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Abstract: Electronic properties and absorption spectra are the grounds to investigate molecular elec-
tronic states and their interactions with the environment. Modeling and computations are required for
the molecular understanding and design strategies of photo-active materials and sensors. However,
the interpretation of such properties demands expensive computations and dealing with the interplay
of electronic excited states with the conformational freedom of the chromophores in complex matrices
(i.e., solvents, biomolecules, crystals) at finite temperature. Computational protocols combining
time dependent density functional theory and ab initio molecular dynamics (MD) have become
very powerful in this field, although they require still a large number of computations for a detailed
reproduction of electronic properties, such as band shapes. Besides the ongoing research in more
traditional computational chemistry fields, data analysis and machine learning methods have been
increasingly employed as complementary approaches for efficient data exploration, prediction and
model development, starting from the data resulting from MD simulations and electronic structure
calculations. In this work, dataset reduction capabilities by unsupervised clustering techniques
applied to MD trajectories are proposed and tested for the ab initio modeling of electronic absorption
spectra of two challenging case studies: a non-covalent charge-transfer dimer and a ruthenium com-
plex in solution at room temperature. The K-medoids clustering technique is applied and is proven
to be able to reduce by ∼100 times the total cost of excited state calculations on an MD sampling with
no loss in the accuracy and it also provides an easier understanding of the representative structures
(medoids) to be analyzed on the molecular scale.

Keywords: density functional theory; machine learning; computations of optical spectra; molecular
dynamics; clustering techniques

1. Introduction

Photo-induced phenomena and optical properties are the grounds to investigate elec-
tronic states and their interactions with the environment [1–22]. Experimental spectra can
be interpreted via computational approaches at the molecular scale, understanding the
microscopic characteristics that determine the position, width and shape of absorption
bands [23–34]. However, a number of challenges remain open and mainly concern the mod-
eling of either floppy molecules or non-covalent complexes in solution. Ideal approaches
to deal with the complexity of the conformational freedom have to ensure an adequate
sampling of the phase space of the potential energy surface (PES) at a given temperature,
since such systems cannot be easily described by minimum energy structures as starting
points for subsequent more computationally expensive calculations required to compute
electronic transitions and excited state properties [34–36]. Molecular dynamics (MD) is
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the perfect technique for this goal since it can simultaneously describe the conformational
freedom and the complexity of the environment (i.e., explicit solvent models) and can
guarantee a satisfactory sampling of the phase space of the PES for selecting the initial
states of the electronic transitions. On these bases, it is possible to reproduce the thermal
fluctuations in a classical manner and simulate the shape of the electronic spectrum by
classically considering the spreading of the vertical transitions of a representative sample
of snapshots of the MD trajectory [37–39].

An accurate description of the electronic layout of a system is very important for the
excited state properties and optical absorption. The electronic state separation, and the
resulting UV-Vis absorption, strongly depend on the reference structure(s), indeed. A very
detailed description of the PES ruling the system dynamics is demanded when standard
force fields cannot by easily used, i.e., with non-covalent charge-transfer complexes [40–48],
metal compounds or usually when the electronic density reorganization is involved during
the time, even in the ground state. This is usually quite common also when an environment
reorganization is involved as well. Since parameterized force fields cannot account for
explicit electronic effects, an explicit treatment of electronic degrees of freedom is mandatory
via ab initio methods. However, when reasonable large systems (≥1000 atoms) are studied,
accurate wavefunction-based methods cannot be employed due to their high computational
cost (above all, for excited state properties), although some progress has been recently
achieved using graphical processing units [49] and localization procedures [50,51]. Thus,
density functional theory (DFT) and time dependent (TD-) DFT, the latter required for
excited state quantities, are usually chosen as a good compromise between accuracy and
computational costs [10,52–62].

Besides canonical computational chemistry fields, data analysis and machine learning
(ML) methods have been increasingly employed as complementary approaches for an
efficient data exploration, prediction and model development, starting from experimen-
tal data (structure, properties, reactivity) or from MD simulations and electronic struc-
ture calculations [63–76]. In particular, MD simulations often produce very big datasets
(i.e., the collected trajectory in the phase-space), especially for long simulation times and
extended systems, which can be difficult to manually inspect. Automated ML data analysis
techniques thus can offer a valuable and efficient option to extract the significant and “phys-
ical” information from MD trajectories. In particular, unsupervised ML methods, such as
clustering analysis, are able to partition a dataset according to similarities in some features
space, employing only the input values and not requiring any output ones supplied by the
user. Clustering proved a valuable tool for MD simulation analysis, allowing one to reduce
the high number of sampled structures into a few representative ones, approximating
conformational energy minima [77–92].

The simulation of electronic band-shapes at finite temperature through an MD sam-
pling potentially requires hundreds of excited state calculations. Therefore, alternative
routes such as the selection of a small number of representative frames could both reduce
the computational cost of spectra calculations and simplify their interpretation [78,82].
In this work, dataset reduction capabilities via clustering techniques applied to MD tra-
jectories in specifically tailored feature spaces were tested in the simulation of electronic
absorption spectra of two model compounds. In particular, spectra computed only from
the clusters’ representative frames showed a remarkable reproduction of the main spec-
tral features if compared to spectra from a uniform sampling of frames of the trajectory
(a subset of ∼500 structures). This approach also allowed an easier interpretation of the
calculated bands, which could result from many states close in energy but differing for
their spatial properties.

Dataset reduction capabilities via unsupervised clustering techniques applied to MD
trajectories are proposed and tested for the ab initio modeling of electronic absorption spec-
tra of two challenging case studies. The first investigated model system is a prototypical
π-stacked non-covalent dimer in dichloromethane (DCM) solvent (see Figure 1, left panel),
consisting of an electron donor (1-chloronaphthalene, 1ClN) and an electron acceptor
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(tetracyanoethylene, TCNE). This represents a challenging case study with respect to evalu-
ating the performance of ML clustering techniques in reproducing its electronic/optical
properties, considering that the potential energy surface of weakly bound systems, ruled
by dispersive intermolecular forces, is quite flat and numerous isoenergetic orientational
isomers can be present in the solution. The TCNE:π:1ClN dimer has been thoroughly
investigated in recent years by means of Femtosecond Stimulated Raman Spectroscopy [93]
and through electronic structure methods for the detailed characterization of the ground
state properties [35] and to unveil the nuclear relaxation upon photoexcitation downhill
from the Franck–Condon region of the first charge-transfer state [34,94]. The second system
is instead a Ru(II) complex, [Ru(dcbpy)2(NCS)2]4− (dcbpy = 4,4′-dicarboxy-2,2′-bipyridine)
in water solution, also called “N34−” (Figure 1, right panel), which is a popular example
of Ru-based dye sensitizers for solar cells and light-harvesting applications [95–97]. Light
absorption by N34− in the visible region induced excitation to a dense manifold of metal-
to-ligand charge-transfer (1MLCT) states. N34− photo-physical behavior is characterized
by an ultrafast relaxation pathway among the singlet and triplet manifolds, induced by a
complex interplay between closely spaced coupled electronic states, nuclear motion and
solvent rearrangement [98–105], potentially influencing the dynamics and efficiency of the
electron injection into a semiconductor substrate [106–110]. The N34− complex, both for its
dense 1MLCT manifold and its conformational dynamics in the solution [111], represents
therefore another ideal model system for testing an efficient MD/ML clustering approach
for the simulation of electronic spectra including finite-temperature effects.

Figure 1. Case studies investigated in the present work. The TCNE:π:1ClN non-covalent dimer
and Ru(II) complex ([Ru(dcbpy)2(NCS)2]4− or “N34−”, dcbpy = 4,4′-dicarboxy-2,2′-bipyridine) are
presented from left to right, respectively (Carbon is in gray, Hydrogen in white, Chlorine in green,
Sulphur in yellow, Oxygen in red, Nitrogen in blue, Ruthenium in pink).

2. Results and Discussion
2.1. The TCNE:π:1ClN Case Study

The massive amount of data acquired during an MD simulation requires analyses
that are capable of going beyond the visual inspection of snapshots and average structures.
In this regard, the statistical analysis of the trajectories through the calculation of the
distribution functions represents an advantageous choice with respect to taking into account
conformational dynamics, solute–solvent interactions and so on. In Figure 2, a three-
dimensional spatial distribution function (SDF) [112,113] is presented, computed along the
10 ps-long AIMD trajectory by considering the 1ClN as reference molecule (for which a
local three points coordinate system was defined) and the center of the mass of the TCNE
unit. From the SDF, it is observed that the TCNE remains on the same side of the ClN and
slips on both rings during the exploration of the ground state PES, proving the presence of
different mutual configurations and distances due to the weak Coulombic interactions that
rule the π-stacked arrangement.
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Figure 2. Side, front and top views of the spatial distribution function of the center-of-mass of the
TCNE acceptor monomer around the 1ClN subunit.

According to the procedure presented in Section 3.2, the MD trajectory clustering thus
yielded, for the TCNE:π:1ClN case study, five medoids (each one is representative of the
corresponding cluster), characteristic of the accessible conformational space, in agreement
with the SDF previously discussed. The clustering structural feature values shown by the
five medoids, namely the rotation angle (θr) and the rotation axis (n̂r) of the two subunits
molecular planes and the position vector between the two geometric centers (~rN−E), are
collected in Table 1 (see also Section 3.2 for features definitions). A detailed analysis of
medoid structural features reveals that they do not significantly differ in the rotation angle
θr between the two TCNE and 1ClN planes (values within a small range, ∼5 degrees),
but mainly in the planes’ relative orientation, as suggested by clearly different n̂r axis
components and secondarily in the TCNE-1ClN relative position. A closer inspection of
the rotation axis n̂r components for medoids 2 and 4 reveals that they differ along the x-
and z-axes (see Table 1), while for medoids 3 and 5 only the component along the z-axis
is reoriented for these latter. Additionally, analyzing the five medoids obtained from the
clustering approach (side view presented in the right panel of Figure 3), considerable
geometric deformations are present and the relative position of the molecular planes is
also different. In order to acquire a visual representation of such clustering, the trajectory
was projected onto the subspace of the features’ first two principal components (PCs;
please refer to Section 3.3 for technical details). A clear cluster separation was obtained,
with each medoid representing a different portion of the conformational space (see Figure 4).
The partial superposition of cluster 5 with cluster 3 in the principal components subspace
is only an artifact (being instead separated in the full space) due to the reduced variance
explained by the first two PCs (∼55.5% of the total variance).

Table 1. Clustering feature values of the five cluster medoids from TCNE:π:1ClN trajectory. θr:
rotation angle (angle between versors normal to the two molecular planes, degrees), n̂r: rotation axis
(versor normal to the former ones),~rN−E: relative position vector (between 1ClN and TCNE geometric
centers). Vector quantities are given as cartesian components (Å) in a fixed frame of reference.

Medoid θr nr,x nr,y nr,z rN−E,x rN−E,y rN−E,z

1 16.68 −0.660 0.398 0.638 1.513 2.847 2.190
2 14.60 −0.816 0.141 0.561 2.604 1.673 1.852
3 19.36 0.723 −0.407 −0.558 1.543 2.444 2.276
4 15.19 0.714 0.021 −0.699 2.666 1.773 1.736
5 16.27 0.112 −0.736 0.668 1.833 2.401 2.436
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Figure 3. Structures of the five cluster medoids in top (left panel) and side (right panel) views.
The TCNE and 1ClN are represented as ball and stick in blue and red, respectively. The color code is
uniform with that of Figure 4.

Figure 4. TCNE:π:1ClN trajectory in the features’ first two principal components space. Cluster
partition is represented through different colors. Cluster medoids are also highlighted (as star
symbols). The color scheme adopted is kept fixed throughout this section.

From Figure 3, the found medoids overall show pairwise structural similarities (see
2–4 and 3–5) if observed in a top-down direction; see Table 1 for a more quantitative evalu-
ation. The conformational flexibility of the TCNE:1ClN π-stacked complex, which is due to
the weak dispersion forces, is thus fully captured with the trajectory clustering approach.

The UV-Vis spectrum comprising the first low-lying singlet states computed for each
medoid within linear response TD-DFT formalism is reported in Figure 5. The estimation
of the whole electronic spectrum (red curve) was obtained according to Equation (5)
and the procedure explained in Section 3.4. A comprehensive analysis of the electronic
spectrum has been recently provided by some of the authors in Ref. [35]. On the other
hand, we report a detailed summary of the characterization of the transitions towards
the S1 and S2 excited states in Table 2. We recall that the weaker electronic transitions
below 4.00 eV have a charge transfer (CT) nature (for S1 and S2 see ωCT charge transfer
descriptor parameter in Table 2). Conversely, the very bright ones are characterized by
electronic density reorganization occurring in the same molecular unit, hence they are
of a local excitation (LE) character. For medoid 1, the TCNE is located on an edge of the
1ClN ring and it mainly contributes to the absorption bands above 2.50 eV (see light green
curve in Figure 5), while for the S0–S1 electronic transition at 1.807 eV characterized by a
strong CT nature (ωCT = 0.968) the probability is negligible, f = 0.002. For medoids 2
and 4, the TCNE lies on the ring bearing the chlorine atom and they share roughly the
same electronic properties in terms of transition probability and energy range (see orange
and magenta curves in Figure 5, respectively). Both show absorption bands in all regions



Molecules 2023, 28, 3411 6 of 20

of the spectrum. In this case, the first two states S1 and S2 of both medoids contribute,
respectively, to the bands at ∼2.00 and 2.80 eV. Also in these cases, the S1 and S2 states are
characterized by a strong charge transfer nature as can be easily deduced from the values
of the ωCT descriptor close to unity, reported in Table 2. In medoids 3 and 5, the TCNE is
placed on the unfunctionalized six-membered ring of the 1ClN and we observe that the
electronic properties show considerable differences. The electronic features of medoid 3
(violet curve in Figure 5) cover the entire spectral range considered, 1.50–5.00 eV, while only
high energy electronic transitions (>3.50 eV) are bright for medoid 5 (dark green curve in
Figure 5).

Figure 5. TCNE:π:1ClN absorption spectrum (in eV) calculated at TD-CAM-B3LYP/6-31G(d,p)/
GD3/C-PCM(DCM) level of theory from each medoid and as the sum spectrum of the structures
representative of the conformational equilibrium in the ground state. The color code is presented
in the graph legend. The sum spectrum (red dashed curve) was obtained as the sum of individual
medoid contributions (presented in the figure as well, see color legend), each one already multiplied
by the k-th cluster population. See Equation (5) and the procedure explained in Section 3.4 for
more details.

Comparing the spectrum from the five medoids to that from the complete MD sam-
pling, an excellent agreement is observed (Figure 6, top panel). The experimental optical
spectrum profile in solution (Figure 6, bottom panel) shows two distinct absorption bands
with maxima centered at 408 nm (3.04 eV) and 537 nm (2.31 eV), as well as the calculated
spectrum. In particular, the first calculated band at ∼2.00 eV has contributions from the
S1 states of representative frames 4, 2 and 3, each having, in turn, a clear 1ClN→ TCNE
charge-transfer character. Analogously, the second band at ∼2.80 eV appears constituted
by the S2 CT states of medoids 1, 4, 3 and 2.

Table 2. Characterization of S1 and S2 excited states of TCNE:π:1ClN cluster medoids. νi (eV): vertical
excitation energy, fi: oscillator strength (arb. units), ΩAB: transition density population analysis for
A (hole) and B (electron) fragments, ωCT: charge transfer descriptor (please refer to Section 3.4 for
definitions). Fragment labels: E: TCNE, N: 1ClN.

Medoid νi fi ΩEE ΩEN ΩNE ΩNN ωCT

1 S1 1.807 0.002 0.014 0.000 0.968 0.018 0.968
S2 2.973 0.035 0.016 0.000 0.965 0.018 0.966

2 S1 2.003 0.052 0.031 0.001 0.943 0.025 0.944
S2 2.835 0.014 0.018 0.001 0.955 0.027 0.955

3 S1 1.928 0.026 0.019 0.000 0.963 0.017 0.963
S2 2.713 0.009 0.018 0.000 0.963 0.018 0.964

4 S1 2.063 0.067 0.031 0.001 0.938 0.030 0.939
S2 2.863 0.013 0.014 0.000 0.953 0.032 0.954

5 S1 2.084 0.005 0.009 0.000 0.980 0.012 0.980
S2 2.994 0.005 0.017 0.000 0.971 0.012 0.971
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Figure 6. Top panel: comparison of TCNE:π:1ClN simulated absorption spectra in the 1.50–3.50 eV
range. Bottom panel: experimental UV-Vis spectrum, retrieved from Ref. [93], of the TCNE:π:1ClN
complex measured in DCM solution (molar absorptivity, ε). The color code is presented in the
graph legend.

Such a case study proves the clustering technique to be an efficient way to estimate
the electronic spectrum at finite temperature, avoiding excited state calculations on a
large number of frames (for TCNE:π:1ClN model system, a 100-fold decrease in total
computational cost). Moreover, the medoid excited state characterization (Table 2) allows
one to perform a more accurate spectral assignment of the absorption bands. This further
confirms that the cluster medoids, taken as representative frames, can efficiently resume
the collected conformational dynamics.

2.2. The N34− Case Study

The N34− dynamics at room temperature in water solution is characterized, on the one
hand, by the rigidity of the dcbpy ligands, due to the chelation to the Ru center and, on the
other hand, by the flexibility of the NCS− ligands, exploring conical-shaped regions (please
see Figure 1, right panel, to recall the system under investigation). The vibrational dynam-
ics induce therefore instantaneous deviations from the ideal C2 symmetry, which could
improve the transition probability of otherwise dark excited states [111]. The clustering
procedure applied to the collected N34− trajectory suggested a partition into seven distinct
clusters. Projection into the two-dimensional principal component subspace (actually ac-
counting for 56.9% of the total variance) shows indeed a quite clear separation between
the clusters and the medoids representing them (Figure 7). Again, the observed partial
superposition could be a spurious effect of data visualization through a low-dimensional
PCA. According to the feature values shown by the cluster medoids, these representa-
tive structures (reported in Figure 8) actually seem to capture both the conformational
(torsional) freedom of the coordinated NCS− ligands (φ1 and φ2 torsional angles) and the
different degrees of asymmetry sampled by the N34− dynamics (Table 3, please refer also to
Section 3.2 for N34− features definitions). In particular, the values of continuous symmetry
measure of deviation from C2 symmetry (C2-CSM, Section 3.2) most sampled by the MD
trajectory (distribution maxima at 0.09, 0.17, 0.22, 0.31, Figure 9) are close to the values by
the cluster medoids, further confirming the representation capabilities of the latter.
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Figure 7. N34− trajectory in the features’ first two principal components subspace. Cluster partition
is represented through different colors. Cluster medoids are also highlighted (as star symbols).

Medoid 1 Medoid 2 Medoid 3 Medoid 4

Figure 8. Structures of the N34− seven cluster medoids. The atoms determining the features employed
for clustering analysis are highlighted as ball and stick. The color code is uniform with that of Figure 7.

Table 3. Clustering feature values of the seven cluster medoids from N34− trajectory. φ1: C(NCS1)-
N(NCS1)-Ru-N(dcbpy) dihedral angle (degrees), φ2: C(NCS2)-N(NCS2)-Ru-N(dcbpy) dihedral angle
(degrees), C2-CSM: continuous symmetry measure for deviation from C2 symmetry.

Medoid φ1 φ2 C2-CSM

1 −30.77 5.57 0.176
2 −54.10 107.01 0.172
3 −143.43 140.61 0.219
4 52.26 −131.41 0.174
5 69.09 83.05 0.215
6 −127.10 40.02 0.116
7 107.85 −137.07 0.352
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Figure 9. Distribution of C2-CSM symmetry deviation parameter from N34− trajectory in water
solution. Values of the medoid structures from trajectory clustering analysis are also shown as vertical
bars (with arbitrary heights). The color code is uniform with that of Figure 7.

Electronic absorption spectra of transition metal complexes are determined by several,
closely spaced, excited states, differing in their spatial properties (i.e., metal and ligand-
localized transitions, metal-to-ligand (ML) and ligand-to-metal (LM) charge-transfer (CT)
transitions). From a practical point of view, this implies the computation (and characteriza-
tion) of a high number of excited states with some level of theory to simulate the spectrum
in a given energy range. Therefore, a clustering analysis performed on an MD trajectory
(and so reducing the complete configuration dataset to a few, representative, structures)
potentially appears even more convenient for the simulation and the interpretation of
transition metal complex electronic spectra including finite-temperature effects.

The N34− electronic spectrum was simulated up to ∼3.7 eV, comprising the two
experimentally characterized bands at ∼2.50 and ∼3.36 eV [114]. The spectra calculated for
each cluster medoid actually slightly differ in the absorption band positions (energies) and
intensities, since the medoids represent different regions of the accessible conformational
space (Figure 10). In particular, the spectrum obtained from the only seven representa-
tive frames can actually quite well reproduce that from the complete MD sampling at
T = 298 K in water solution (Figure 11), although with an increased sub-structure, due to
the lower number of frames involved in the spectrum calculation. The selection of represen-
tative frames through a clustering analysis allowed one therefore to achieve a remarkable
∼70-fold decrease in the total computational cost for N34− electronic spectrum simulation.

Figure 10. N34− absorption spectra (in eV) calculated at TD-B3LYP/C-PCM/def2-SVP/SDD(Ru)
level of theory from each medoid, weighted by the population of the corresponding cluster and the
spectrum resulting from the sum over the medoids (red dashed curve). The color code is presented in
the graph legend. See Equation (5) and the procedure explained in Section 3.4 for more details.
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Figure 11. Top panel: comparison of N34− simulated absorption spectra in the 1.50–4.00 eV range.
Bottom panel: experimental N34− UV-Vis spectrum, retrieved from Ref. [114], measured in water
solution. The color code is presented in the graph legend.

Especially for transition metal complexes, the observed absorption bands can each be
the result of many close transitions. Dataset reduction through a clustering analysis allowed
an accurate N34− spectral characterization, which could be otherwise difficult to perform.
In particular, the calculated band at 2.07 eV (Figure 11) results from medoid 1 S2, medoid
2 S2, medoid 7 S1, medoid 6 S1 and medoid 5 S2 states, which are mainly Ru→(dcbpy)2
(ΩRP ≈ 0.55, ΩSP ≈ 0.25, Table 4) CT states. Analogously, medoid 6 S5, medoid 7 S5,
medoid 2 S6, medoid 1 S5 and medoid 3 S5, with similar metal-to-ligand charge-transfer
(MLCT) spatial features, contribute to the more intense calculated band at 2.39 eV. The
higher-energy bands are characterized instead by a less homogeneous set of excited states.
In fact, the calculated band at 3.23 eV results from medoid 2 S8, medoid 7 S13 Ru→(dcbpy)2
states (ΩRP ≈ 0.55, ΩSP ≈ 0.25, Table 4), medoid 2 S18 Ru→(dcbpy)2 state, but with an
increased dcbpy localized-excitation character (ΩRP ≈ 0.40, ΩPP ≈ 0.30), medoid 4 S15
Ru→(dcbpy)2 state, with increased (NCS)2 donor contribution (ΩRP ≈ 0.50, ΩSP ≈ 0.40)
and medoid 7 S19 state, which is mainly an (NCS)2→(dcbpy)2 CT state (ΩSP ≈ 0.40,
ΩRP ≈ 0.30). The close calculated 3.38 eV band has instead a quite different average
character. In fact, the contributing medoid 1 S40 state is mostly an (NCS)2→(dcbpy)2 CT
state (ΩSP ≈ 0.60), medoid 2 S37 and medoid 5 S33 states have an increased localized
character (ΩSP ≈ 0.40, ΩPP ≈ 0.30), while medoid 3 S21 and medoid 6 S34 are localized
excitations on dcbpy ligands (ΩPP ≈ 0.60 and ≈ 0.50, respectively).

Table 4. Characterization of the excited states of N34− cluster medoids most contributing to the
calculated absorption bands. νi (eV): vertical excitation energy, fi: oscillator strength, ΩAB: transition
density population analysis for A (hole) and B (electron) fragments, ωCT: charge transfer descriptor
(please refer to Section 3.4 for definitions). Fragment labels: S: (NCS)2, R: Ru, P: (dcbpy)2.

Medoid νi fi ΩSP ΩRP ΩPP ωCT

1 S2 2.097 0.029 0.269 0.566 0.113 0.858
S5 2.342 0.086 0.284 0.542 0.119 0.851
S40 3.556 0.056 0.578 0.235 0.127 0.851

2 S2 2.083 0.026 0.235 0.580 0.111 0.846
S6 2.569 0.079 0.323 0.507 0.103 0.862
S8 2.840 0.055 0.275 0.536 0.114 0.843
S18 3.237 0.046 0.265 0.422 0.271 0.713
S37 3.498 0.063 0.401 0.219 0.310 0.662

3 S5 2.536 0.118 0.294 0.545 0.108 0.862
S21 3.389 0.043 0.133 0.215 0.583 0.391
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Table 4. Cont.

Medoid νi fi ΩSP ΩRP ΩPP ωCT

4 S15 2.983 0.056 0.366 0.511 0.087 0.894
5 S2 2.114 0.022 0.276 0.572 0.086 0.876

S33 3.454 0.057 0.373 0.277 0.289 0.693
6 S1 2.041 0.025 0.242 0.627 0.093 0.884

S5 2.433 0.141 0.267 0.570 0.109 0.859
S34 3.472 0.030 0.335 0.099 0.521 0.469

7 S1 1.935 0.029 0.249 0.575 0.136 0.842
S5 2.316 0.101 0.267 0.551 0.121 0.844
S13 3.022 0.056 0.278 0.553 0.148 0.840
S19 3.165 0.059 0.427 0.312 0.212 0.773

3. Materials and Methods
3.1. Ab Initio Molecular Dynamics

The conformational flexibility of the TCNE:π:1ClN and N34− model systems were
sampled through ab initio molecular dynamics simulations. In particular, the Atom-
centered Density Matrix Propagation (ADMP) method was employed: the density matrix
in an orthonormalized atomic basis is included in an extended Lagrangian as an additional
degree of freedom and propagated together with the nuclear degrees, avoiding a self-
consistent procedure at each step [115–119].

The TCNE:π:1ClN ground state trajectory was collected for 10 ps with a 0.2 fs time step,
at the B3LYP/6-31G(d,p) [120–122] level of theory [35,94]. Temperature was kept at 298 K,
through a velocity rescaling every 1 ps. Dichloromethane solvent effects were included
through the conductor-like polarizable continuum model (C-PCM) [123–128]. Moreover,
due to the π-stacked, non-covalent nature of the TCNE:1ClN complex, dispersion forces
had to be modeled, employing Grimme’s correcting potential (GD3) [129–134].

The N34− system was simulated instead for 8.6 ps with a 0.1 fs time step [111]. A ve-
locity rescaling every 1 ps allowed to keep a 298 K temperature. Explicit water solvation
was included in the N34− ground state sampling, in order to better model the specific
solute–solvent interactions at the several solvation sites. A 22 Å-radius spherical sol-
vent box (∼1500 molecules) was extracted from a pre-equilibrated cubic one and placed
around N34−. A hybrid quantum mechanics/molecular mechanics potential was employed:
B3LYP/def2-SVP [135] for the QM portion (the N34− molecule) with associated electronic
core potential for the Ru atom [136] and the TIP3P water model [137] for the MM part (the
water spherical box), re-parametrized to allow a bending motion [11]. The QM and MM
potentials were combined through the ONIOM QM/MM scheme [138–140], including the
MM charges into the QM hamiltonian (i.e., an “electronic embedding”). General AMBER
Force Field [141] atom types (and so van der Waals non-bonding parameters) were assigned,
moreover, to N34− atoms. Non-periodic boundary conditions were introduced through a
hybrid explicit/implicit solvent model. Long-range electrostatic effects and short-range
dispersion–repulsion forces between the explicit and the bulk solvent were, respectively,
modeled through C-PCM self-reaction field and an empirical confining potential, which
has to be parametrized for the specific solvent model [10,124,142–144]. We refer the reader
to previous works for more details about the ab initio molecular dynamics simulations of
the model systems and the employed potentials [34,94,111].

3.2. Feature Selection and Clustering of Molecular Dynamics Trajectories

Due to its large dimensions, it is often useful to transform the original dataset of
the collected, N-frames long, trajectory (the configurations, i.e., the positions of each of
the Nat atoms in the system, at each time step) into a matrix X ∈ RN×d, representing the
data in some d-dimensional (d� 3Nat) feature space, different from the coordinate space.
The chosen features should adequately describe the properties of interest, without much
loss of information [77]. Internal coordinates, such as bonds, angles and dihedrals or more
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specifically tailored parameters, according to the problem under study, can be employed
as features.

In particular, the TCNE:π:1ClN trajectory was transformed into a feature space able to
describe the orientation of the two molecular planes and the relative position of the two
molecules, comprising the angle ([0, 180◦]) between the versors normal to the TCNE and
ClN planes, the versor representing the axis of rotation of the two planes (i.e., the versor
orthogonal to the former ones) and the relative position vector (i.e., the vector between the
two geometric centers). For N34−, instead, a continuous symmetry measure of deviation
from the ideal C2 symmetry [145–147], calculated as the minimized root-mean-square
deviation from the images generated through the C2 symmetry operations, was considered.
In particular, C2-CSM was evaluated on the smallest subset of N34− atoms showing
a symmetry not higher than C2, as the complete molecule. Since the non-linearity of
the NCS− coordination in the water solution (C(NCS)-N(NCS)-Ru angle less than 180◦)
and their torsional mobility were previously recognized [111], the C(NCS)-N(NCS)-Ru-
N(dcbpy) dihedrals describing the NCS− orientations were also included. In this regard,
to avoid problems due to the periodicity around ±180◦, each dihedral φ was included as a
(cos(φ), sin(φ)) pair to keep a metric feature space [148]. The MD datasets in the feature
space X were standardized (i.e., shifted to zero mean and scaled to unit variance) before
following analyses.

Clustering machine learning techniques allow one to partition a dataset, grouping sim-
ilar instances according to a similarity measure, such as a metric (for instance, Euclidean) in
the feature space [149]. Instances within a cluster should be similar to each other and differ-
ent from those belonging to the other clusters. In K-Means [150] and K-Medoids [151–153]
approaches, for a given number K of clusters, K cluster centers are obtained. The feature
space is partitioned (tessellated) by assigning each instance to the closest center. The latter
are found by minimization of a loss function, defined as the sum of the squared distances
between each instance and the cluster center to which it is assigned:

L(ck) =
N

∑
i
‖xi − ck‖2 (1)

where xi belongs to the cluster k, ck is the corresponding center in the feature space and N
is the number of “observations” (trajectory frames). While in the K-Means algorithm the
cluster center is the mean of the cluster members and so does not have to correspond to any
instance xi of the dataset, in the K-Medoids approach it is forced to be some xi, such that
the sum of the squared distances from the cluster members is the lowest (like a median).

MD trajectories of TCNE:π:1ClN and N34− model systems in their respective feature
spaces were clusterized with the K-Medoids algorithm [152], since the cluster medoids,
which are representative of the corresponding clusters, are trajectory frames themselves
and, compared to K-Means centroids, should be less sensitive to possible outliers [151].

The optimal number of clusters K was chosen searching for an “elbow” (i.e., a slope
change) in the plot of the inertia parameter (i.e., the minimized value of Equation (1)) as
a function of K and evaluating the Calinski–Harabasz index [154], which is the ratio of
between-cluster and within-cluster dispersions, being higher for a better clusterization into
compact and separated clusters.

3.3. Dimensionality Reduction for MD Data Visualization

Principal component analysis (PCA) [155] is a popular dimensionality reduction
technique. For some centered (i.e., zero-mean) data matrix X, its principal components vj
are the eigenvectors of its covariance matrix C:

C =
1
N

XTX Cvj = λjvj (2)
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It can be shown that v1 (the eigenvector corresponding to the largest eigenvalue λ1) is
the direction along which the variance of the data is highest, v2 is the direction of highest
variance in the subspace orthogonal to v1, etc., while the eigenvalues λj are the variance of
the data along each vj. Projection of the data on the subspace of the first dr ≤ d principal
components can be performed via the following:

V =
(
v1 . . . vdr

)
Xr = XV (3)

where ∑dr
j λj is the variance retained in the PC subspace.

PCA dimensionality reduction (dr = 2) of TCNE:π:1ClN and N34− trajectories was
performed only for data visualization purposes on two-dimensional plots and not as a
pre-processing step for clustering analysis. In fact, the dimensionalities of their respective
feature spaces (Section 3.2) are actually quite small, likely not involving any “curse of
dimensionality” issues.

3.4. Excited State Characterization and Spectra Simulations

TCNE:π:1ClN and N34− excited states were computed with the linear-response TD-DFT
approach at CAM-B3LYP/GD3/C-PCM(DCM)/6-31+G(d,p) and B3LYP/C-PCM(water)/def2-
SVP/SDD(Ru) levels of theory, respectively. Electronic spectra in the solution at T = 298 K
were simulated on 500 frame subsets of the collected MD samplings (i.e., every 20 fs
and 17.2 fs, respectively). The first 8 and 40 singlet excited states were calculated for
TCNE:π:1ClN and N34−, respectively. The complete spectra were obtained by summation
of Gaussian-shaped contributions over each frame and each calculated excited state:

Sli(ν) = fli e−
1
2

(
ν−νli

σ

)2

S(ν) =
Nfr

∑
l

Nst

∑
i

Sli(ν) (4)

where fli and νli are the oscillator strength and excitation energy of the i-th state of l-th
frame and σ is a width parameter, set at σ2 = 0.001 eV2. Spectra estimated from the only
cluster medoids were similarly calculated:

S(ν) =
K

∑
k

pk

Nst

∑
i

Ski(ν) (5)

where K is the number of clusters and pk is the k-th cluster population.
Cluster medoid excited states were further characterized by fragment-based transition

density Löwdin population analysis and related charge transfer descriptors, calculated
with the TheoDORE package [156,157]:

ΩAB = ∑
µ∈A

∑
ν∈B

(
S1/2D0iS1/2)2

µν
(6)

ωCT =
∑A,B 6=A ΩAB

∑A,B ΩAB
(7)

where A and B are two molecular fragments and D0i is the transition density matrix for the
Si ← S0 excitation.

Ab initio molecular dynamics simulations and excited state calculations were per-
formed with the Gaussian16 software package [158].

4. Conclusions

Unsupervised clustering methods have been employed as complementary approaches
for an efficient exploration of the data resulting from MD simulations and electronic struc-
ture calculations. In this work, MD dataset reduction capabilities via unsupervised cluster-
ing techniques were applied for the ab initio modeling of electronic absorption spectra of
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the non-covalent charge-transfer TCNE:π:1ClN dimer and the [Ru(dcbpy)2(NCS)2]4− com-
plex in solution at room temperature. Cluster medoids, taken as representative structures,
were found and analyzed in terms of main structural parameters, principal component dy-
namics, electronic excitations and charge transfer indices, showing how such medoids can
satisfactorily cover the system dynamics and optical properties with a very good agreement
with experiments.

The simulation of electronic absorption spectra usually demands expensive computa-
tions and requires dealing with the interplay of electronic excited states with the conforma-
tional freedom of the chromophores in complex matrices (i.e., solvents, biomolecules, crys-
tals) at finite temperature. This work highlights the power of the unsupervised K-medoid
clustering technique combined with a tailored selection of the feature space in reducing
by ∼100 times the total cost of electronic and optical property computations on an MD
sampling with no loss of accuracy and in preserving the molecular interpretation via the
cluster medoids. In this regard, it could be very interesting to study how the medoids and
the several conformational minima are related and this is a subject for further spectroscopic
and weighting scheme developments.
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154. Caliński, T.; Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 1974, 3, 1–27. [CrossRef]
155. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Phil. Trans. R. Soc. A 2016, 374, 20150202.

[CrossRef] [PubMed]
156. Plasser, F. TheoDORE: A toolbox for a detailed and automated analysis of electronic excited state computations. J. Chem. Phys.

2020, 152, 084108. [CrossRef] [PubMed]
157. Plasser, F.; Lischka, H. Analysis of Excitonic and Charge Transfer Interactions from Quantum Chemical Calculations. J. Chem.

Theory Comput. 2012, 8, 2777–2789. [CrossRef] [PubMed]
158. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.;

Nakatsuji, H.; et al. Gaussian 16 Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1021/ct301081n
http://www.ncbi.nlm.nih.gov/pubmed/26587619
http://dx.doi.org/10.1002/anie.200705157
http://www.ncbi.nlm.nih.gov/pubmed/18350534
http://dx.doi.org/10.1039/b508541a
http://www.ncbi.nlm.nih.gov/pubmed/16240044
http://dx.doi.org/10.1007/BF01114537
http://dx.doi.org/10.1063/1.445869
http://dx.doi.org/10.1021/jp962071j
http://dx.doi.org/10.1021/ct050289g
http://dx.doi.org/10.1021/cr5004419
http://dx.doi.org/10.1002/jcc.20035
http://dx.doi.org/10.1016/j.cplett.2009.10.069
http://dx.doi.org/10.1016/j.cplett.2006.02.051
http://dx.doi.org/10.1007/s00214-006-0216-z
http://dx.doi.org/10.1021/ja00046a033
http://dx.doi.org/10.1002/jcc.20772
http://dx.doi.org/10.1002/jcc.20990
http://dx.doi.org/10.1002/prot.20310
http://dx.doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.21105/joss.04183
http://dx.doi.org/10.1016/j.is.2021.101804
https://doi.org/10.1080/03610927408827101
http://dx.doi.org/10.1098/rsta.2015.0202
http://www.ncbi.nlm.nih.gov/pubmed/26953178
http://dx.doi.org/10.1063/1.5143076
http://www.ncbi.nlm.nih.gov/pubmed/32113349
http://dx.doi.org/10.1021/ct300307c
http://www.ncbi.nlm.nih.gov/pubmed/26592119

	Introduction
	Results and Discussion
	The TCNE::1ClN Case Study
	The N34- Case Study

	Materials and Methods
	Ab Initio Molecular Dynamics
	Feature Selection and Clustering of Molecular Dynamics Trajectories 
	Dimensionality Reduction for MD Data Visualization 
	Excited State Characterization and Spectra Simulations 

	Conclusions
	References

