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Abstract: The unambiguous identification of lipids is a critical component of lipidomics studies
and greatly impacts the interpretation and significance of analyses as well as the ultimate biological
understandings derived from measurements. The level of structural detail that is available for lipid
identifications is largely determined by the analytical platform being used. Mass spectrometry (MS)
coupled with liquid chromatography (LC) is the predominant combination of analytical techniques
used for lipidomics studies, and these methods can provide fairly detailed lipid identification. More
recently, ion mobility spectrometry (IMS) has begun to see greater adoption in lipidomics studies
thanks to the additional dimension of separation that it provides and the added structural information
that can support lipid identification. At present, relatively few software tools are available for IMS-MS
lipidomics data analysis, which reflects the still limited adoption of IMS as well as the limited software
support. This fact is even more pronounced for isomer identifications, such as the determination of
double bond positions or integration with MS-based imaging. In this review, we survey the landscape
of software tools that are available for the analysis of IMS-MS-based lipidomics data and we evaluate
lipid identifications produced by these tools using open-access data sourced from the peer-reviewed
lipidomics literature.
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1. Introduction

Lipids are essential biomolecules in numerous cellular processes, and their unambigu-
ous identification and comprehensive structure elucidation can increase our understanding
of their functions and their use as biosignatures [1–3]. Advances in the field of lipidomics
can be largely attributed to advances in mass spectrometry (MS) and analytical separa-
tions [4]. Currently, most MS-based lipidomics characterization is performed via direct
sample infusion or in conjunction with on-line liquid chromatographic separation (LC-MS).
Both approaches are easily combined with tandem MS/MS, which can identify the fatty
acyl chains and the head groups present for each detected lipid. However, the analysis of
lipids is still challenging due to their complex and diverse chemical structures, which often
comprise numerous isomeric structures originating from different fatty acyl chain lengths,
fatty acyl positions, and C=C double bond orientations (cis vs. trans) and locations.

Ion mobility spectrometry (IMS) provides an additional dimension of separation based
on the shape and size of the analyte ions, where their measured mobility can be converted
to collision cross section (CCS) [5–7]. IMS is particularly attractive for lipidomics as it
allows for the distinguishing of lipid classes in many cases, as well as the separation of
isomers [8–15]. Furthermore, when combined as an integrated LC-IMS-MS workflow, the
three-dimensional separations with LC elution times, IMS drift times (or CCS values),
and m/z ratios provide a basis for the exhaustive characterization of lipids in complex
samples (e.g., tissue) [16–18]. MS/MS information is usually necessary for determining the
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composition of individual fatty acids for lipids containing multiple acyl chains. MS/MS
data were acquired using one of two techniques: data-dependent acquisition (DDA),
in which only selected ions are fragmented, or data-independent acquisition (DIA), in
which all ions are fragmented without prior selection. MS/MS with many widely used IMS
instruments (i.e., classic drift tube IMS (DTIMS) [6,19] and traveling wave IMS (TWIMS) [20]
platforms) is generally performed in a CID cell where all the ions are fragmented after
the IMS separation (i.e., operated in a DIA mode). Recently, the trapped IMS (TIMS)
platform was reported to enable effective DDA MS/MS using a parallel accumulation–
serial fragmentation (PASEF) technique that synchronizes the TIMS separation with MS/MS
precursor selection [15].

While the advancement of IMS technology and experimental strategies with MS have
greatly improved the in-depth characterization and identification of lipids, analysis of
IMS-MS data which includes multidimensional separations has been challenging and has
limited the full utility of these measurements, especially for complex samples.

In this minireview, we survey the software landscape and the capabilities for lipid
identification using existing tools for IMS-MS lipidomics using published datasets based
upon the use of well-characterized lipid extracts. In particular, we consider different
analysis workflows for LC-IMS-MS/MS using two MS/MS approaches, DIA vs. DDA, for
lipid identifications of the total lipid extracts from the NIST 1950 SRM plasma.

2. Lipidomics Data Analysis

The analysis of lipidomics data generally involves two major processes: data extraction
and feature annotation (Figure 1). Data extraction consists of extracting and processing
signals from raw data and constructing features from measurement values. In this context,
a feature corresponds to a collection of measured values from all separation dimensions in
the analytical approach (for instance, an LC-MS feature is defined by retention time from the
LC dimension and m/z and intensity from the MS dimension). The specific steps for data
extraction are dependent upon the details of the analytical approach, and this is particularly
the case for experiments including MS/MS data acquired using DIA vs. DDA. Feature
annotation describes the process of comparing a feature’s measured values to reference
values for lipid annotations. These reference values may be sourced from previously made
measurements and/or values predicted on the basis of theory or empirical trends. The
confidence of lipid annotations, often reflected by a scoring metric, is derived from the
degree of similarity between measurements and reference values. Different software tools
perform part or all of these steps, and the precise order of operations can vary according to
the requirements or constraints of a particular experimental design. Moran-Garrido et al.
have recently published a review that delves more deeply into the details of lipidomics
data analysis as it relates to specific instrumentation and acquisition methods [21].
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Figure 1. Generalized workflow for analysis of IMS-MS-based lipidomics data. Starting from raw
data, either in original vendor format or converted to another format, the first step involves the
extraction and processing of data to produce features. These features are defined by the measurement
dimensions in the experiment, most commonly m/z, retention time (RT), IMS collision cross section
(CCS), and MS/MS spectra (MS2) for LC-IMS-MS/MS experiments. The next step in the process is to
assign lipid annotations to the extracted features using one or more of the measured properties of the
features. Reference values for these properties may come from databases of previously measured
values or predictions based on theoretical principles or empirically derived trends. The final result is
a list of extracted features with associated lipid annotations.
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3. Survey of Existing Lipidomics Data Analysis Software

We surveyed the bioinformatic programs which facilitate part or all of the workflow
for processing IMS-MS-based lipidomics data. The characteristics of all the free-to-use pro-
grams are summarized in Table 1. The tools in the table are organized according to function,
specifically reflecting which tools perform feature extraction and/or annotation. Sky-
line [22] and MS-DIAL [23] cover the whole data processing workflow including the feature
extraction and lipid identification. LiPydomics [24], LipidIMMS (Lipid4DAnalyzer) [25],
and AllCCS [26] only perform lipid identification, whereas MZmine3 [27] and DEIMoS [28]
only perform feature extraction. MZmine3 can perform annotation (local compound
database search) by RT and CCS given a user-provided database in csv format. PNNL
PreProcessor [29] can be used for preprocessing the data before feature extraction, making it
distinct from the others. Regarding the supported data formats, most programs can process
multiple vendors’ data formats either directly or after conversion to an intermediate format.
Though not included in Table 1 due to being proprietary software, Lipid Annotator [30],
Lipostar [31], and MetaboScape (Bruker Daltonics, Billerica, MA, USA) are specialized
tools that can process IMS-MS lipidomics data from Agilent, Waters, and Bruker platforms,
respectively. MS-DIAL requires the files to be converted to an IBF format, whereas Skyline
can directly process files in raw vendor formats. Skyline is distinctive as it is the only
program in this list that performs targeted feature extraction and lipid identification. All
programs but MZmine3 facilitate MS2 deconvolution and can process DIA data. With
regard to calibration, Skyline and LipidIMMS perform RT calibration; LiPydomics performs
RT calibration for HILIC separations; AllCCS and DEIMoS can perform CCS calibration;
and Skyline, MS-DIAL, and MZmine3 can read the CCS calibration performed by the
instrument vendor software. AllCCS is the only tool that does not generate any quantita-
tive results. As for the lipid identification, all the programs capable of performing lipid
identification have their own library containing MS2 spectra, RT, and CCS information.
The information in the library is experimental, in silico, or hybrid. The lipid identifications
produced by all of the discussed tools are at the molecular species level, consisting of the
lipid class and the number of carbons and double bonds in each fatty acid chain.

Table 1. Survey of software tools for analysis of IMS-based lipidomics data. Abbreviations: DIA,
data-independent acquisition; DDA, data-dependent acquisition; MS1, normal MS (without frag-
mentation); MS2, tandem MS/MS (includes fragmentation); RT, retention time; CCS, collision cross
section; HILIC, hydrophilic interaction chromatography; NA, not applicable.

Software Supported File Formats Workflow Acquisition Modes Annotation Method Ref.
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HILIC RT, CCS
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Table 1. Cont.

Software Supported File Formats Workflow Acquisition Modes Annotation Method Ref.

LipidIMMS
(Lipid4DAnalyzer)

Input: supports Agilent,
Bruker, Waters, Sciex MS1
peak table (.csv format),

MS2 data files
(.mgf/.msp /.cef format),
RT calibration table (.csv

format, optional)
Output: html, pdf, csv

Untargeted DDA, DIA

MS2 fragmentation,
RT, CCS experimental and

predicted library containing
267,716 unique lipids

[25]
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4. Evaluation of Lipidomics Data Analysis Software
4.1. Selection of Evaluation Data

In order to evaluate the software tools that are currently available for processing
IMS-MS lipidomics data, we sought out existing publicly available datasets with published
(and peer-reviewed) analysis results. We constrained our search of the literature to pub-
lished datasets that included NIST SRM-1950 plasma because considerable efforts toward
standardization of lipidomics analyses using this standard reference material have been
published previously [32,33]. As a result, the lipid composition of this material has already
been well characterized, providing a basis for the comparison of lipid identifications from
evaluations using different software tools. An additional consideration in our dataset
search was the analytical platform used for data acquisition. Specifically, we sought IMS-
MS lipidomics datasets acquired using each of the major IMS-MS platforms in the field (i.e.,
DTIMS, TWIMS, TIMS), ideally with coverage of MS/MS acquisition (DIA and DDA) and
ionization (positive and negative) modes. Ultimately, accounting for all of the above con-
siderations, we were only able to find two suitable published datasets for our evaluation of
software tools: an LC-DTIMS-MS/MS dataset from Kirkwood et al. (2022) [34] and an LC-
TIMS-MS/MS dataset from Vasilopoulou et al. (2020) [15]. The LC-DTIMS-MS/MS dataset
was acquired using RPLC (using an approximately 30 min solvent gradient) coupled to an
Agilent 6560 DTIMS-qTOF mass spectrometer operated with post-mobility All Ion MS/MS
(DIA) for three replicates of SRM plasma in both positive and negative ionization modes.
The LC-TIMS-MS/MS dataset was acquired using RPLC coupled to a Bruker timsTOF Pro
mass spectrometer operated with parallel accumulation–serial elution and fragmentation
MS/MS (PASEF, DDA) for five replicates of SRM plasma in both positive and negative
ionization modes. These datasets representing two different data acquisition strategies
(DDA vs. DIA) come from two of the three major analytical platforms widely used in
the field and include multiple technical replicates acquired in both positive and negative
ionization modes, making them the best suited among the available data for evaluating the
current software landscape for the analysis of IMS-MS lipidomics data.

4.2. Selection of Software Tools for Evaluation

In the previous section, we comprehensively surveyed the software landscape for the
analysis of IMS-MS lipidomics data. Although this landscape is significantly less broad than
that for general lipidomics data analysis [35], there are still too many tools for systematic
evaluation to be practical. We therefore settled on two software tools to evaluate using the
selected SRM plasma data: Skyline [22] and MS-DIAL [23]. We chose these tools because
(1) they are free and open-source, (2) they perform the complete lipidomics data analysis
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process from data extraction to feature annotation, and (3) they both support data from the
two platforms used to acquire the evaluation data we selected.

4.3. Analysis of LC-DTIMS-MS/MS Data Using Skyline and MS-DIAL

To evaluate Skyline for the analysis of LC-DTIMS-MS/MS lipidomics data, we fol-
lowed the protocol provided in Kirkwood et al. (2022) [22]. Briefly, we downloaded and
installed the latest version of Skyline (22.2), and the small molecule interface was selected.
Then, the library files 2_Plasma_Lipid_Library_Positive.sky.zip and 2_Plasma_Lipid_Library_
Negative.sky.zip were downloaded from the website specified in the protocol (https://
panoramaweb.org/baker-lipid-ims.url, accessed on 1 February 2022). All parameters for
data processing were set according to specifications in the protocol, and then the raw data
were imported into Skyline for automated data processing. Because Skyline performs
targeted feature extraction, data processing proceeds quickly with each file taking only
1–2 min to process. Lipids are identified based on the precursor mass, retention time, and
CCS matching from the library. The MS2 spectra are necessary to confirm the number of
carbons and double bonds of individual fatty acid chains; therefore, manual validation
of the identified lipids by checking the chromatographic peak shape, the isotopic pattern,
and the quality of the MS2 spectra is required to avoid false positive identifications. If
the chromatographic peak shape was noisy, did not appear in all three replicates, or the
isotopic pattern differed significantly from the expected pattern for the lipid annotation,
the lipid target was removed. After manual verification, the final list of identified lipids
was exported as a .csv file. In total, 217 and 223 lipids were identified from the positive
and negative mode data, respectively, for a total of 440 identifications, which is similar to
but slightly less than the total of 483 reported in the source publication [34]. We believe
the primary source of this discrepancy between the total number of identifications comes
from the process of manually verifying peak shapes, isotopic patterns, and quality of MS2
spectra, which inherently introduces some level of bias in the results. However, despite
this slight discrepancy between the number of lipids identified, the categories of lipids
identified in the present work are qualitatively similar to those in the source publication
and they generally comport with previous in-depth studies on the composition of SRM
plasma [32,33].

We also evaluated MS-DIAL for the analysis of LC-DTIMS-MS/MS lipidomics data.
Briefly, we downloaded and installed a recent version of MS-DIAL (4.92). Then, the raw
data were converted to IBF format using ibfConverter provided with the program. MS-DIAL
was opened, a new project was created under the folder containing the IBF files, and
ion mobility was selected in the separation type section. Data-independent MS/MS was
selected in the MS method type section. Centroid data were selected for both MS1 and
MS/MS. Positive or negative was selected in the ion mode depending on whether the
positive or negative data set was being processed. Lipidomics was selected in the target
omics section. The default analysis parameters were retained. In the identification tab,
MSP file was selected, and all lipids were checked. In the alignment tab, the “100% should
be detected in all replicated samples” option was specified. Because MS-DIAL performs
untargeted feature extraction which includes MS2 deconvolution, data processing takes
much longer than with Skyline (over two days to process the three replicates in positive and
negative ionization modes). As with Skyline, MS-DIAL performs lipid identification based
on similarity between precursor mass, CCS, and MS2 spectra for detected features and
its lipid database. To avoid false positive identifications, we manually verified the results
using the same criteria as described above for Skyline. The final results were exported as a
.csv file. In total, 223 and 49 lipids were identified from the positive and negative mode data,
respectively. The total number of lipids identified (272) is lower than the total from Skyline,
and this difference is primarily attributable to there being significantly less identifications
from the negative mode data. Specifically, MS-DIAL identifies much fewer FA and PC than
Skyline from the negative mode data. This discrepancy could be attributable to a lack of
coverage for these classes in the negative mode in the internal database that MS-DIAL uses

https://panoramaweb.org/baker-lipid-ims.url
https://panoramaweb.org/baker-lipid-ims.url
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to identify lipids. It is also possible that the weighting of the contributing factors for making
a lipid identification (i.e., retention time, isotope pattern, MS/MS spectral matching) differs
between MS-DIAL and Skyline, and those differences manifest as systematic differences in
the lipid annotations they produce.

We next compared the lipid identifications from Skyline and MS-DIAL for the positive
(Figure 2) and negative (Figure 3) mode data discussed above to gain insight on how similar
the results are when analyzing the same data using different software. Figure 2A shows
the high degree of overlap between lipid identifications from Skyline and MS-DIAL for
the positive mode data. Specifically, there were 137 common lipids identified between
the two tools, with 86 and 80 lipids only identified in MS-DIAL or Skyline, respectively.
Among the common lipid identifications, there was generally a high degree of agreement
between the corresponding measurement values (m/z, Figure 2B; RT, Figure 2C; CCS,
Figure 2D) from both tools across all of the observed lipid classes. The largest amount
of variability was observed for RT, which makes sense given the often noisy nature of
chromatographic profiles and differences in signal processing and fitting methods between
the tools. We also examined plots of CCS vs. m/z, commonly referred to as the CCS trend
line or “IMS-MS conformational space”, for lipids identified only by either tool individually
(Figure 2E,G) or identified by both tools (Figure 2F) to assess lipid class coverage in addition
to the overall reasonability of lipid identifications based on their trends in this space [36].
The common lipid identifications consist primarily of the TG, SM, and PC/LPC lipid
classes, all of which generally follow the expected characteristic trends in the IMS-MS
conformational space. The lipids only identified by MS-DIAL mostly consist of the PE,
Cer, and DG lipid classes, whereas those only identified by Skyline are predominantly TG,
PC, and PE lipid classes. Figure 3A shows the degree of overlap between lipids identified
by MS-DIAL and Skyline for the negative mode data. Although the very small number
of identifications from MS-DIAL limit what can be taken away from this comparison, we
observed similar trends among the commonly identified lipids with respect to measured
properties (Figure 3B–D) as we did for the positive mode data. Most lipids identified from
the negative mode data came from Skyline, and therefore the distribution of these lipid
identifications in IMS-MS conformational space (Figure 3G) is most interesting for this
set of results. We observed a diverse range of lipid classes, each following distinct trends
in this conformational space owing to the unique structural properties of each lipid class.
Taken together, these observations from the comparison between lipids identified from
DTIMS lipidomics data analysis using Skyline and MS-DIAL in positive mode demonstrate
that both tools produce similar results at a high level. A comparison of the negative mode
results was not possible due to an unidentified seemingly systemic error with the ability of
MS-DIAL to process the negative mode DTIMS data. More specifically, the primary source
of this discrepancy seemed to be a lack of identifications for the FA and PC classes, but we
were unable to determine the cause. For the positive mode data, at a more granular level,
there are specific and systematic differences between the lipids that are identified using
these tools, and these differences are likely attributable to (1) the specific details of how
each tool extracts and processes data, (2) the data sources and methods of constructing
the internal databases that the tools use for making lipid identifications, and (3) biases
introduced by the user through the manual verification of the initial results produced by
the tools.

4.4. Analysis of LC-TIMS-MS/MS Data Using Skyline and MS-DIAL

We performed a similar evaluation as described above for Skyline and MS-DIAL but
using LC-TIMS-MS/MS lipidomics data [15]. The process for data analysis using Skyline
was the same as outlined above, except for the added step of adjusting the transition
settings so that the acquisition mode was set to DDA prior to data processing. Likewise
with the MS-DIAL data analysis, the procedure was the same as described above except that
the MS/MS method parameter was set to DDA prior to data processing. Data processing
with Skyline proceeded quickly (1–2 min per replicate), as was the case for the DTIMS data.
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The data processing with MS-DIAL was much faster (<1 h per replicate) for this data than
it was for the DTIMS data, likely due to this data being acquired in a DDA acquisition
mode and therefore not requiring computationally expensive deconvolution. In total, 202
and 238 lipids were identified using MS-DIAL from the positive and negative mode data,
respectively (440 total). A total of 101 and 154 lipids were identified using Skyline from
the positive and negative mode data, respectively (256 total). The total identifications
from Skyline were considerably lower than the total from MS-DIAL, which we primarily
attribute to an apparent inability of Skyline to properly extract MS2 spectra from this
TIMS-PASEF DDA data, which we were unable to fix despite trying many combinations
of parameter settings. It is not clear at this time whether this issue is related to Skyline
itself or the library/transition settings being used. We could not directly compare the total
numbers of lipid identifications from this evaluation to the totals in the source publication
because a different (and proprietary) software tool was used to analyze the data and the
original identifications in the source publication have been subject to some discussion in
the literature [15,37,38]. However, the 440 total lipid identifications from MS-DIAL is in
line with the amount of identifications that are made from SRM plasma on many platforms,
and the qualitative profile of lipid categories is similar to previous in-depth studies on the
composition of SRM plasma [32,33].
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Figure 2. Comparison of lipid identifications from analysis of positive mode LC-DTIMS-MS/MS
lipidomics data using Skyline and MS-DIAL. (A) Venn diagram of lipids identified using either
software. (B–D) Comparisons of m/z (B), retention time (C), and CCS (D) values from MS-DIAL
vs. Skyline for common lipid identifications from both tools, points colored according to lipid class.
(E,F) CCS trend lines or IMS-MS conformational space of lipids identified by MS-DIAL (E), Skyline
(G), or both tools (F), points colored according to lipid class.
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Figure 3. Comparison of lipid identifications from analysis of negative mode LC-DTIMS-MS/MS
lipidomics data using Skyline and MS-DIAL. (A) Venn diagram of lipids identified using either
software. (B–D) Comparisons of m/z (B), retention time (C), and CCS (D) values from MS-DIAL vs.
Skyline for common lipid identifications from both tools, points colored according to lipid class. (E,F)
CCS trend lines or IMS-MS conformational space of lipids identified by MS-DIAL (E), Skyline (G), or
both tools (F), points colored according to lipid class.

Just as with the LC-DTIMS-MS/MS dataset, we compared lipid identifications made
using Skyline and MS-DIAL for this evaluation dataset in both positive (Figure 4) and
negative (Figure 5) ionization modes. Figure 4A shows a modest degree of overlap between
lipid identifications from Skyline and MS-DIAL for the positive mode data. Specifically,
there were 48 common lipids identified between the two tools, with 154 and 53 lipids only
identified in MS-DIAL or Skyline, respectively. Among the common lipid identifications,
there was a high degree of agreement between the corresponding measurement values
(m/z, Figure 4B; RT, Figure 4C; CCS, Figure 4D) from both tools across all of the observed
lipid classes, with none of the measurement dimensions displaying significant differences.
The IMS-MS conformational space for lipid identifications from either tool individually
(Figure 4E,G) and common identifications (Figure 4F) were again used to assess lipid class
coverage in addition to their structural trends. Similar to the results for positive mode
DTIMS data, the common lipid identifications consist primarily of the TG, SM, and PC
lipid classes, all of which follow expected trends in this space. The lipids only identified
by MS-DIAL span a wide variety of lipid classes including SM, PC/LPC, PE, and CE.
The lipids only identified by Skyline are predominantly TG and PC lipid classes. As was
the case for positive mode identifications, Figure 5A shows moderate overlap between
lipid identifications from Skyline and MS-DIAL for the negative mode data. Specifically,
there were 83 common lipids identified between the two tools, with 155 and 71 lipids only
identified in MS-DIAL or Skyline, respectively. We observed similar trends among the
commonly identified lipids with respect to measured properties (Figure 5B–D) as we did
from the positive mode data. Looking at the distribution of common lipid identifications in
the IMS-MS conformational space (Figure 5F), we can see that a large variety of lipid classes,
including Cer, FA, PE, and SM, are identified using both tools and their structural trends
are consistent with expectations. The lipids only identified using MS-DIAL (Figure 5E) or
Skyline (Figure 5G) also cover a wide variety of lipid classes, with PI, SM, PE, and LPC
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being dominant among the identifications from both tools. As we observed with the DTIMS
results, at a high level, the lipid identifications from Skyline and MS-DIAL in these data do
not differ very greatly. In this evaluation, the results are similar even at a more granular
level; however, systematic differences still arise, and these are attributable to the same
factors as discussed for the DTIMS data above.Molecules 2023, 28, x FOR PEER REVIEW 10 of 14 
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Figure 4. Comparison of lipid identifications from analysis of positive mode LC-TIMS-MS/MS
lipidomics data using Skyline and MS-DIAL. (A) Venn diagram of lipids identified using either
software. (B–D) Comparisons of m/z (B), retention time (C), and CCS (D) values from MS-DIAL
vs. Skyline for common lipid identifications from both tools, points colored according to lipid class.
(E,F) CCS trend lines or IMS-MS conformational space of lipids identified by MS-DIAL (E), Skyline
(G), or both tools (F), points colored according to lipid class.
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Figure 5. Comparison of lipid identifications from analysis of negative mode LC-TIMS-MS/MS
lipidomics data using Skyline and MS-DIAL. (A) Venn diagram of lipids identified using either
software. (B–D) Comparisons of m/z (B), retention time (C), and CCS (D) values from MS-DIAL
vs. Skyline for common lipid identifications from both tools, points colored according to lipid class.
(E,F) CCS trend lines or IMS-MS conformational space of lipids identified by MS-DIAL (E), Skyline
(G), or both tools (F), points colored according to lipid class.
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5. Discussion and Future Outlook

We have reviewed the current software landscape for the analysis of IMS-MS lipidomics
data and performed in-depth evaluations of two important tools using lipidomics data
from two well-established experimental platforms. Despite the current and ever-increasing
interest in IMS-MS lipidomics, the software landscape for data analysis (especially free
and open-source software) is surprisingly narrow. Indeed, only two free and open-source
tools, Skyline and MS-DIAL, are capable of performing end-to-end analysis (data extraction
and lipid identification) of IMS-MS lipidomics data. Using published data acquired using
LC-DTIMS-MS/MS and LC-TIMS-MS/MS platforms for SRM-1950 plasma, we evaluated
the lipid identifications from MS-DIAL and Skyline. Overall, we found similar performance
with, e.g., lipid profiles that were largely similar between the different tools and across
experimental platforms. However, at a more granular level, we also observed systematic
differences in the lipids identified due to factors related to the methods and reference
databases within the tools in addition to biases introduced through the manual verification
of the results. These systematic differences between software tools are not isolated to the
analysis of IMS-MS-based lipidomics data; however, the lack of tools in the IMS space
increases their impact.

The level of structural detail in lipid annotations is also an important consideration for
the interpretation of lipidomics data. Table 2 summarizes the counts of lipid identifications
from both software tools, split according to whether the identifications were made at a level
that includes individual fatty acid composition (FA) or only sum composition (sum), for
all evaluation datasets. A slight majority of lipid identifications produced by these tools
include individual fatty acid composition; however, a significant number of lipids were
only able to be identified at the level of sum composition, which can hinder the extent
of biological interpretation of lipidomics results. The low-detail identifications are likely
attributable to analytical limitations (i.e., efficiency of qTOF CID in producing fragments
that are useful for identifying fatty acid composition), software limitations, and/or biases
introduced through the verification of software results.

Table 2. Summary of lipid identifications from DTIMS and TIMS evaluation data in positive (+)
and negative (−) ionization modes using Skyline and MS-DIAL. Each contains the count of lipid
identifications made at levels that include individual fatty acid composition (FA) or only sum
composition (sum).

FA
sum

DTIM
(+)

DTIM
(−)

TIMS
(+)

TIMS
(−)

Skyline
149

68

212

11

9

92

32

122

MS-DIAL
86

137

36

13

111

91

175

63

Among the most important takeaways from the software evaluations presented in this
review is the significant influence of variables, from the experimental conditions through
to the validation of results, that have the potential to affect the lipid identifications that
are ultimately produced in the analysis of IMS-MS lipidomics data. The impact of some
variables, such as the instrumentation or data acquisition methods, are somewhat obvious
and have been amply discussed previously [39]. However, factors such as data processing
parameters and the experience of the person processing the data and verifying the initial
results produced by software tools are less often discussed, despite the significant impact
they can have on the reproducibility of results from lipidomics data analysis. The notion that
the initial results produced by any data analysis software should not be used uncritically
and the requirement that these results be reviewed by an expert prior to interpreting their
biological conditions are broadly understood, but the potential for the introduction of bias
through this process of manual inspection cannot be ignored. Beyond the implications on
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the reproducibility of results, manual inspection is also the most labor- and time-intensive
portion of lipidomics data analysis and constitutes a significant bottleneck in the analysis
of large datasets. Increased efforts are required in the area of informatics for lipidomics
data analysis in order to reduce the bias and burden associated with extensive manual
inspection and validation of results.

New technological developments involving IMS-MS lipidomics continually create the
need for new software tools that facilitate the transition from proof of concept to real-world
application. Two areas of particular interest are increasing the depth of structural character-
ization through the integration of techniques for determining lipid double bond positions
(e.g., Paternò-Büchi [40,41], OzID [42,43]) or ultrahigh-resolution IMS separations [44,45]
and integrating MS imaging (MSI) with IMS-MS platforms for spatial lipidomics [27,46].
Although the technological details differ significantly, these two development areas face
essentially the same challenge with respect to their broader use in practical applications,
i.e., the lack of software support. Thus, expanding the coverage of software tools beyond
the more conventional methods should be an area of particular focus in future software
development for IMS-MS lipidomics.
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