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Abstract: Short peptides containing the Arg-Gly-Asp (RGD) fragment can selectively bind to integrins
on the surface of tumor cells and are attractive transport molecules for the targeted delivery of
therapeutic and diagnostic agents to tumors (for example, glioblastoma). We have demonstrated the
possibility of obtaining the N- and C-protected RGD peptide containing 3-amino-closo-carborane and
a glutaric acid residue as a linker fragment. The resulting carboranyl derivatives of the protected
RGD peptide are of interest as starting compounds in the synthesis of unprotected or selectively
protected peptides, as well as building blocks for preparation of boron-containing derivatives of the
RGD peptide of a more complex structure.

Keywords: 3-amino-1,2-dicarba-closo-dodecaborane; RGD peptide; linker fragment; protecting groups

1. Introduction

The search for efficient pharmaceuticals for the diagnostics and treatment of tumor
diseases is one of the most urgent problems of medicinal chemistry. Currently, molecular
vectors—namely, short peptides, antibodies, aptamers, and other compounds that provide
targeted delivery of the functional part of the molecule—are widely used in the constructs
of targeted therapy agents. The mechanism of their selective accumulation is based on the
interaction of the vector with a target molecule, typically a receptor protein located on the
surface of tumor cells.

Today, the RGD peptide (L-arginyl-glycyl-L-aspartic acid, Arg-Gly-Asp) and struc-
turally similar peptides (Figure 1) are widely used as molecular vectors in the drug design
of targeted agents for the diagnostics and therapy of tumor diseases [1–6]. The RGD amino
acid sequence has a tropism for cell adhesion proteins, integrins, which are particularly
overexpressed in tumor cells (namely, αvβ3 and αvβ5 integrins). Integrin inhibitors rep-
resent an important class of agents for the treatment of tumors, macular degeneration,
acute coronary syndrome, and other diseases [7,8]. Among the derivatives and analogs
of the RGD peptide, a number of integrin inhibitors have been found [9,10]. Cilengitide,
a selective inhibitor of αvβ3 and αvβ5 integrins proposed for the treatment of recurrent
glioblastoma [11,12], has not passed phase III clinical trials because of insufficient pharma-
cokinetic parameters [13]. At the same time, studies of a number of other integrin inhibitors
related to the RGD peptide are currently ongoing [14–17].

Based on the RGD peptide, a wide range of conjugates containing isotopic [18–22], fluo-
rescent [23–26], or magnetic contrast labels [27–29], residues of cytostatic molecules [30–34],
as well as agents for photodynamic therapy [35–38] have been synthesized. For efficient
binding of the RGD peptide-based compounds to integrins (for example, on the surface
of tumor cells), it is preferrable that the guanidine fragment of arginine and the carboxyl
group of aspartic acid remain unsubstituted [39].
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One of the emerging approaches to tumor treatment is boron neutron capture therapy
(BNCT). This method is based on the ability of the 10B isotope to interact with thermal
neutrons with the emission of 4He and 7Li nuclei, which locally damage cells containing
boron compounds [40–42]. A crucial condition for the application of BNCT is the selec-
tive accumulation of boron-containing molecules by tumor cells. The design of low-toxic
boron-containing tumor-targeting compounds is an urgent task of modern medicinal chem-
istry [43–46]. An important group of potential boron delivery agents are derivatives of
1,2-dicarba-closo-dodecaborane (carborane), the molecule of which contains ten boron atoms
and can be modified using various functional groups. Certain properties of carboranes
such as stability under physiological conditions and low toxicity make them unique phar-
macophores for the design of new biomimetics [47–49]. Carborane conjugates with natural
amino acids and peptides are of particular interest from the point of view of drug design
of BNCT agents, as well as theranostic agents [50]. In particular, carborane-containing
derivatives of the c(RGDfK) peptide have been used for adhesion of cells expressing the
αvβ3 integrin receptors [51], as well as for boron delivery to tumor cells [52,53]. The boron-
containing conjugate of the cyclic RGD peptide was able to selectively accumulate in murine
SCCVII carcinoma cells but was highly toxic [53]. Boron-containing nanoparticles contain-
ing FITC-labeled RGD-K peptide residues [54] or internalizing RGD fragments [55,56] were
selectively accumulated by ALTC1S1 glioma, GL261 glioma, and A549 adenocarcinoma
cells. Modification of the sodium dodecaborate-loaded liposomes by c(RGDfK) [57,58] and
c(RGDyC) [59] peptides made it possible to achieve their binding to human umbilical cord
endothelial cells. The fact that RGD-functionalized closo-dodecaborate albumin conjugates
are capable of accumulating in U87 MG xenografts has recently demonstrated the efficacy
of BNCT in in vivo experiments [60]. The c(RGDfK) peptide-based theranostic agent con-
taining both a dodecaborane residue and 67Ga and 125I isotope labels was highly stable and
capable of accumulating in U87 MG glioblastoma cells [61].

Recently, we have demonstrated the possibility of obtaining carborane-containing
derivatives and analogs of natural amino acids as a result of modifications of protected
amino acids using classical methods of peptide chemistry (formation of an amide bond,
selective introduction and removal of N- and C-protecting groups) [62–67].

The purpose of this work was to synthesize new N- and C-protected derivatives of the
RGD peptide containing a closo-carborane residue linked to the arginine α-amino group
via a short linker (compounds 1a–c, Scheme 1). We used a glutaric acid residue as a linker,
which makes it possible to obtain conjugates of the RGD peptide with readily available
3-amino-ortho-carborane with a high boron content. The choice of protecting groups was
due to the possibility of either selective deblocking of the guanidino group in the arginine
residue and carboxyl groups in the aspartate residue (compound 2a), or removal of all
protecting groups in one step (compounds 2b,c).
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Scheme 1. Synthetic routes to protected closo-carboranyl RGD peptide derivatives 1a–c.

2. Results and Discussion

We have carried out a comparative study of three synthetic routes for closo-carboranyl
derivatives of the RGD peptide involving the use of different protecting groups.

The synthesis of peptides 1a,b was carried out starting from dimethyl and di-
tert-butyl esters 2a and 2b, which we had previously obtained, containing a 2,2,4,6,7-
pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) group in the arginine side chain and
a glutaryl fragment at the arginine α-amino group [68–70]. The protecting groups of
compounds 1a and 2a can be removed selectively: ester groups by alkaline hydrol-
ysis; and the Pbf group by the action of an acid, for example, TFA. Removal of the
three protecting groups in compounds 1b and 2b can be carried out in one step, by
acid treatment.

To obtain conjugate 1c, it was necessary to synthesize a glutaryl derivative 2c of the
protected RGD peptide containing a nitro group in the guanidine fragment and two benzyl
ester groups, which can be simultaneously removed by hydrogenolysis. The synthesis of
derivatives of the RGD peptide containing benzyl aspartate and a nitro group protecting
the side chain of arginine has been described in the literature; however, information on the
physicochemical characteristics of intermediate compounds is fragmentary [71–76].

We synthesized glutaryl derivative 2c starting from dibenzyl (S)-aspartate (3) (Scheme 2).
Coupling of amino ester 3 to N-Boc-glycine using N,N′-dicyclohexylcarbodiimide (DCC) as a
coupling agent in the presence of N-hydroxysuccinimide (HOSu) and subsequent treatment
of protected dipeptide 4 with hydrochloric acid in methanol led to amino ester 5 in moderate
yield after chromatographic purification. Coupling of compound 5 to Nα-Boc-Nω-nitro-(S)-
arginine in the presence of TBTU gave the protected tripeptide 6. Removal of the Boc group of
compound 6 under acidic conditions and subsequent treatment of tripeptide 7 with glutaric
anhydride gave compound 2c containing a free carboxyl group.

At each stage of the synthesis of glutaryl tripeptide 2c, the formation of side products
was observed, so in order to obtain pure compounds 2c, 4–7, it was necessary to perform
chromatographic purification. It is known that peptides containing an aspartic acid residue,
including those in the RGD fragment, are prone to degradation, isomerization, and epimer-
ization [77–81]. In our case, the total yield of compound 2c (Scheme 2) was only 9.2%
relative to the starting amino ester 3. At the same time, the total yields of peptides 2a and
2b obtained from dimethyl and di-tert-butyl (S)-aspartates were about 20% [69].
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Scheme 2. Synthesis of compound 2c. (a) N-Boc-Gly-OH, HOSu, DIPEA, DCC, CH2Cl2, rt, 24 h;
(b) HCl conc., MeOH, rt, 15 min; (c) N-Boc-Arg(NO2)-OH, DIPEA, TBTU, CH2Cl2, rt, 20 h; (d) glutaric
anhydride, DIPEA, CH2Cl2, rt, 20 h.

Coupling of compounds 2a–c to 3-amino-ortho-carborane (8) by the mixed anhydride
method in the presence of ethyl chloroformate led to protected carboranyl peptides 1a–c in
moderate yields (Scheme 3). Attempts to implement an alternative approach consisting in
the acylation of amine 8 with glutaric anhydride followed by coupling to peptide 7 failed
because of the low nucleophilicity of 3-aminocarborane.
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Scheme 3. Synthesis of protected RGD peptide conjugates 1a–c. (a) 2a–c, EtOCOCl, NMM, CH2Cl2,
−5 ◦C to rt, 16 h.

Conjugates 1a–c are colorless crystalline compounds that are stable during storage.
Their 1H NMR spectra contain characteristic signals of the 3-aminocarborane protons:
singlets at δ 8.21–8.25 ppm (amino group) and δ 5.05–5.06 ppm (two CH groups in the
cluster) as well as wide multiplets at δ 1.1–2.6 ppm (9 BH groups). The ratio of the integral
intensities of the signals of boron atoms in the 11B NMR spectra of peptides 1a–c is 4:1:2:3
and corresponds to the symmetrical structure of 3-substituted closo-carborane.

To remove protecting groups in compounds 1a–c, rather mild conditions are usually
suitable, in which, as a rule, cleavage of peptide bonds or degradation of the closo-carborane
residue do not occur. Thus, these derivatives can be considered as convenient starting
compounds for further modifications.

3. Conclusions

Thus, we synthesized several protected derivatives of the RGD peptide containing
3-amino-closo-carborane and glutaryl residue as a linker. The structural motif of the RGD
peptide can be considered as a basis for the synthesis of potential boron delivery agents
for BNCT; at the same time, the preparation of compounds of this group requires careful
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selection of reaction conditions. The derivatives obtained by us differ in the structure of the
protecting groups; their removal can be carried out both in one stage (by hydrogenolysis
or acidic treatment) and separately. This opens up prospects for further modification
of the peptide fragment and the synthesis of carborane-containing peptides of a more
complex structure.

4. Materials and Methods

Dimethyl (S,S)-(Nα-4-carboxybutanoyl-Nω-Pbf-arginyl)-glycyl-aspartate (2a) [69], di-
tert-butyl (S,S)-(Nα-4-carboxybutanoyl-Nω-Pbf-arginyl)-glycyl-aspartate (2b) [69], diben-
zyl (S)-aspartate 4-toluenesulfonate (3) [82], and 3-amino-1,2-dicarba-closo-dodecaborane
(8) [83] were obtained according to known procedures. Other reagents were commercially
available and were purchased from Alfa Aesar (Heysham, UK). Solvents were purified ac-
cording to traditional methods [84] and used freshly distilled. Melting points were obtained
on a SMP3 apparatus (Barloworld Scientific, Staffordshire, UK). Optical rotations were
measured on a Perkin Elmer M341 polarimeter (Perkin Elmer, Waltham, MA, USA). The
1H, 11B, and 13C NMR spectra were recorded on a Bruker Avance 500 instrument (Bruker,
Karlsruhe, Germany) with operating frequencies of 500, 160, and 126 MHz, respectively,
at ambient temperature using TMS as an internal standard and BF3·Et2O as an external
standard. The NMR spectra of the compounds were obtained; see the Supplementary Mate-
rials, Figures S1–S19. CHN-Elemental analysis was performed using a Perkin Elmer 2400 II
analyzer (Perkin Elmer, Waltham, MA, USA). Analytical TLC was performed using Sorbfil
plates (Imid, Krasnodar, Russia). Flash column chromatography was performed using
Silica gel 60 (230–400 mesh) (Alfa Aesar, Heysham, UK). The high-resolution mass spectra
were obtained using a Bruker maXis Impact HD mass spectrometer (Bruker, Karlsruhe,
Germany), with electrospray ionization at atmospheric pressure in positive or negative
mode, with direct sample inlet (4 L/min flow rate). Analytical reversed-phase HPLC was
carried out with an Agilent 1100 instrument (Agilent Technologies, Santa Clara, CA, USA)
using a Kromasil 100-5-C18 column (Nouryon, Göteborg, Sweden) thermostated at 35 ◦C,
with detection at 230 nm (compounds 1b, 1c, 2c, 4, 6, and 7) or 254 nm (compound 1a), and
a 0.8 mL/min flow rate; the mobile phases are indicated in each specific case. For the HPLC
data for compounds 4, 6, 7, 2c, and 1a–c, see the Supplementary Materials, Figures S20–S26.

Dibenzyl N-Boc-glycyl-(S)-aspartate (4). DCC (0.48 g, 2.33 mmol) and DIPEA (1.22 mL,
6.98 mmol) were added to a solution of N-Boc-glycine (0.41 g, 2.33 mmol), dibenzyl (S)-
aspartate 4-toluenesulfonate (3) (1.13 g, 2.33 mmol) and N-hydroxysuccinimide (0.13 g, 1.16
mmol) in CH2Cl2 (10 mL). The reaction mixture was stirred at room temperature for 24 h, and
then filtered. The filtrate was successively washed with 10% citric acid solution (2 × 8 mL),
saturated aqueous NaCl solution (2 × 8 mL), 5% aqueous NaHCO3 solution (2 × 8 mL), and
saturated aqueous NaCl solution (8 mL). The organic layer was dried over Na2SO4 and
evaporated to dryness under reduced pressure. The residue was purified by flash column
chromatography (eluent benzene–EtOAc from 8:2 to 6:4). Yield, 0.79 g (73%). Colorless
powder; m.p., 56 ◦C. [α]D

20 + 9.9 (c 1.0, CHCl3). TLC (benzene–EtOAc 3:1): Rf, 0.44. RP-HPLC
(MeCN–H2O 1:1, 230 nm): τ, 4.7 min. 1H NMR (DMSO-d6) (major conformer) δ (ppm): 1.38 (s,
9H, tBu), 2.80 (dd, J = 16.6, 6.8 Hz, H-3B Asp), 2.90 (dd, J = 16.6, 6.2 Hz, H-3A Asp), 3.55–3.57
(m, 2H, 2×H-2 Gly), 4.74–4.79 (m, H-2 Asp), 5.07 (s, 2H, Bn), 5.09 (s, 2H, Bn), 6.99 (t, J = 6.1 Hz,
1H, NH Gly), 7.31–7.37 (m, 10H, Ar), 8.35 (d, J = 8.0 Hz, 1H, NH Asp). 13C NMR (DMSO-d6)
(major conformer) δ (ppm): 28.1 (3C), 35.8, 42.9, 48.5, 65.8, 66.2, 78.0, 127.6 (2C), 127.9 (2C), 128.0
(2C), 128.4 (2C), 128.4 (2C), 135.6, 135.7, 155.7, 169.4, 169.8, 170.3. Calcd (%) for C25H30N2O7:
C, 63.82; H, 6.43; N, 5.95. Found (%): C, 63.89; H, 6.47; N, 5.99. HRMS (ESI) (m/z) [M+H]+:
calcd for [C25H31N2O7]+: 471.2126; found: 471.2127.

Dibenzyl N-Glycyl-(S)-aspartate Hydrochloride (5). Concentrated HCl (2.0 mL,
24.0 mmol) was added to a solution of compound 4 (1.13 g, 2.4 mmol) in MeOH (10 mL).
The reaction mixture was stirred at room temperature for 15 min, then evaporated to dry-
ness under reduced pressure. The residue was purified by flash column chromatography
on silica gel (eluent CHCl3–EtOH from 100:0 to 1:1). Yield, 0.34 g (51%). Yellowish oil.
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[α]D
20 +5.9 (c 1.0, CHCl3). TLC (CHCl3–EtOH 3:1): Rf, 0.69. 1H NMR (DMSO-d6) (major

conformer) δ (ppm): 2.88 (dd, J = 16.8, 6.8 Hz, H-3B Asp), 2.93 (dd, J = 16.8, 5.7 Hz, H-3A
Asp), 3.56–3.65 (m, 2H, H-2 Gly), 4.82–4.86 (m, H-2 Asp), 5.09 (s, 2H, Bn), 5.12 (s, 2H, Bn),
7.31–7.40 (m, 10H, Ar), 8.09 (s, 3H, NH3

+), 9.00 (d, J = 7.9 Hz, 1H, NH Asp). 13C NMR
(DMSO-d6) (major conformer) δ (ppm): 35.7, 43.7, 48.6, 66.0, 66.5, 127.8 (2C), 128.0 (2C),
128.1 (2C), 128.4 (4C), 135.6, 135.7, 166.4, 169.7, 170.0. HRMS (ESI) (m/z) [M+H]+: calcd for
[C20H23N2O5]+: 371.1602; found: 371.1604.

Dibenzyl (S,S)-(Nα-Boc-Nω-nitroarginyl)-glycyl-aspartate (6). TBTU (0.45 g,
1.41 mmol) and DIPEA (1.46 mL, 4.36 mmol) were added to a solution of amino ester
hydrochloride 5 (0.57 g, 1.41 mmol) and Nα-Boc-Nω-nitro-(S)-arginine (0.45 g, 1.41 mmol)
in CH2Cl2 (20 mL). The reaction mixture was stirred at room temperature for 20 h then
successively washed with 10% citric acid solution (2 × 15 mL), saturated aqueous NaCl
solution (2 × 15 mL), 5% aqueous NaHCO3 solution (2 × 15 mL) and saturated aqueous
NaCl solution (10 mL). The organic layer was dried over Na2SO4 and evaporated to dryness
under reduced pressure. The residue was purified by flash column chromatography on
silica gel (eluent CHCl3–EtOH from 10:0 to 8:2). Yield, 0.65 g (69%). Colorless powder; m.p.,
112 ◦C (lit. m.p.: 98–99 ◦C [85], 99–102 ◦C [70]). [α]D

20 +4.0 (c 1.0, CHCl3). TLC (CHCl3–
EtOH 3:1): Rf, 0.49. RP-HPLC (MeCN–H2O–AcOH 80:20:0.0025, 230 nm): τ, 4.2 min. 1H
NMR (DMSO-d6) (major conformer) δ (ppm): 1.37 (s, 9H, tBu), 1.43–1.59 (m, 3H, H-3B and
2×H-4 Arg), 1.59–1.71 (m, 1H, H-3A Arg), 2.79 (dd, J = 16.6, 6.8 Hz, H-3B Asp), 2.90 (dd,
J = 16.3, 6.4 Hz, H-3A Asp), 3.07–3.17 (m, 2H, 2×H-5 Arg), 3.71 (dd, J = 16.8, 5.6 Hz, 1H,
H-2A Gly), 3.76 (dd, J = 16.8, 5.7 Hz, 1H, H-2A Gly), 3.91–3.95 (m, 1H, H-2 Arg), 4.74–4.78
(m, H-2 Asp), 5.07 (s, 2H, Bn), 5.09 (s, 2H, Bn), 6.96 (d, J = 7.8 Hz, 1H, NαH Arg), 7.31–7.38
(m, 10H, Ar), 7.55–8.25 (br. s, 2H, 2×NωH Arg), 8.07 (dd, J = 5.7, 5.6 Hz, 1H, NH Gly),
8.42 (d, J = 7.9 Hz, 1H, NH Asp), 8.44–8.54 (br. s, 1H, NωH Arg). 13C NMR (DMSO-d6)
δ (ppm): 24.6, 28.2 (3C), 29.1, 35.8, 40.0, 41.6, 48.6, 53.9, 65.9, 66.3, 78.2, 127.7 (2C), 127.9
(2C), 128.0 (2C), 128.4 (4C), 135.7, 135.8, 155.4, 159.3, 168.8, 169.7, 170.3, 172.2. Calcd (%)
for C31H41N7O10: C, 55.43; H, 6.15; N, 14.60. Found (%): C, 55.07; H, 6.26; N, 14.77. HRMS
(ESI) (m/z) [M+H]+: calcd for [C31H42N7O10]+: 672.2988; found: 672.2983.

Dibenzyl (S,S)-(Nω-Nitroarginyl)-glycyl-aspartate Hydrochloride (7). Concentrated
HCl (0.50 mL, 5.95 mmol) was added to a solution of compound 6 (0.20 g, 0.30 mmol) in
MeOH (5 mL). The reaction mixture was stirred at room temperature for 15 min, then
evaporated to dryness under reduced pressure. The residue was purified by flash column
chromatography on silica gel (eluent CHCl3–EtOH from 10:0 to 3:7). Yield, 0.12 g (65%).
Yellowish powder; m.p., 61–64 ◦C. [α]D

20 +17.6 (c 1.0, CHCl3). TLC (CHCl3–EtOH 3:1):
Rf, 0.28. RP-HPLC (MeCN–H2O–CF3CO2H 70:30:0.01, 230 nm): τ, 5.1 min. 1H NMR
(DMSO-d6) δ (ppm): 1.47–1.61 (m, 2H, 2×H-4 Arg), 1.67–1.77 (m, 2H, 2×H-3 Arg), 2.82 (dd,
J = 16.6, 7.0 Hz, H-3B Asp), 2.91 (dd, J = 16.6, 6.1 Hz, H-3A Asp), 3.18 (br. s, 2H, 2×H-5
Arg), 3.82–3.88 (m, 2H, 2×H-2 Gly and H-2 Arg), 4.76–4.80 (m, H-2 Asp), 5.08 (s, 2H, Bn),
5.10 (s, 2H, Bn), 7.31–7.38 (m, 10H, Ar), 7.68–8.23 (br. s, 2H, NH2Arg), 8.14 (s, 3H, NH3

+),
8.47–8.63 (br. s, 1H, NH Arg), 8.65 (d, J = 7.9 Hz, 1H, NH Asp), 8.72 (t, J = 5.3 Hz, 1H, NH
Gly). 13C NMR (DMSO-d6) δ (ppm): 24.4, 31.1, 35.8, 40.3, 41.5, 48.5, 53.6, 65.9, 66.3, 127.6
(2C), 127.9 (2C), 128.0 (2C), 128.4 (4C), 135.6, 135.7, 159.2, 168.8, 169.7, 170.3, 173.9. Calcd
(%) for C26H33N7O8×1.5HCl: C, 49.86; H, 5.55; N, 15.66; Cl, 8.49. Found (%): C, 49.41; H,
5.54; N, 15.64; Cl, 8.24. HRMS (ESI) (m/z) [M+H]+: calcd for [C26H34N7O8]+: 572.2464;
found: 572.2462.

Dibenzyl (S,S)-(Nα-Glutaryl-Nω-nitroarginyl)-glycyl-aspartate (2c). A solution of
compound 7 (0.30 g, 0.49 mmol), glutaric anhydride (0.056 g, 0.49 mmol) and DIPEA
(0.13 mL, 0.74 mmol) in CH2Cl2 (5 mL) was stirred at room temperature for 20 h, then
evaporated to dryness under reduced pressure. The residue was purified by flash column
chromatography on silica gel (eluent CHCl3–EtOH from 9:1 to 3:7). Yield, 0.185 g (55%).
Colorless powder; m.p., 103–108 ◦C. [α]D

20 −1.7 (c 1.0, EtOH). TLC (CHCl3–EtOH 1:1): Rf,
0.49. RP-HPLC (MeCN–H2O–AcOH 60:40:0.005, 230 nm): τ, 6.6 min. 1H NMR (DMSO-d6)
δ (ppm): 1.41–1.58 (m, 3H, H-3B and 2×H-4 Arg), 1.62–1.74 (m, 3H, CH2 glutaryl and H-3A
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Arg), 2.14–2.20 (m, 4H, 2×CH2 glutaryl), 2.80 (dd, J = 16.6, 6.9 Hz, H-3B Asp), 2.90 (dd,
J = 16.6, 6.3 Hz, H-3A Asp), 3.14 (br. s, 2H, 2×H-5 Arg), 3.71 (dd, J = 16.9, 5.7 Hz, 1H, H-2B
Gly), 3.75 (dd, J = 16.9, 5.7 Hz, 1H, H-2A Gly), 4.19–4.23 (m, 1H, H-2 Arg), 4.74–4.78 (m,
H-2 Asp), 5.07 (s, 2H, Bn), 5.09 (s, 2H, Bn), 7.31–7.38 (m, 10H, Ar), 8.16 (br. s, 2H, 2×NωH
Arg), 8.07 (d, J = 7.3 Hz, 1H, NH Asp), 8.24 (t, J = 5.7 Hz, 1H, NH Gly), 8.38 (d, J = 6.9 Hz,
1H, NαH Arg), 8.51 (br. s, 1H, NωH Arg), 12.03 (s, 1H, CO2H). 13C NMR (DMSO-d6) δ
(ppm): 20.6, 24.7, 28.9, 33.0, 34.2, 35.8, 40.2, 41.6, 48.5, 52.4, 65.9, 66.3, 127.7 (2C), 127.9 (2C),
128.0 (2C), 128.4 (4C), 135.7, 135.8, 159.3, 168.8, 169.7, 170.3, 172.0, 172.1, 174.2. Calcd (%)
for C31H39N7O11: C, 54.30; H, 5.73; N, 14.30. Found (%): C, 53.94; H, 5.65; N, 13.99. HRMS
(ESI) (m/z) [M−H]−: calcd for [C31H38N7O11]−: 684.2684; found 684.2685.

General Procedure for the Synthesis of Carboranylaminoglutaryl Tripeptides 1a–c.
Ethyl chloroformate (63 µL, 0.66 mmol) was added to a cold (−10 ◦C) solution of an appro-
priate compound 2a, 2b or 2c (0.66 mmol) and N-methylmorpholine (145 µL, 1.32 mmol) in
CH2Cl2 (10 mL). The mixture was stirred at −10 ◦C for 15 min; then, 3-aminocarborane (8)
(0.11 g, 0.66 mmol) was added. The reaction mixture was stirred at room temperature for
16 h, then successively washed with 10% citric acid solution (2× 8 mL), saturated aqueous
NaCl solution (2 × 8 mL), 5% aqueous NaHCO3 solution (2 × 8 mL) and saturated aqueous
NaCl solution (8 mL). The organic layer was dried over Na2SO4 and evaporated to dryness
under reduced pressure. The residue was purified by flash column chromatography (eluent
CHCl3–EtOH from 10:0 to 8:2).

Dimethyl (S,S)-{Nα-[4-(1,2-Dicarba-closo-dodecaboran-3-yl)aminocarbonylbutanoyl]-
Nω-Pbf-arginyl}-glycyl-aspartate (1a). Yield, 0.28 g (48%). Colorless powder; m.p., 120–122 ◦C.
[α]D

20 +7.0 (c 0.9, CHCl3). TLC (CHCl3–EtOH 7:1): Rf, 0.7. RP-HPLC (MeCN–H2O 1:1, 254 nm):
τ, 8.2 min. 1H NMR (DMSO-d6) (major conformer) δ (ppm): 1.1–2.6 (br. m, 9H, 9×BH), 1.36–1.50
(m, 2H, 2×H-4 Arg), 1.41 (s, 6H, Pbf), 1.59–1.72 (m, 2H, CH2 glutaryl and 2×H-3 Arg), 2.01
(s, 3H, Pbf), 2.14 (t, J = 7.5 Hz, 2H, CH2 glutaryl), 2.19 (t, J = 7.4 Hz, 2H, CH2 glutaryl), 2.42
(s, 3H, Pbf), 2.48 (s, 3H, Pbf), 2.72 (dd, J = 16.6, 6.9 Hz, H-3B Asp), 2.80 (dd, J = 16.6, 6.2 Hz,
H-3A Asp), 2.96 (s, 2H, Pbf), 3.00–3.04 (m, 2H, 2×H-5 Arg), 3.60 (s, 3H, CO2Me), 3.62 (s, 3H,
CO2Me), 3.66–3.77 (m, 2H, 2×H-2 Gly), 4.17–4.21 (m, 1H, H-2 Arg), 4.65–4.69 (m, H-2 Asp), 5.06
(s, 2H, CH carborane), 6.37 (br. s, 1H, NωH Arg), 6.56–7.12 (br. m, 2H, 2×NωH Arg), 7.99 (d,
J = 7.6 Hz, 1H, NαH Arg), 8.22 (t, J = 5.9 Hz, 1H, NH Gly), 8.23 (s, 1H, NH carborane), 8.28 (d,
J = 7.8 Hz, 1H, NH Asp). 11B NMR (DMSO-d6) δ (ppm): −15.0 (br. s, 3B),−13.43 (2B),−10.69
(1B),−5.51 (4B). 13C NMR (DMSO-d6) (major conformer) δ (ppm): 12.2, 17.5, 18.8, 20.8, 25.4, 28.2
(2C), 29.0, 34.2, 35.6, 35.9, 41.5, 41.6, 42.4, 48.3, 51.6, 52.1, 57.1 (2C), 59.8, 86.2, 116.2, 124.2, 131.4,
134.1, 137.2, 156.0, 157.4, 168.6, 168.7, 170.2, 170.9, 172.0, 176.2. HRMS (ESI) (m/z) [M+H]+: calcd
for [C34H59

11B10N7O11S]+: 884.5044; found: 884.5045.
Di-tert-butyl (S,S)-{Nα-[4-(1,2-Dicarba-closo-dodecaboran-3-yl)aminocarbonylbutanoyl]-

Nω-Pbf-arginyl}-glycyl-aspartate (1b). Yield, 0.31 g (49%). Colorless powder; m.p., 126 ◦C.
[α]D

20 +5.5 (c 1.0, CHCl3). TLC (CHCl3–EtOH 7:1): Rf, 0.71. RP-HPLC (MeCN–H2O–AcOH
40:60:0.0025, 230 nm): τ, 2.4 min. 1H NMR (DMSO-d6) (major conformer) δ (ppm): 1.1–2.6 (br. m,
9H, 9×BH), 1.32–1.51 (m, 2H, 2×H-4 Arg), 1.380 (s, 9H, tBu), 1.384 (s, 9H, tBu), 1.41 (s, 6H, Pbf),
1.58–1.66 (m, 1H, H-3B Arg), 1.66–1.76 (m, 3H, CH2 glutaryl and H-3A Arg), 2.01 (s, 3H, Pbf),
2.12–2.16 (m, 2H, CH2 glutaryl), 2.19 (t, J = 7.6 Hz, 2H, CH2 glutaryl), 2.42 (s, 3H, Pbf), 2.47 (s, 3H,
Pbf), 2.54 (dd, J = 16.3, 6.9 Hz, H-3B Asp), 2.64 (dd, J = 16.3, 6.1 Hz, H-3A Asp), 2.96 (s, 2H, Pbf),
3.00–3.04 (m, 2H, 2×H-5 Arg), 3.68–3.74 (m, 2H, 2×H-2 Gly), 4.16–4.24 (m, 1H, H-2 Arg), 4.47–4.52
(m, H-2 Asp), 5.06 (s, 2H, CH carborane), 6.18–7.28 (m, 3H, 3×NωH Arg), 7.98 (d, J = 7.5 Hz, 1H,
NαH Arg), 8.13 (d, J = 8.0 Hz, 1H, NH Asp), 8.20 (t, J = 6.2 Hz, 1H, NH Gly), 8.23 (s, 1H, NH
carborane). 11B NMR (DMSO-d6) δ (ppm): −15.0 (br. s, 3B),−13.46 (2B),−10.69 (1B),−5.52 (4B).
13C NMR (DMSO-d6) (major conformer) δ (ppm): 12.2, 17.5, 18.8, 20.8, 25.4, 27.5 (3C), 27.6 (3C), 28.2
(2C), 29.1, 34.2, 35.9, 37.1, 40.0 (overlapped by DMSO-d6 signal), 41.6, 42.4, 49.1, 52.3, 57.0 (2C), 80.4,
80.9, 86.2, 116.2, 124.2, 131.4, 134.1, 137.2, 156.0, 157.4, 168.5, 169.0, 169.5, 171.9, 172.0, 176.2. Calcd
(%) for C40H71B10N7O11S: C, 49.72; H, 7.41; N, 10.15. Found (%): C, 49.65; H, 7.30; N, 9.98. HRMS
(ESI) (m/z) [M+H]+: calcd for [C40H72

11B10N7O11S]+: 968.5988; found: 968.5972.
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Dibenzyl (S,S)-{Nα-[4-(1,2-Dicarba-closo-dodecaboran-3-yl)aminocarbonylbutanoyl]-
Nω-nitroarginyl}-glycyl-aspartate (1c). Yield, 0.23 g (43%). Colorless powder; m.p., 94–98 ◦C.
[α]D

20 +2.0 (c 1.0, CHCl3). TLC (CHCl3–EtOH 7:1): Rf, 0.44. RP-HPLC (MeCN–0.06 M
phosphate buffer solution (pH 7.0) 8:2, 230 nm): τ, 20.9 min. 1H NMR (DMSO-d6) (major
conformer) δ (ppm): 1.2–2.6 (br. s, 9H, 9×BH), 1.42–1.57 (m, 3H, 2×H-4 and H-3B Arg),
1.62–1.75 (m, 3H, CH2 glutaryl and H-3A Arg), 2.13–2.19 (m, 4H, 2×CH2 glutaryl), 2.81 (dd,
J = 16.6, 6.9 Hz, H-3B Asp), 2.90 (dd, J = 16.6, 6.3 Hz, H-3A Asp), 3.08–3.18 (m, 2H, 2×H-5
Arg), 3.68–3.78 (m, 2H, 2×H-2 Gly), 4.19–4.26 (m, 1H, H-2 Arg), 4.74–4.79 (m, H-2 Asp), 5.05 (s,
2H, 2×CH carborane), 5.07 (s, 2H, Bn), 5.09 (s, 2H, Bn), 7.31–7.38 (m, 10H, Ar), 7.52–8.30 (br. s,
2H, 2×NωH Arg), 8.01 (d, J = 7.5 Hz, 1H, NαH Arg), 8.23 (m, 2H, NH carborane and NH Gly),
8.41 (d, J = 7.9 Hz, 1H, NH Asp), 8.51 (br. s, 1H, NωH Arg). 11B NMR (DMSO-d6) δ (ppm):
−15.0 (br. s, 3B),−13.42 (2B), −10.67 (1B), −5.51 (4B). 13C NMR (DMSO-d6) (major conformer)
δ (ppm): 20.9, 24.7 (br. s), 29.0, 34.2, 35.7, 35.9, 40.2, 41.5, 48.5, 52.2, 57.1 (2C), 65.8, 66.3, 127.6
(2C), 127.8 (2C), 127.9, 128.0, 128.3 (4C), 135.6, 135.8, 159.2, 168.8, 169.6, 170.2, 171.9, 172.1,
176.2. HRMS (ESI) (m/z) [M+H]+: calcd for [C33H51

11B10N8O10]+: 829.4699; found: 829.4694.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28083467/s1, Figures S1–S19: 1H, 11B, and 13C NMR spectra
of compounds 4–7, 2c, and 1a–c; Figures S20–S26: HPLC data for compounds 4, 6, 7, 2c, and 1a–c.
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