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Abstract: In this work, high-entropy (HE) spinel ferrites of (FeCoNiCrM)xOy (M = Zn, Cu, and Mn)
(named as HEO-Zn, HEO-Cu, and HEO-Mn, respectively) were synthesized by a simple solid-phase
reaction. The as-prepared ferrite powders possess a uniform distribution of chemical components and
homogeneous three-dimensional (3D) porous structures, which have a pore size ranging from tens to
hundreds of nanometers. All three HE spinel ferrites exhibited ultrahigh structural thermostability
at high temperatures even up to 800 ◦C. What is more, these spinel ferrites showed considerable
minimum reflection loss (RLmin) and significantly enhanced effective absorption bandwidth (EAB).
The RLmin and EAB values of HEO-Zn and HEO-Mn are about −27.8 dB at 15.7 GHz, 6.8 GHz,
and −25.5 dB at 12.9 GHz, 6.9 GHz, with the matched thickness of 8.6 and 9.8 mm, respectively.
Especially, the RLmin of HEO-Cu is −27.3 dB at 13.3 GHz with a matched thickness of 9.1 mm, and
the EAB reaches about 7.5 GHz (10.5–18.0 GHz), which covers almost the whole X-band range. The
superior absorbing properties are mainly attributed to the dielectric energy loss involving interface
polarization and dipolar polarization, the magnetic energy loss referring to eddy current and natural
resonance loss, and the specific functions of 3D porous structure, indicating a potential application
prospect of the HE spinel ferrites as EM absorbing materials.

Keywords: high entropy; solid-phase reaction; spinel ferrite; porous structure; wave absorption

1. Introduction

Over the years, widespread use and rapid advancement of microwave and radio
frequency communication systems have led to an intense increase in electromagnetic (EM)
radiation [1]. The EM radiation strength increases at the rate of 7–14% per year, causing
serious damage to human health and information security [2–5]. Many research groups
have realized this problem and took a large effort to develop novel electromagnetic mi-
crowave absorbers (EMAs) to reduce EM radiation, which generally possess four basic
requirements, lightweight, thin thickness, wide effective bandwidth, and high absorption
efficiency [6–10]. Among them, wide absorbing bandwidth plays a key role in the applica-
tion of EMAs, primarily due to the more and more widespread application of microwaves
in various wavelengths. This requires absorbing materials to possess considerable absorp-
tion performance for each frequency EM wave [11–13]. Besides, environmental tolerance of
EMAs has become another significant influence factor because of many extreme operating
environments [14,15]. For example, the high-temperature stability of absorbing materials
has attracted great attention for the application of EMAs in the field of aviation [16–18].

In general, based on the wave loss-absorbing mechanism, EMAs can be divided into
two groups: dielectric loss and magnetic loss materials. The former primarily includes
metal- or carbon-based materials that generally possess high electrical conductivity, and the
latter mainly consisted of carbonyl iron and ferrites, which usually exhibit high magnetic
conductivity. Compared with classic dielectric loss-absorbing materials (such as conductive
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graphite, and carbon black), ferrite materials such as EWAs have received wide attention in
recent years due to their various unique crystal structures, such as spinel ferrites, garnet
ferrite, and hexaferrites [19]. Among them, spinel ferrites with a general structure of AB2O4
(A: divalent ion of metal transitions; B: trivalent ion of Fe) have been extensively studied for
EM wave absorption due to the inexpensive preparation procedure, high thermal stability,
and excellent magnetic and dielectric loss properties [20–22]. For instance, Ding et al. [23,24]
fabricated CuFe2O4 and Co0.5Cu0.5Fe2O4 spinel ferrites by hydrothermal method and found
that the ferrites exhibit excellent microwave absorption performance, mainly attributing to
the magnetic loss including eddy-current loss, magnetic resonance, and natural resonance.
Liu et.al. [25] prepared the novel CNZF (Co doping in Ni–Zn ferrite)/GN (graphene)
nanocomposites by a facile one-pot hydrothermal method, which performed a dual-region
microwave absorption, i.e., exhibiting two strong reflection loss peaks at about 9.6 and
5.2 GHz. Zhu et al. [26] reported the NiCoO4 spinel ferrites with micro-nano hierarchical
structures by hydrothermal synthesis. The urchin-like NiCoO4 exhibits the optimum
reflection loss value of −41 dB and wide effective absorbing bandwidth of 15 GHz, mainly
due to the unique needle-like assembly.

Recently, high-entropy (HE) alloys as a kind of advanced materials have been ex-
tensively studied, owing to their high oxidation and corrosion resistance and excellent
mechanical properties [27–30]. The HE design strategy is to form a structurally stable solid
solution using multiple metal elements as the main body, which breaks the traditional alloy
design method with a single element as the main body and meanwhile overcomes the dis-
advantages of the traditional doping technique [31]. For example, Li et al. [32] prepared the
flake FeCoNi (Si0.6Al0.2B0.2) HE alloys magnetic powders by melt spinning and ball milling,
which showed excellent microwave absorption performance. Spontaneously, this strategy
was also introduced into oxide materials, known as high-entropy oxides (HEOs) [33]. Due
to the cocktail effect of HE materials, HEOs exhibit better electrical and magnetic properties
through the synergistic effect of various elements, resulting in the great possibility of HEOs
as an ideal wave-absorbing material [34–36]. So far, some HE spinel ferrites have been
successfully prepared. F.H. Mohammadabadi et at. [37] synthesized HE ferrite nanopar-
ticles of (MnNiCuZn)0.7Co0.3Fe2O4 by solution combustion method. The composite of
(MnNiCuZn)0.7Co0.3Fe2O4/paraffin showed the maximum reflection loss of −27 dB at the
matching thickness of 5.3 mm, mainly due to the loss mechanism of interfacial relaxation
and ferromagnetic resonance. The mechanism analysis reveals that the multicomponent
HE ferrites exhibit more active sites and higher conductivity, owing to the multitudinous
metal cations in the HE spinel structure [38]. However, the developments of novel HE
spinel ferrites with excellent absorbing properties are still lacking, as well as systematic
studies of their microwave absorption mechanism.

In this work, HE spinel ferrites of (FeCoNiCrM)xOy (M = Zn, Cu, and Mn) were
prepared by a simple solid-phase reaction. Hereafter, these samples were named as HEO-
Zn, HEO-Cu, and HEO-Mn for convenience, respectively. The spinel ferrite powders,
with a micro-sized diameter, exhibited a three-dimensional porous structure with a pore
size from tens to hundreds of nanometers. These ferrites showed excellent microwave
absorbing performance and a significantly broad effective absorption band, as well as high
structural thermostability. It is expected to provide an important reference for promoting
the application of spinel ferrites in the field of EM wave absorption.

2. Results and Discussion
2.1. Structural Characterization

Figure 1 shows the SEM morphologies and EDS-mapping of HEO-Zn, HEO-Cu, and
HEO-Mn samples. The as-prepared samples possess a microscale powder form, and there
are lots of pores among these powders, which have a diameter range from tens to hundreds
of nanometers. This indicates that the homogeneous three-dimensional (3D) submicron
porous structures were formed after solid phase reactions at high temperatures. Figure 2
shows the nitrogen adsorption-desorption isotherms of HEO-Zn, HEO-Cu, and HEO-Mn
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samples, and the specific surface areas of HEO-Zn, HEO-Cu and HEO-Mn are 1.26 m2/g,
1.41 m2/g, and 1.81 m2/g, respectively, indicating almost the same pore structures for the
three samples. The pores were formed by mechanical uniform mixing and high temperature
sintering of various raw oxides. The porous structure can not only reduce the density of
wave-absorbing materials but also benefits from improving EM absorption performance.
It is found from EDS-mapping in Figure 1g–i that the elements of Fe, Co, Ni, and Cr are
uniformly distributed on the sample surface, as well as Zn, Cu, and Mn elements with
the content being slightly different [39]. Hence, it can be concluded that the complexation
solid-phase reaction was sufficiently carried out, thereby achieving the atom mixture and
ultimately forming the HE ferrites.
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samples, respectively. Figure 1. SEM images and EDS-mapping of (a,d,g) HEO-Zn, (b,e,h) HEO-Cu, and (c,f,i) HEO-Mn
samples, respectively.

Figure 3a shows the XRD patterns of HEO-Zn, HEO-Cu, and HEO-Mn ferrites. It is
seen that all the XRD spectra are similar, and most of the peaks are relevant to those of
NiCrFeO4 or FeCoCrO4 substances, manifesting the formation of a single-phase spinel
structure in these HE ferrites. As we know, all the elements of Fe, Co, Ni, Cr, Zn, Cu, and
Mn belong to the transition metal group and possess the approximate atomic radius, which
easily forms single-phase crystal structures, as well as their oxide materials [40]. Besides,
it is seen that the XRD pattern of HEO-Cu has one small peak at about 38.7 degrees, in
accordance with the (111) plane of CuO, indicating the existence of residue raw substance
of CuO. The residue CuO can not only increase the consecutiveness and transmission of
electrons but also provide more polarized interfaces, thus benefiting the EM absorption
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ability of HEO-Cu. Furthermore, the crystalline grain size (D) can be estimated from the
XRD patterns. According to the Scherrer formula, the D values can be expressed as:

D =
Kλ

βcosθ
(1)

where D is crystalline grain size, K is Scherrer constant, λ is the wavelength of the X-ray
source, β is the full width at half maximum (FWHM), and θ is peak position. Thus, the
grain sizes of HEO-Zn, HEO-Cu, and HEO-Mn samples can be calculated, and the results
are 26.8 nm, 34.8 nm, and 43.0 nm, respectively.
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Figure 2. The nitrogen adsorption-desorption isotherm of HEO-Zn, HEO-Cu, and HEO-Mn.

XPS experiments were also conducted to confirm the surface constitution and metal
valence of these HE spinel ferrites. Figure 3b shows the full spectra of XPS patterns
of HEO-Zn, HEO-Cu, and HEO-Mn samples. It is found that there are four clear and
similar peaks, assigned to Fe 2p, Co 2p, Ni 2p, and Cr 2p, respectively (see Figure 3c–f).
Normally, the peaks related to O were also found at the same position of 526.9 eV in all
three spectra (Figure 3g). Due to the doping of different elements, these XPS spectra are
of slight difference, as shown in Figure 3h–j. There are another three small peaks at about
1031.7 eV in the HEO-Zn spectrum, 936.1 eV in the HEO-Cu spectrum, and 655.5 eV in
the HEO-Mn spectrum, respectively, which can be confirmed as the characteristic peaks of
the Zn, Cu, and Mn elements. We can speculate that the doping elements of Zn, Cu, and
Mn were successfully diffused into each spinel structure during the solid-phase reaction
process, in accordance with the above EDS-mapping and XRD analyses [41].

The specific microstructures of HEO-Zn, HEO-Cu, and HEO-Mn samples were also
observed by TEM, as shown in Figure 4. For all the samples, the ferrite powders are
composed of spherical nanoparticles, suggesting the nanocrystalline feature of these spinel
ferrites. Moreover, the submicron porous structures were also found by TEM, as shown
in Figure 4a,b. Figure 4d–f shows the high-resolution TEM images of the ferrite powders
selected randomly. It is seen that the lattice fringes can be clearly observed and the inter-
planar distances of the three samples are all about 0.25 nm, which is equal to the inter-planar
distance of (311) plane of NiCrFeO4 or FeCoCrO4 substances. This result is consistent with
the XRD analysis, further proving that we have obtained the HE ferrites with a spinel
structure through a solid-phase reaction.
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2.2. Physical Properties

Figure 5 shows the hysteresis loops of HEO-Zn, HEO-Cu, and HEO-Mn HE spinel
ferrites, recorded in the magnetic field range from −20 kOe to 20 kOe. The saturation
magnetization (Ms), remanence (Mr) and coercivity (Hc) values can be obtained from the
hysteresis loops, and the results are listed in Table 1. It is well known that magnetic proper-
ties are of importance for the magnetic loss of EMAs. In general, the larger Ms indicates the
higher magnetic permittivity and the higher Hc might cause stronger frequency resonance,
thus increasing the magnetic loss. From Figure 5, it can be seen that, except HEO-Mn, the
other two samples show typical ferromagnetic properties. That is to say that Ms rapidly
increases with the external magnetic field increasing and reaches a saturation condition as
the external magnetic field rises to a certain value. The HEO-Zn has the highest Ms and Hc
(12.0 emu/g and 433.4 Oe, respectively), whereas the decrease in magnetic properties of
HEO-Mn might result from Mn being an antiferromagnetic metallic element. Therefore,
it is believed that the differentiation of magnetic properties of these HE spinel ferrites is
mainly due to the doping of different metallic elements and thus the changing material
components [20].
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Table 1. The magnetic properties of Ms, Hc, and Br of HEO-Zn, HEO-Cu, and HEO-Mn.

Samples Ms
/emu/g

Hc
/Oe

Br
/emu/g

HEO-Zn 12.0 433.4 5.5
HEO-Cu 8.2 278.6 3.9
HEO-Mn 0.48 0.1 0.1

Figure 6 shows the DTG curves of the three ferrites of HEO-Zn, HEO-Cu, and HEO-
Mn, which present the changing trend in mass with reference to temperature. It can be
seen that, below 200 ◦C, there is a small mass increase for all the samples (the maximum
ratio is about 1.0% for HEO-Zn and HEO-Cu), mainly owing to the secondary oxidation
of the sample surface. Moreover, with the increase in temperature, the mass continues to
decrease. Significantly, although raising the temperature up to 800 ◦C, the mass change is
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still very small (less than 1.0%). The above results indicate the ultra-high structural stability
of these HE spinel ferrites at high temperatures.
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2.3. Wave Absorption Properties and Mechanism

Figure 7 shows the EM wave absorption properties of HEO-Zn, HEO-Cu, and HEO-
Mn spinel ferrites, which were also listed in Table 2, as well as those of many reported wave
absorption materials [42–46]. It is noteworthy that all the HE spinel ferrites in the present
work possess considerable minimum reflection loss (RLmin) and significantly enhanced
effective absorption bandwidth (EAB) in comparison with the other wave absorption
materials. The RLmin of HEO-Zn is −27.9 dB at about 15.7 GHz with a matched thickness
of 8.6 mm, and the EAB is about 6.8 GHz (11.2–18.0 GHz). Whereas the HEO-Cu sample
exhibits an RLmin value of −27.3 dB at about 13.3 GHz with a matched thickness of
9.1 mm, and notably, its EAB reaches about 7.5 GHz (10.5–18.0 GHz) that covers almost the
whole X-band range. The RLmin and EAB values of HEO-Mn are −25.5 dB and 6.9 GHz,
respectively. The relatively low RLmin in HEO-Mn is possibly due to its obviously poor
magnetic properties (see Figure 5). Although the matched thickness of HEO-Cu is relatively
thick, the obvious broad bandwidth can certify its fine practical application prospect in
the EM wave absorption field. Basically, the results above indicate that the EAB values
of these ferrites are evidently enhanced (see Table 2), which is an important performance
characteristic of HEO materials [38]. It is found from the structural characterization that the
morphology and pore structure of the present samples are similar, i.e., the homogeneous
3D porous structures. This porous structure can provide the 3D conductive network
and abundant sample-air interfaces, and besides that the entered electromagnetic waves
can perform multiple reflections in the pores, thus promoting the absorption and loss of
electromagnetic waves. Moreover, for each transition metal element, it is believed that there
would be the best RLmin at the different matched frequencies. Thereby, the synergistic action
of multitudinous metal components introduced by HE effects could probably broaden the
EAB property.

The EM wave absorption properties are intensely related to the dielectric and magnetic
loss behaviors of EMAs, which will be analyzed in detail as follows. Figure 8a,b shows
the complex dielectric constants of these composites of ferrite/paraffin in the range of
2–18 GHz. The real part of permittivity (ε′) of these samples continues to decline with
frequency increasing, which is attributed to the dissipative behavior of frequency caused
by the hysteresis phenomenon of polarization response in the EM field. According to the
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effective medium theory, the ε′ value is related to the sample conductivity. In general, the
higher conductivity leads to a higher ε′ value, but too high ε′ tends to generate an eddy
current on the sample surface, resulting in the reflection of EM waves. This is unbeneficial
to EM wave absorption and thus might worsen impedance matching. The ε′ value between
4 and 5 is the best according to the previous report [47]. It can be found from Figure 8a
that the ε′ value of HEO-Cu is very close to this criterion, indicating the best impedance
matching of HEO-Cu and the worst of HEO-Zn. That the largest ε′ value of HEO-Cu ferrite
throughout the range of 2–18 GHz is possibly due to the fact that the conductivity of Cu
ranks only second to Ag, thereby Cu addition can increase the dielectric loss. Moreover, it
can be seen that the imaginary part of permittivity (ε′′) of HEO-Cu still displays a leading
trend among the three samples, indicating that the Cu−containing ferrite not only achieves
high dielectric storage but also exhibits enhanced dielectric loss. It is noteworthy that
the ε′′ value of HEO-Cu drops sharply at the range of 2–6 GHz and shows a repeated
increasing−decreasing trend at 6–18 GHz. The decrease at low frequency is probably
due to the 3D porous structure, which can significantly increase the volume fraction and
thus optimize the impedance matching. The relatively stable trend at high frequency is
likely owing to the synergistic effect of space charge, interface and orientation polarization,
resulting from the large specific surface area and heterogeneous chemical constitution of
HE spinel ferrites. The dielectric loss tangents (tanδε) of the three samples are shown in
Figure 8c, which have a similar variation trend with ε′′ value. The tangent depicts the
dielectric loss capability for the entered electromagnetic waves, and these curves possess
multiple resonance peaks, indicating the presence of polarization loss [48–52].
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Table 2. The wave absorbing properties including RLmin, matching thickness, and EAB values of the
present three ferrite samples, as well as many reported EM absorbing materials.

Samples RLmin
/dB

Thickness
/mm

Frequency
/GHz

Ratios
/wt%

EAB
/GHz Ref.

RGO/Ti3C2Tx hybrids −22.0 3.6 - - 4.0 [42]
CoFe@Ti3C2Tx −36.3 2.2 - 60.0 2.6 [43]
M-Ti3C2Tx/Ni −24.3 2.2 - 60.0 2.6 [44]

M-Ti3C2Tx/ZnO −26.3 4.0 - 25.0 1.4 [45]
FeCrMoNiPBCSi −23.1 6.6 4.2 20.0 2.2 [3]

Ti3C2 nanosheets filled
composites −11.0 1.4 - - 5.6 [46]

Ti3C2Tx −17.0 1.4 - - 5.6 [46]
HEO-Zn −27.9 8.6 15.7 50.0 6.8 This work
HEO-Cu −27.3 9.1 13.3 50.0 7.5 This work
HEO-Mn −25.5 9.8 12.9 50.0 6.9 This work
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According to Debye’s theory, the ε′ and ε′′ values can be expressed as:

ε′ = ε∞ +
εs − ε∞

1 + (2π f )2r2
(2)

ε′′ =
εs − ε∞

1 + (2π f )2r2
ωτ (3)

where εs and ε∞ are the static and optical dielectric constants, respectively, ω (ω = 2πf ),
f, and τ represent the angular frequency, frequency, and polarization relaxation time,
respectively. Moreover, the Cole–Cole equation is derived from (2) and (3):

(ε′ − εs − ε∞

2
)2 + (ε′′ )2 = (

εs − ε∞

2
)2 (4)
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In order to further analyze the dielectric loss mechanism, the Debye relaxation was
analyzed by the Cole–Cole curve, as shown in Figure 9. Debye relaxation is an important
loss mechanism for the dielectric loss of absorbers. In Cole–Cole curves, each semicircle
represents a polarization relaxation process. It is seen that each Cole–Cole curve exhibits
several obvious semicircles, which also present serious distortion, indicating that the
polarization effect plays a leading role in the dielectric loss.
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Magnetic loss is primarily estimated by magnetic permeability [53]. Figure 8d,e
shows the real part (µ′) and imaginary part (µ′′) of the permeability of the three ferrites,
respectively. The dramatic fluctuations are observed in the µ′ and µ′′ curves, manifesting
the significant magnetic loss. Notably, the µ′ value of HEO-Cu is relatively small mainly
due to the high conductivity of Cu. The internal magnetic field generated by the weak
induced current would resist the external magnetic field, thus generating the radiated
magnetic energy and suppressing magnetic loss. Hence, the high conductivity usually
leads to a small µ′. The µ′′ values are generally related to Hc, and the larger Hc can give
the absorber higher µ′′. It can be seen that HEO-Zn has the largest µ′′ value, HEO-Mn the
lowest, and HEO-Cu in the middle, in accordance with the results of Hc analyses above.
The magnetic loss tangents (tanδµ) shown in Figure 8f can be used to evaluate the magnetic
loss ability of the absorber for the entered electromagnetic waves. The order of tanδµ values
within the whole frequency from high to low is HEO-Zn, HEO-Cu, and HEO-Mn, which is
basically consistent with their magnetic properties (see Figure 5 and Table 1). In addition,
the type of magnetic loss can be analyzed by the parameter of C0 with the expression:

C0 = µ′′
(
µ′
)−2

µ′′ ( f )−1 = 2πµ0d2δ (5)

where d is the thickness of the specimen, f is the frequency and µ is the vacuum permeability.
Figure 10a shows the relationship between C0 and the frequency of HEO-Zn, HEO-Cu, and
HEO-Mn samples. It can be seen that the C0 curves are disordered and unstable, indicating
that the eddy current loss is not the main loss mechanism in the magnetic loss. Furthermore,
these C0 curves possess many distinct resonance peaks, which are primarily associated
with natural resonance loss [54].

The attenuation constant of α describing the EM energy attenuation capability of the
absorber can be denoted as the Formula (6):

α =
(√

2π f /c
)√

(µ′′ ε′′ − µ′ε′) +
√
(µ′′ ε′′ − µ′ε′)2 + (µ′ε′′ + µ′′ ε′)2 (6)

where all the characters have been explained hereinabove. The relationship between α and
frequency is shown in Figure 10b. Although HEO-Zn has the largest attenuation constant
within the whole frequency range, its absorption performance is not satisfactory due to the
poor impedance matching (see Figure 8a). Moreover, at the frequency range of 2–8 GHz,
the α of HEO-Cu is almost the same as that of HEO-Zn. Moreover, at the range of 8–18 GHz,
the α of HEO-Cu is slightly lower than that of HEO-Zn but higher than that of HEO-Mn.
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Therefore, the best impedance matching and proper EM energy attenuation ability result in
the excellent absorption performance of HEO-Cu [55].
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The relevant EM wave absorption mechanism of HEO-Cu ferrite is shown in Figure 11.
On one hand, for dielectric energy loss, the porous structure and proper conductivity of the
HEO-Cu sample effectively modulate the dielectric constants, ensuring more EM waves
enter the absorber. That is to say, the charge can accumulate a large number of sample-air
interfaces due to the difference in conductivity, leading to interfacial polarization [56,57].
Besides, the dipoles in the spinel structure are reoriented under the effect of the applied
electromagnetic field, which favors dipolar polarization. Furthermore, the combination
of the variable valence states of Fe, Co, Ni and Cr elements, low permeation threshold
of Cu (0.24% volume percentage in Cu nanoparticle), high electrical conductivity, and
3D conductive network can improve the conduction loss for dielectric energy decay. On
the other hand, due to the excellent magnetic properties of HEO-Cu, the electromagnetic
energy in the EM field can be effectively attenuated by the eddy current and natural
resonance effects between magnetically coupled interfaces. Basically, compared with HEO-
Zn and HEO-Mn, HEO-Cu possesses much better EM absorption properties. This is mainly
because HEO-Cu has a higher dielectric constant (Figure 8a), indicating the enhanced
dielectric loss behavior, which is believed to play a dominant role in the EM absorption
and loss process. Furthermore, the HEO-Cu sample has a residual CuO phase, which
can not only increase the consecutiveness and transmission of electrons but also provide
abundant interfaces that may improve the interfacial polarization. Besides, Cu element is
a diamagnetic substance [58], which would strengthen the internal magnetic field rather
than shield the external magnetic field, thus increasing the magnetic loss.

The microstructure of wave-absorbing materials also plays a key role in the absorbing
properties. In the present work, the 3D porous structure not only reduces the density
of EMAs but also exhibits multiple advantages for improving wave absorption perfor-
mances [59]. Firstly, the porous structure can reduce the dielectric constants, which is
conducive to optimizing the impedance matching and thus enables more EM waves into
the absorber. Soon afterward, the EMA could absorb more EM waves instead of reflection,
due to the repeated reflecting and scattering of the incident microwaves in the internal
empty pores. Secondly, the polarization centers, pores or cracks are beneficial to space
charge polarization. Hence, in a porous structure, the remaining air can be used as the
effective medium to produce significant relaxation loss in alternating EM field [60]. Finally,
the porous structure with multitudinous chemical constituents provides the 3D conductive
network and has a positive effect on broadening the absorption band. Most importantly,
the present HE spinel ferrites show high structure thermostability, and thus charge car-
riers could be motivated at high temperatures, thereby benefitting the wave-absorbing
process. Therefore, the porous HE spinel ferrite seems to be a good candidate to serve as a
high-temperature wave-absorbing material.
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3. Material and Methods
3.1. Raw Materials and Reagents

The raw materials of Fe2O3 (Ferric sesquioxide), Co3O4 (Cobalt (II, III) oxide), NiO
(Nickel oxide), Cr2O3 (Chromium sesquioxide), ZnO (Zinc oxide), CuO (Cupric oxide),
MnO (Manganese (II) oxide) were purchased from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China). CH3CH2OH (Anhydrous ethanol) was purchased from Aladdin
Biochemical Technology Co. Ltd. (Shanghai, China). All chemical reagents used in this
work were of analytical grade, and deionized water was used throughout this study.

3.2. Preparation Process

All the ferrites of (FeCoNiCrM)xOy (M = Zn, Cu, and Mn) were prepared by solid-state
reaction. Taking (FeCoNiCrMn)xOy as an example, the synthesis process is described in
detail as follows, which is also presented in the schematic drawing of Figure 12. Firstly,
the oxides of 0.03 M Fe2O3, 0.06 M NiO, 0.02 M Co3O4, 0.03 M Cr2O3, and 0.06 M MnO
were mixed with 50 mL anhydrous ethanol and then put into a mill pot. The ball-milling
proceeded for 24 h in order to obtain the homogeneous oxide mixture. Subsequently, the
mixture was dried in an oven and ground for 10 min to get black powders. Finally, the
powders were heated to 800 ◦C in a furnace for 30 min, and afterward, the powders were
taken out from the furnace and repeatedly ground for 10 min.

3.3. Characterization

The structures of as-prepared ferrites were conducted by X-ray diffraction (XRD) with
Cu Kα radiation. The microstructure analyses were characterized by field-emission scan-
ning electron microscopy (FSEM, Apreo S HiVac), coupled with energy-dispersive X-ray
spectroscopy (EDS). The valence state and binding energy were determined by X-ray pho-
toelectron spectroscopy (XPS, AXIS SUPRA+). The magnetic properties were measured by
Vibrating Sample Magnetometer (VSM, Oxford 1 Tesla). The thermostability was analyzed
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by TG curves, performed by STA 449C Jupiter differential scanning calorimeter (DSC) at a
heating rate of 10 K/min, through the services from Sci-go Instrument Testing Platform.
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3.4. EM Parameter Measurement

The microwave absorbing properties were analyzed by a Vector Network Analyzer
(VNA, Advantest type R3770) in the frequency range of 2.0–18.0 GHz. After mixing with
paraffin, the HE spinel ferrites were pressed into a ring tube. The height, outer diameter, and
inner diameter of the pipe are approximately 2.00 mm, 7.00 mm and 3.04 mm, respectively.
The mass ratio of ferrite powders to paraffin is about 1:1. Based on the coaxial method, EM
parameters (εr and µr) of the mixture were obtained on a vector network analyzer (VNA,
Agilent N5222A). The RL values were calculated according to Formulas (7) and (8) [56]:

Zin = Z0
√

µr/εrtan h[j(2π f d/c)
√

µrεr] (7)

RL(dB) = 20log|(Zin − Z0)/(Zin + Z0)| (8)

where εr and µr are the complex permittivity and permeability, d is the thickness of the
sample, f is the frequency, c is the speed of light in a vacuum, and Z0 and Zin are the free
space impedance and input impedance, respectively.

4. Conclusions

In this work, HE spinel ferrite powders of (FeCoNiCrM)xOy (M = Zn, Cu, and Mn)
were synthesized by the simple solid-phase reaction at 800 ◦C for 30 min. These HE ferrite
powders exhibit the uniform distribution of chemical components with almost the same
atomic mole proportion and homogeneous 3D submicron porous structure with a pore
diameter in a range of tens to hundreds of nanometers. The TG measurements show
that the present HE spinel ferrites have ultrahigh structural stability although increasing
the temperature up to 800 ◦C, the mass change is still very small (less than 1.0%). The
performance measurements show that the present HE spinel ferrites possess considerable
RLmin and significantly enhanced EAB. The RLmin and EAB values of HEO-Zn and HEO-
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Mn samples are about −27.8 dB at 15.7 GHz, 6.8 GHz, and −25.5 dB at 12.9 GHz, 6.9 GHz,
with a matched thickness of 8.6 and 9.8 mm, respectively. Especially, the RLmin value of
HEO-Cu is −27.3 dB at 13.3 GHz with a matched thickness of 9.1 mm, and notably, the
EAB reaches about 7.5 GHz (10.5–18.0 GHz), which covers almost the whole X-band range.
The mechanism analyses indicate that the superior absorbing properties of HEO-Cu are
primarily attributed to the dielectric energy loss involving interface polarization and dipolar
polarization, and the magnetic energy loss referring to eddy current and natural resonance
loss. Besides, the porous structure can optimize the impedance matching, strengthen
space charge polarization, and provide a 3D conductive network, thus benefiting the wave
absorption performances. These results manifest the potential application prospect of the
porous HE spinel ferrites in the EM wave absorption field.
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