue Degradation rate

8.6/min [91]

Figure 4 shows the flowchart of silver nanoparticle–composite-treated wastewater
for various industries. Metal nanoparticle-based nanocomposites with graphene oxide
(GO) have acquired a wide range of potential applications in a number of material science
fields. An efficient photocatalyst supported on nanocomposite (GO/ZnO) with metal
nanoparticles was synthesised by the one-pot method. The synthesized GO–ZnO–Ag
nanocomposite achieved 100% MB dye removal at 40 min of sunlight irradiation. Thus, the
silver-based nanocomposite shows potential to be an effective photocatalyst for organic
dyes in industrial effluents/wastewater [68].

The dye removal mechanism using AgNPs includes the adsorption onto AgNPs
combined with loaded activated carbon or degradation through catalytic/photocatalytic
methods or in combination with both. The addition of silica spheres is used to support the
nanoparticles, which avoid the poor catalytic efficiency for the flocculation of nanodimen-
sional materials during the processes of catalytic degradation processes using AgNPs [92].
Activated carbon loaded with AgNPs was suggested to have high adsorption activity
(71.4 mg of MB/g of adsorbent) against methylene blue [93]. The fabrication of AgNPs
with nanosilica powder showed 99% removal of dyes such as Eosin yellow, Bromophenol
blue 2, CR, and BR upon adsorption. The desorption studies applying acetone showed at
86% desorption of dye, suggesting the novel adsorbent reusability [94]. The nanocompos-
ite of Ag/PSNM (silver/poly (styrene-N-isopropylacrylamide-methacrylicacid)) spheres
with catalytic degradation of organic dyes showed high potential application for wastew-
ater treatment [80,87]. Choudhary et al. [80] developed and studied biological/green
extracts using a silver nanocomposite with naturally occurring montmorillonite (MMT)
clay (MMT/Ag nanocomposite). The author investigated the adsorption efficiency and
removal of MB dye by applying a batch system. This study revealed that the adsorption of
two nanocomposites which were raw MMT and MMT/Ag had the capacity to remove MB
(methylene blue) [80].
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from [27]).

The green synthesised hybrid nanocomposite (Brassica nigra) of rGO-AgNP showed
antimicrobial activity and efficient photocatalytic activity in direct blue 14 (DB-14) dye. It
exhibited a high photocatalysis performance in dye removal with sunlight compared to ul-
traviolet (UV) and could be reused for five times without a significant loss of photocatalysis
performance [95]. The ultrasonic synthesised Ag/CTAB/NCC (nanohybrid) without acid
hydrolysis had a stronger catalytic property than other catalysts and showed better removal
of methyl orange (k = 14.2 × 10−3 s−1, t = 150 s) and 4-nitophenol (k = 5.4 × 10−3 s−1,
t = 180 s) [88]. The one-dimensional AgNP/WPI-AF (amyloid-based hybrid) materials
were fabricated using photochemical/chemical routes. The selective support of the AgNP
(silver nanoparticle) amyloid fibril (AF) was derived from WPI (whey protein isolate)
for the catalytic reduction/removal of the MB (methylene blue) dye. The material of the
nanoparticle-amyloid fibril composite is a better example of the process of catalysis, and
it showed better reusability [85]. The fabricated nanocomposite of Ag@MGO-TA/Fe3+

showed catalytic reduction performance against organic pollutants and antimicrobial per-
formances, especially disinfection action against bacteria (E. coli) [70].

The preparation of CNF/PEI/AgNP composites was developed from the cellulose
nanofiber (CNF) from cross-linked bleached birch kraft pulp with polyethene imine (PEI)
and decorated with silver nanoparticles (AgNPs). It exhibited shape memory properties
and good mechanical stability under wet conditions, and its decolorization activity was
high as 5 × 104 Lm−2 h−1. This study demonstrated the recyclability and stability of the 3D
nanocellulose-based aerogel membrane after a continuous catalytic discoloration process
was performed ten times [79,96,97]. In organic compound degradation, semiconductor
nanomaterials are widely used as the photocatalyst. During the photodegradation, the
nanoparticles were separated from the treated solution. Therefore, to avoid this problem,
the author developed a novel cross-linked membrane and achieved fast degradation of 98%
for the Ag/rGO nanocomposite and 92% for Ag/rGO/CA/TFC membranes [78]. Figure 5
shows a schematic representation of AgNPs (silver nanoparticles) from a plant extract and
their use as dye degradation.
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Figure 5. Diagrammatic representation of AgNPs (SNPs) from plant extract and their use as a dye
degradation (adapted from [69]).

5. Silver Nanoparticles in Agriculture

AgNPs may synthesize processes by physical and chemical methods. They contain
varying potential features that make them “adverse” combination methods. The making
of AgNPs from biological techniques has emerged as an outcome of research for such a
technology. The nanoparticle fabrication is completed by a wide range of plant families
and microorganisms using the methods of reduction/oxidation processes. Photochem-
ical techniques react with the materials to produce nanoparticles that we require as a
solvent medium: harmless/non-toxic eco-friendly stabilising agents. Many researchers
have synthesised AgNPs from plant extracts and microorganisms such as bacteria, fungi,
algae, etc. [98,99]. Figure 5 shows an illustrative explanation of the green synthesis of Ag-
NPs from plant parts and microorganisms, their characterisation, and their activity. The
mechanical modification that is particularly involved in the mechanical-milling operation
is shown in Figure 6.

Molecules 2023, 28, x FOR PEER REVIEW 11 of 22 
 

 

 

Figure 5. Diagrammatic representation of AgNPs (SNPs) from plant extract and their use as a dye 

degradation (adapted from [69]). 

5. Silver Nanoparticles in Agriculture 

AgNPs may synthesize processes by physical and chemical methods. They contain 

varying potential features that make them “adverse” combination methods. The making 

of AgNPs from biological techniques has emerged as an outcome of research for such a 

technology. The nanoparticle fabrication is completed by a wide range of plant families 

and microorganisms using the methods of reduction/oxidation processes. Photochemical 

techniques react with the materials to produce nanoparticles that we require as a solvent 

medium: harmless/non-toxic eco-friendly stabilising agents. Many researchers have 

synthesised AgNPs from plant extracts and microorganisms such as bacteria, fungi, algae, 

etc. [98,99]. Figure 5 shows an illustrative explanation of the green synthesis of AgNPs 

from plant parts and microorganisms, their characterisation, and their activity. The 

mechanical modification that is particularly involved in the mechanical-milling operation 

is shown in Figure 6. 

 

Figure 6. Anionic dye removal by plant-derived agricultural waste mechanical modification 

(adapted with permission from [100]). 

Silver nanoparticles (AgNPs) have been shown to increase plant growth, seed 

germination, and crop yields. Additionally, they influence the response of the plant 

Figure 6. Anionic dye removal by plant-derived agricultural waste mechanical modification (adapted
with permission from [100]).

Silver nanoparticles (AgNPs) have been shown to increase plant growth, seed germi-
nation, and crop yields. Additionally, they influence the response of the plant growth to
positive/negative impacts. The application of AgNPs transforms the bacterial diversity in
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soil and influences plant growth in that soil. The various concentrations of AgNPs cause
changes in the functional bacterial diversity. The combination of microbes and plants with
silver nanoparticle interactions is complicated; by arranging the concentration of AgNPs,
the plant growth potential can be increased without affecting the environment [101]. In
addition, AgNPs significantly enhance the potential of seed germination, index, mean
germination time, index of seed vigour, and fresh and dry seedling weights. The colloidal
AgNPs contain significant characteristics of stabilised and well-dispersed characteristics
showing more adhesive on the surfaces of the bacterial and fungal cells, hence behaving
as excellent bactericides and fungicides. They also enhance the control of plant diseases
in food crops and fruits that are economically important. Worldwide, bacterial diseases
cause a significant loss in crop yields. Silver nanoparticles were found to act against
the activity of plant pathogenic bacteria. It explained that silver nanoparticles have a
higher antibacterial activity than generic antibiotics [102,103]. These nanoparticles have
been tested as pesticides, and they reduce the burden of pests. This often decreases the
use of chemical-based fertilisers in conventional agriculture. Silver nanoparticles have
better antibacterial activity observed against nosocomial infections, and their combina-
tion with cephalosporin antibiotics resulted in an effective treatment for Pseudomonas
infections [104]. Figure 7 represents the schematic representation of the green synthesis
of AgNPs from microorganisms and plant parts, their activity, and their characterization.
The economical use of water sources by the use of treated water for agriculture and other
industrial purposes and the utilization of low-cost and innovative environment-friendly
effective paths helps to conserve the limited clean water reservoir and is the best way to
save the world’s freshwater [105]. Green-synthesized plant-mediated extracted AgNPs
have enhanced the properties of catalytic activity, are chemically stable with the ratio of
high surface volume, and can be employed for freshwater and agricultural wastewater
treatment [106,107].
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Silver nanoparticles are an effective antimicrobial agent against plant pathogens, and
they control colony formation and pathogenic plant diseases (fungi) (Bipolarissorokiniana
and Magnaporthe grisea). They inhibited the fungi growth (Aspergillus parasiticus) and
decreased the synthesis of aflatoxin B1, secondary metabolites, and carcinogenic mycotox-
ins [109]. Citrate-coated AgNPs improved rice production effectively and protected plants
against rice pathogens due to antibacterial activity [110]. Furthermore, the AgNPs stabilis-
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ing fructose showed antimicrobial effects against phytopathogens, such as Dickeyasolani,
Erwinia amylovora, Xanthomonas campestris, Clavibactermichiganensis, and Ralstonia
solanacearum [111–113]. The silver nanocomposite of GO-Ag NPs (Graphene oxide–silver
nanoparticles) was used to treat spot disease found in infected leaves and was applied to
Fusarium graminearum. These nanocomposites have been found to inhibit spores and
fungal hyphae [114]. Silver nanoparticles are effective in increasing agricultural production
and it was affected by the bovine herpes virus’s activity [115]. The silver cellulose matrix en-
hances the adherence character of the foliage of the patches, and it can enhance the action
of pesticides. Silver nanoparticles have been used for their antimicrobial activity against
Alternaria solani (fungus); they inhibit/diminish the pathogenic population of both in vitro
and in vivo conditions of early blight disease in tomatoes in a concentration-dependent
manner [116]. The silver nanoparticle-functionalised nanocomposite (polyaniline-reduced
graphene oxide/Ag-PANI/rGO) developed non-enzymatic electrochemical glucose sen-
sors with effective sensitivity and a rapid response time; this nanocomposite is an efficient
electrochemical method for sensing glucose in samples such as milk and juices [117].

6. Effect of Textile Dyes on Health and the Environment

The global textile industry consumes the highest volumes of raw water. This is one of
the main industries growing proportionally while increasing the demand for worldwide
textile products [118]. Spinning, weaving, finishing, washing, bleaching, stabilising, and
dyeing are major operations of the textile industries. The unsuitable disposal waste of
textile sectors such as dyes is causing severe environmental health problems. The global
textile sector produces 7–10 million tons of dyes yearly, and there are communally more
than one million types of dyes [119]. According to the usage and utilisation techniques
of dyes (direct, reactive, vat, disperse azo, acid, and anthraquinone dyes) by which they
are generally classified, all organic dyes, especially azo dye, hold up to around 70% of the
market share. The textile effluents contain colour, TDS (total dissolved salts (TDS), COD
(chemical oxygen demand), pH, and turbidity, which are the major constituents of dye
effluents. The effluent dyes affect the water’s aesthetic value and possess harmful health
and environmental threats. They influence normal aquatic life and are carcinogenic for
humans. Azo family dyes and anthraquinone dyes, such as Disperse Blue 3, are found
to have carcinogenic threats and intense toxic effects. Several vital azo dyes degrade the
environment of the intestine into amines, which are known carcinogens [120].

The degradation/removal of dyes from industrial effluents/wastewater poses a major
challenge. Adsorption, granulated/powdered activated carbon (physical), coagulation
(chemical), and microbial degradation/fungal decolourization (biological) are being applied
for the removal of dyes from wastewater in current practises by the industry [121].

Living organisms require risk-free, nonpolluted water to regulate their metabolism
and temperature. Anthropogenic activity can cause water contamination that results
in terrible environmental problems. The growth of synthetic chemical fabrication and
utilisation has contaminated the waterbodies over the years. Most of these waterbodies
around industrial zones have been contaminated by the textile industries. The effluent of
the dye can damage the whole ecosystem and associated plant life when it is affected by
the chemicals synthesized from toxic organic dyes [122].

The wastewater from the textile industry develops large varieties of chemical pol-
lutants and dyes [60]. The complicated chemical structures of a few dyes/pigments are
given in Figure 8. The removal of dyes from industries (textile) and wastewater from the
dye-making industry has been a significant environmental challenge [123].
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7. Challenges in Environmental Safety

This section is not mandatory but may be added if there are patents resulting from the
work reported in this manuscript.

The modern world has access to innovative applications that enhance the standard of
life. In this way, the textile industrial sector expanded to meet the needs of the population
by generating a vast amount of industrial-based goods. Finally, most industrial waste that
contributes to environmental contamination has been eliminated. Industrial waste was dis-
posed of on land, producing non-biodegradable waste and non-agricultural processes [124].
In contrast, industrial dye water combined with water sources such as ponds, lakes, rivers,
and the ocean to pollute aquatic life. This dye waste exacerbates the ecological dilemma
of many diseases affecting land- and water-dwelling organisms. Dangerous chemicals
must be filtered out of industrial wastewater before it is discharged. Controlling textile dye
wastes was critical for reducing wastewater pollution and to maintain the ecological system
of earthly life [125,126]. The dye from textile industry is part of the water utilized to colour
the prepared cloths. In this process, synthetic dye is mostly toxic chemical elements that
are added to apply the colour to cloths. After the colouring process is completed, the dye
wastewater creates a pollutant of the ecosystem [127]. The wastewater produced by the
dye results in the environmental system shown in Figure 9.
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The textile dyeing method is used to enhance the aesthetic appeal of fibres, yarn,
and finished products. Plants, seeds, roots, leaves, cellulose, animals, minerals, etc. are
utilised to extract natural pigments [129,130]. This form of dyes has minimal impact on the
eco-system since this organic ingredient is readily biodegradable by bacteria. However,
the synthetic dyes used in the colouring process are not biodegradable. This textile dyeing
process has an influence on the environment due to its chemical, water, and air emissions
and energy consumption [131,132]. Synthetic dye components are composed of additional
chemicals used to combine large amounts of water [132,133]. Presently, 20% of textile dyeing
wastewater is discharged by globalisation-related companies. Most synthetic colours are
produced from large quantities of chemicals, acids, salts, and peroxides [134]. This strong
chemicals combine directly with water to affect ecological systems. This dyeing process
pollutes the water’s BOD and COD levels, resulting in the demise of aquatic life. It was
more hazardous for acidic and flammable textile chemical acids to react, and they damage
both aquatic and terrestrial life systems. The cloth dyeing procedure requires heating and
cooling, which consume more electricity. This electricity was generated by burning coal
and other fossil fuels, contributing to air pollution [135]. Constant production of carbon
dioxide by the electricity generation process poses a major threat to the ozone layer. All the
environmental contamination caused by the textile dyeing process was decreased by the
water treatment technique.

8. Conclusions and Perspectives

This review paper summarises recent literature on the importance of the AgNP-based
composites for adsorbing or degrading (catalytic/photocatalytic degradation) the textile
dye and for the challenges and applications in environmental protection in agriculture.
The literature review clearly demonstrated the degradation/removal of textile dyes from
wastewater using nanoparticles incorporated with membranes to degrade toxic compounds.
The treatment efficiency showed that AgNPs were highly superior to their widespread, as
demonstrated by several experimental results. The experimental results in the literature
explained that biological extracts of AgNPs from plant materials make better changes and
help to protect the environment from harmful damage caused by the extreme utilisation of
chemicals. The most significant advantage is the recovery of silver nanocomposites and
the reusability of the material for the next cycle. The main advantage of AgNPs for the
removal of microbes is through the antimicrobial activity of silver particles, the degradation
of organic chemicals/pollutants/dyes by adsorption, and catalytic/photocatalytic activity
for treating polluted/wastewater. Although nanoparticles are apparently shown to pro-
vide numerous potential advantages for water treatment/purification, there may also be
numerous obstacles before they can be executed for extensive applications. Thus, several
investigations are required to control these obstacles by planning suitable conversions of
silver NPs to fully grasp their possibilities.
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