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Abstract: A green one-pot 2,3,6-trifunctionalization of N-alkyl/aryl indoles was achieved by adding
three equivalents of N-Br sulfoximine to the indole solution. A variety of 2-sulfoximidoyl-3,6-
dibromo indoles were prepared with 38–94% yields using N-Br sulfoximines as both brominating and
sulfoximinating reagents. Based on the results of controlled experiments, we propose that a radical
substitution involving 3,6-dibromination and 2-sulfoximination occurs in the reaction process. This is
first time that 2,3,6-trifunctionalization of indole in one pot has been achieved.

Keywords: 2,3,6-trifunctionalization of indoles; N-Br sulfoximines; brominating reagent;
sulfoximinating reagent

1. Introduction

The indole moiety is always attractive because of its existence in a wide range of natu-
ral products and bioactive compounds as core structures [1–6]. Hence, the development of
simple and green methods for the synthesis of multisubstituted indole derivatives is an
important research area. Sulfoximine derivatives, a class of sulfur-containing compounds,
have attracted considerable interest for their diverse applications in organic synthesis as
building blocks [7,8], in asymmetric catalysis as ligands and chiral auxiliary [9–11] and
in pharmacology as bioactive components [12–14]. A simple combination of indoles and
sulfoximine maybe enable the facile synthesis of a series of potentially bioactive sulfox-
imidoyl indoles. The successful development of the new protocol will facilitate relative
research based on sulfoximines and indoles. Normally, the direct functionalization, espe-
cially multifunctionalization, of indoles via C-H activation is an atom- and step-economical
approach to expand the library of indoles [15–26]. Compared to the wildly known C2- and
C3-functionalization of indoles [15–21], the practicality of transformation on other positions
is decreased and more difficult. Due to the significant advances in the development of
synthetic methodologies, various dual-functionalization strategies of indoles have been
developed to introduce two functional groups at the common C2 and C3 positions of the
indole core simultaneously [27–32]. Among them, effective one-step dehydrogenative
aminohalogenation of indoles is always a research hotspot because of the further applica-
tion of aminohalogenated indoles in the fields of organic synthesis and biology. Despite
several excellent works having been reported in the last decade (Scheme 1) [33–38], the field
of dehydrogenative aminohalogenation of indoles remains largely unexplored. The above
studies, pioneering aminohalogenation of indoles, have included the aminohalogenation
of N-R indoles using sulfonamides and its derivatives as aminating reagents [33,35,36],
the copper-catalyzed aminobromination of indoles using CuBr as brominating reagent
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and active N-Br diphenylmethanimine as aminating reagent [34], the electrochemical
aminoiodination of indoles using unactivated secondary amines [38]. Inspired by such de-
hydrogenative aminohalogenation of indoles, sulfoximines as a special aminating reagent
entered our field of vision. As is known, due to our long-term research focus [39–42], the
radical addition of olefins using N-X sulfoximines [43], and the curiosity about sulfoximine
indoles, we wondered whether the active N-Br sulfoximines could be used as the aminating
reagent or both brominating and aminating reagents to achieve the aminobromination of
indoles. Fortunately, this was achieved, and 2,3,6-trifunctionalized indole derivatives were
afforded accidentally in one step for the first time in the absence of any transition metal
or additional additives (Scheme 1). Due to its step and atom economy, novelty, simplicity
and practicality, this novel trifunctionalization of indoles represents important progress
towards functionalized indoles.
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(2) The green one-pot 2,3,6- trifunctinalization of indoles by using N-Br sulfoximines as both of
brominating and aminating reagents.

2. Results and Discussion
2.1. Optimization

At the beginning of our investigation, the 5 mol% CuBr-catalyzed sulfoximidoyl-
bromination of 1-methylindole (1a) using N-Br methyl phenyl sulfoximine (2a) as both
brominating and aminating reagents was attempted in the presence of KOAc at room
temperature (entry 1, Table S1). To our delight, the desired dual-functionalized product
4a was obtained with 29% yield as expected. However, the yield could not be improved
more than 29% by varying copper salts, the amount of catalyst, temperature, or reaction
time during further optimization (entries 2–10, Table S1). In the reaction process, the N-Br
methyl phenyl sulfoximine (2a) was found to be consumed quickly. As such, the amount of
N-Br methyl phenyl sulfoximine (2a) was evaluated, the trifunctionalized product 3aa was
obtained suddenly with higher 76% isolated yield when the amount of 2a was increased
threefold (entries 11–17, Table S1). According to the above results, the catalyst and base
seem to have little effect on the reaction compared to the amount of 2a. Therefore, the reac-
tions were tried in the absence of copper salts or cooperation of copper salts and KOAc, and
3aa was produced with excellent 90% or 88% yield, respectively (entries 18–19, Table S1).
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The model reaction with 1 equiv. 1-methylindole (1a) and 3 equiv. N-Br methyl phenyl
sulfoximine (2a) in the absence of transition metal and base was reset (Table 1). The desired
trifunctionalized product 3aa gave an excellent 94% isolated yield (entry 3, Table 1). Then,
versatile solvents were evaluated in this simple protocol, and the desired product 3aa was
afforded by all test solvents, except toluene, in 28–80% yields (Entries 4–8, Table 1). The
lowest 28% yield was given by the protic solvent EtOH, and the cyclic ether solvents THF
and 1,4-dioxane gave good 80% and 72% yields, respectively. The compound 3aa was also
generated in moderate 64% yield using DCE as solvent. Finally, the optimum conditions of
2,3,6-trifunctionalization of indoles was chosen as 3 equiv. N-Br sulfoximines added to a
solution of 1 equiv. indole derivatives (0.4 mmol) in 2 mL MeCN (entry 3, Table 1) with
further stirring for 5 min at room temperature.

Table 1. Exploring experimental conditions.
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Entry Equiv. of 2a Solvent Yield of 3aa Yield of 4a

1 1 MeCN trace 22%
2 2 MeCN trace 62%
3 3 MeCN 94% trace
4 3 THF 80% trace
5 3 Toluene trace trace
6 3 1,4-Dioxane 72% trace
7 3 EtOH 28% trace
8 3 DCE 64% trace

Normal conditions: The N-Br methyl phenyl sulfoximine 2a was added into the solution of 0.4 mmol N-Me indole
in 2 mL solvent, stirring for 5 min at room temperature.

2.2. Extending the Scope of Indole Substrates

The substrate scope of indole derivatives was investigated in this new oxidative
dibromo sulfoximination of N-R (R = alkyl or aryl) indoles using N-Br methyl phenyl
sulfoximine as both of brominating and sulfoximinating reagents, and a series of corre-
sponding 3,6-dibrom-2-sulfoximidoyl indoles were afforded in 38–94% yields under the
optimal reaction conditions. The details of reaction were shown in Scheme 2. According
to the results, the N-alkyl indoles including chain alkyl and benzyl groups have been
investigated here, and all of them afforded the corresponding 2-sulfoximidoyl-3,6-dibromo
indole derivatives 3aa-g in 62–94% yields. The lower yield was given by the indoles which
has longer protecting alkyl chain of N atom. So the corresponding product 3aa was given
in the best 94% yield by the N-CH3 indole, and N-octyl indole gave the product 3ad in
worst 62% yield. The steric N-isopropyl indole was also performed smoothly in this new
protocol to lead to compound 3af in good 89% yield, and the high yield showed the steric
hindrance of N-protecting groups was affected this trifunctionalization of indole rarely.
Furthermore, the N-benzyl indole which has an active methylene group was evaluated in
this simple protocol and led to the product 3ag in good 81% yield. Besides different N- alkyl
indoles, several N-aryl indoles have also been attempted as indole substrates here, and the
desired products 3ah-j have been obtained as expectant in 38–77% yields. Among them, the
best yield was given by the N-(2-isopropylphenyl) indole (3ai, 77%) which contained a big
2-isopropylphenyl as protecting group of N atom. Compared to the N-(2-isopropylphenyl)
indole, the N-phenyl indole and N-naphthyl indole gave corresponding products 3ah
and 3aj in decreased yields 38% and 57% yields respectively. Moreover, several substi-
tuted N-methyl indoles have been evaluated in this new transformation, too. When the 4-
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or 7- position of N-methyl indole was occupied by electron-donating methyl group, the
corresponding products 3ak and 3al were given in good 81% and excellent 94% yields,
respectively. Compared to the N-methyl indole, the 7-methyl group of N-methyl indole
showed no obvious effect on the yield, and the 4-methyl group would make the yield slight
decreased to 81%. When the 4-position of N-methyl indole was substituted by halogen Cl
or Br, the reaction yields of the corresponding products 3am and 3an were decreased to
63% and 46%, respectively.
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2.3. Extending the Scope of N-Br Sulfoximines Substrates

Subsequently, various N-Br sulfoximines have been implemented into this new tri-
functionalization of N-methyl indoles as both of brominating and sulfoximinating reagents
to evaluate the effect of different R1 or R2 group of N-Br sulfoximines (Scheme 3). First,
versatile N-Br substituted phenyl methyl sulfoximines have been investigate into the di-
bromosulfoximination of N-methyl indole and all of them led to desired products 3ba–3bi
smoothly in good–excellent yields (66–94%). For different N-Br para-substituted phenyl
methyl sulfoximines, the electron-deficient substituents on the benzene ring led to de-
creased yields. Among them, the worst yield (3be, 66%) was given by the N-Br para-NO2
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phenyl methyl sulfoximines, and the highest yield (3ba, 94%) was given by the para-CH3
phenyl methyl sulfoximines. When the N-Br para-halogenated phenyl methyl sulfoximines
were investigated as substrate in this new protocol, all of them performed very well in the re-
action, and the corresponding products 3bb-d were given in good–excellent 85–91% yields
because of the electron withdrawal of halogen on the benzene ring. Compared to the N-Br
para-bromo/chlorophenyl methyl sulfoximines, similar N-Br meta-bromo/cholorophenyl
methyl sulfoximines were also achieved smoothly in this protocol and afforded correspond-
ing products 3bf and 3bg smoothly in slightly lower 77% and 86% yields, respectively.
Meanwhile, the 2-sulfoximidoyl-3,6-dibromo indoles 3bh and 3bi were obtained in good
85% and 89% yields using N-Br ortho-Bromo/cholorphenyl methyl sulfoximines as amino-
halogenated substrates. The results of all tested N-Br halogenated phenyl methyl sulfox-
imines showed the electronic and steric effect has little influence in the yields. Subsequently,
we varied the substituents of N-Br phenyl sulfoximines from steric isopropyl chain n-butyl
to phenyl to evaluate the effect of substituent: the N-Br diphenyl sulfoximines led to the
corresponding product 3bl in a similar 91% yield to N-Br phenyl methyl sulfoximines, and
the steric N-Br isopropyl phenyl sulfoximine produced the compound 3bj in the lowest
74% yield. The N-Br n-butyl phenyl sulfoximine performed very well here and afforded
the product 3bk in lower 81% yield compared to N-Br methyl phenyl sulfoximine. Besides
N-Br phenyl sulfoximines, N-Br di-n-butyl sulfoximine also worked in this protocol and
led to product 3bm in 77% yield.
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2.4. Control Reactions

Due to the important synthetic significance and potential application of this useful
new methodology, the mechanism was studied. The control reactions were assessed, and
the results are shown in Scheme 4. Based on similar reported procedures [35,36,38], a
radical process was proposed to have occurred, so 1.0 equiv. radical scavengers Tempo
or BHT were added to the reaction mixture and led to the corresponding product 3aa in
trace yield or low 29% yield from 94% yield as expected. Most of the starting materials
were left in the reaction mixture. Combining the results in the optimization, we found
only 2,3-disubstituted indole was given when the amount of N-Br sulfoximines was less
than 1.5 equivalent, and the 2,3,6-trisubstituted product would be increased gradually with
the increased N-Br sulfoximines, so the final step must be the radical substitution at the
six-position of indoles. The radical 3,6-dibromo-2-sulfoximination of N-R (R = alkyl and
Ar) indoles was proved in this new protocol.
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3. Chemistry

All solvents were obtained from commercial sources and used without further pu-
rification unless otherwise noted. The N-bromosulfoximines were prepared according to
literature protocols [44,45]. All N-protected indoles were prepared according to literature
protocols [46,47]. Other chemicals were obtained from Energy Chemical and Titan. 1H
and 13C NMR spectra were recorded on a Bruker DRX-400 spectrometer using CDCl3 or
DMSO-d6 as solvent and TMS as an internal standard. Mass spectra (API) were tested
on an Agilent 6100 using liquid chromatography–mass spectrometry. Single-crystal X-ray
diffraction was conducted in the X-ray and Spectral Center at Huazhong University of
Science and Technology, Wuhan, China.

General Procedure (GP) for the Preparation of Products 3

N-bromosulfoximine 2 (1.2 mmol, 3 equiv.) was added to the solution of N-protected
indole 1 (0.4 mmol) in MeCN (2 mL) in a 15 mL dry pressure tube equipped with a stirring
bar. The reaction mixture was stirred at room temperature for another 5 min at room
temperature. Then, the organic layer of the reaction mixture was removed under reduced
pressure and the residue purified by column chromatography on a neutral alumina column
using a mixture of petroleum ether and ethyl acetate as eluent to afford product 3.

3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-methyl-1H-indole (3aa) According to the
general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
phenylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 94% yield. 1H
NMR (400 MHz, CDCl3) δ 8.25–8.20 (m, 2H), 7.73–7.68 (m, 1H), 7.66–7.60 (m, 2H), 7.37 (d,
J = 1.6 Hz, 1H), 7.26 (s, 1H), 7.22 (dd, J = 8.4, 1.6 Hz, 1H), 3.71 (s, 3H), 3.26 (s, 3H). 13C NMR
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(100 MHz, CDCl3) δ 139.2, 137.7, 135.0, 134.1, 129.7, 128.5, 125.6, 123.2, 119.2, 114.5, 112.1,
80.8, 44.6, 30.2.

3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-butyl-1H-indole (3ab) According to the
general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
phenylsulfoximidoyl)-1-butyl-1H-indole was prepared as black oil in 85% yield. 1H NMR
(400 MHz, Chloroform-d) δ 8.25–8.18 (m, 2H), 7.73–7.66 (m, 1H), 7.65–7.58 (m, 2H), 7.37 (d,
J = 1.7 Hz, 1H), 7.29–7.18 (m, 3H), 4.18 (dddd, J = 49.3, 14.5, 8.5, 6.7 Hz, 2H), 3.25 (s, 3H),
1.81–1.64 (m, 2H), 1.36 (dt, J = 14.9, 7.4 Hz, 2H), 0.93 (t, J = 7.4 Hz, 3H). 13C NMR (100 MHz,
Chloroform-d) δ 139.6, 137.5, 134.2, 134.0, 129.6, 128.5, 125.8, 123.0, 119.2, 114.4, 112.3, 80.4,
44.7, 43.4, 31.9, 20.3, 13.9.

3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-hexyl-1H-indole (3ac) According to the
general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
phenylsulfoximidoyl)-1-hexyl-1H-indole was prepared as black oil in 80% yield. 1H NMR
(400 MHz, DMSO-d6) δ 8.14–8.08 (m, 2H), 7.78–7.72 (m, 1H), 7.71–7.65 (m, 2H), 7.61 (d,
J = 1.6 Hz, 1H), 7.17–7.10 (m, 2H), 4.19 (pt, J = 7.9, 4.0 Hz, 2H), 3.51 (s, 3H), 1.63 (qd, J = 10.3,
4.6 Hz, 2H), 1.31–1.19 (m, 6H), 0.87–0.78 (m, 3H). 13C NMR (100 MHz, CDCl3) δ 139.6,
138.3, 133.8, 133.5, 129.5, 127.7, 125.3, 122.4, 118.5, 113.1, 112.1, 77.8, 44.6, 42.5, 30.9, 29.1,
25.8, 22.1, 13.9. HR-MS(ESI), m/z (%): Calcd for C21H25Br2N2OS+ ([M+H]+): 511.0049,
Found: 511.0052.

3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-octyl-1H-indole (3ad) According to the
general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
phenylsulfoximidoyl)-1-octyl-1H-indole was prepared as black oil in 62% yield. 1H NMR
(400 MHz, CDCl3) δ 8.26–8.18 (m, 2H), 7.74–7.66 (m, 1H), 7.62 (dd, J = 8.3, 6.7 Hz, 2H),
7.36 (d, J = 1.6 Hz, 1H), 7.27 (d, J = 7.4 Hz, 1H), 7.20 (dd, J = 8.4, 1.6 Hz, 1H), 4.28–4.05 (m,
2H), 3.25 (s, 3H), 1.75 (h, J = 6.8 Hz, 2H), 1.36–1.20 (m, 10H), 0.86 (t, J = 6.7 Hz, 3H). 13C
NMR (100 MHz, CDCl3) δ 139.4, 137.4, 134.1, 134.0, 129.6, 128.5, 125.7, 123.0, 119.2, 114.3,
112.2, 80.4, 44.6, 43.6, 31.9, 29.8, 29.4, 29.3, 27.0, 22.8, 14.3. Calcd for C23H29Br2N2OS+ (M):
539.0362, Found: 539.0355.

3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-decyl-1H-indole (3ae) According to the
general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
phenylsulfoximidoyl)-1-decyl-1H-indole was prepared as black oil in 65% yield. 1H NMR
(400 MHz, CDCl3) δ 8.24–8.19 (m, 2H), 7.71–7.66 (m, 1H), 7.61 (dd, J = 8.4, 6.8 Hz, 2H),
7.36 (d, J = 1.7 Hz, 1H), 7.27 (s, 1H), 7.20 (dd, J = 8.4, 1.6 Hz, 1H), 4.28–4.04 (m, 2H), 3.24
(s, 3H), 1.75 (h, J = 7.4, 7.0 Hz, 2H), 1.37–1.19 (m, 14H), 0.87 (t, J = 6.8 Hz, 3H). 13C NMR
(100 MHz, CDCl3) δ 139.6, 137.5, 134.2, 134.0, 129.6, 128.4, 125.8, 123.0, 119.2, 114.3, 112.2,
80.4, 44.7, 43.6, 32.0, 29.8, 29.7 (2C), 29.4 (2C), 27.0, 22.8, 14.2. HR-MS(ESI), m/z (%): Calcd
for C25H33Br2N2OS+ ([M+H]+): 567.0675, Found: 567.0669.

3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-isopropyl-1H-indole (3af) According to the
general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
phenylsulfoximidoyl)-1-isopropyl-1H-indole was prepared as green oil in 89% yield. 1H
NMR (400 MHz, CDCl3) δ 8.29–8.20 (m, 2H), 7.75–7.67 (m, 1H), 7.66–7.58 (m, 3H), 7.32–7.17
(m, 3H), 5.10 (p, J = 7.1 Hz, 1H), 3.23 (s, 3H), 1.64 (d, J = 7.0 Hz, 3H), 1.53 (d, J = 7.1 Hz,
3H). 13C NMR (100 MHz, CDCl3) δ 139.2, 136.8, 134.1, 132.6, 129.7, 128.5, 126.3, 122.8, 119.5,
114.2, 114.0, 81.2, 47.2, 44.1, 21.7, 21.2.

3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-benzyl-1H-indole (3ag) According to the
general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
phenylsulfoximidoyl)-1-benzyl-1H-indole was prepared as white solid in 81% yield. M.p.:
162.5–163.4 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 7.97–7.90 (m, 2H), 7.74–7.67 (m, 1H), 7.61
(dd, J = 8.4, 7.1 Hz, 2H), 7.55 (d, J = 1.5 Hz, 1H), 7.31 (dd, J = 8.1, 6.6 Hz, 2H), 7.27–7.21 (m,
1H), 7.18–7.09 (m, 4H), 5.58–5.40 (m, 2H), 3.50 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ
139.2, 138.9, 138.1, 133.8, 133.6, 129.5, 128.6, 127.7, 127.2, 126.9, 125.6, 122.8, 118.6, 113.2,
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112.4, 77.7, 45.6, 44.7. HR-MS(ESI), m/z (%): Calcd for C22H19Br2N2OS+ ([M+H]+): 516.9579,
Found: 516.9587.

3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-phenyl-1H-indole (3ah) According to the
general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
phenylsulfoximidoyl)-1-phenyl-1H-indole was prepared as yellow oil in 38% yield. 1H
NMR (400 MHz, CDCl3) δ 7.78–7.73 (m, 2H), 7.60–7.49 (m, 3H), 7.49–7.38 (m, 5H), 7.31
(d, J = 8.3 Hz, 1H), 7.26–7.24 (m, 1H), 7.24–7.21 (m, 1H), 3.07 (s, 3H). 13C NMR (100 MHz,
CDCl3) δ 139.6, 137.9, 136.8, 135.0, 133.7, 129.5, 129.4, 129.3, 128.5, 128.1 (2C), 126.1, 123.9,
119.4, 115.0, 112.8, 82.3, 44.9. HR-MS(ESI), m/z (%): Calcd for C21H17Br2N2OS+ ([M+H]+):
502.9423, Found: 502.9429.

3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-(2-isopropylphenyl)-1H-indole (3ai) According
to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
phenylsulfoximidoyl)-1-(2-isopropylphenyl)-1H-indole was prepared as black oil in 77%
yield. 1H NMR (400 MHz, CDCl3) δ 7.79–7.71 (m, 1H), 7.58–7.46 (m, 4H), 7.45–7.20 (m, 5H),
7.16–7.09 (m, 1H), 6.94 (dd, J = 16.6, 1.7 Hz, 1H), 3.10 (d, J = 33.4 Hz, 3H), 1.15 (dd, J = 13.2,
6.8 Hz, 3H), 0.99 (dd, J = 6.9, 4.2 Hz, 3H). 13C NMR (100 MHz, DMSO-d6) δ 149.2, 148.4,
140.2 (2C), 139.1, 138.9, 135.8 (2C), 134.6, 134.2, 133.6, 133.5, 130.2, 129.6 (2C), 129.4, 129.3,
128.3, 128.0, 127.2, 126.8, 126.6, 126.5, 126.3, 126.1, 123.7, 123.6, 119.3, 119.1, 114.8, 114.7,
112.7 (2C), 80.4, 80.1, 45.7, 44.8, 28.3, 28.1, 24.8, 24.6, 23.4, 23.0. HR-MS(ESI), m/z (%): Calcd
for C24H23Br2N2OS+ ([M+H]+): 544.9892, Found: 544.9900.

3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1-(naphthalen-1-yl)-1H-indole (3aj) According to
the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
phenylsulfoximidoyl)-1-(naphthalen-1-yl)-1H-indole was prepared as black oil in 57% yield.
1H NMR (400 MHz, CDCl3) δ 8.04–7.93 (m, 2H), 7.60 (dd, J = 8.3, 7.2 Hz, 1H), 7.55–7.32
(m, 7H), 7.30–7.14 (m, 4H), 6.87 (dd, J = 3.2, 1.7 Hz, 1H), 2.98 (d, J = 12.5 Hz, 3H). 13C
NMR (100 MHz, DMSO-d6) δ 139.8 (2C), 139.4, 138.9, 136.1, 136.0, 134.5 (2C), 133.5, 133.4
(2C), 131.6, 131.5, 129.4 (2C), 129.2, 129.1, 128.4, 128.3, 128.1, 128.0, 127.9, 127.4, 127.3, 126.8,
126.7, 126.3 (2C), 125.7, 125.4, 123.9, 123.8, 123.3, 119.4 (2C), 115.0 (2C), 113.1, 113.0, 82.1,
81.1, 45.1, 44.9.

3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1,4-dimethyl-1H-indole (3ak) According to
the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
phenylsulfoximidoyl)-1,4-dimethyl-1H-indole was prepared as yellow oil in 80% yield. 1H
NMR (400 MHz, CDCl3) δ 8.30–8.23 (m, 2H), 7.74–7.67 (m, 1H), 7.67–7.60 (m, 2H), 7.23 (d,
J = 1.7 Hz, 1H), 6.96 (dd, J = 1.9, 1.0 Hz, 1H), 3.68 (s, 3H), 3.23 (s, 3H), 2.75 (s, 3H). 13C NMR
(100 MHz, CDCl3) δ 139.2, 137.3, 135.2, 134.1, 131.2, 129.6, 128.5, 124.7, 122.8, 114.1, 110.3,
81.0, 44.1, 30.4, 19.3.

3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-1,7-dimethyl-1H-indole (3al) According to the
general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
phenylsulfoximidoyl)-1,7-dimethyl-1H-indole was prepared as black solid in 94% yield.
M.p.: 122.6–124.2 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.27–8.18 (m, 2H), 7.73–7.65 (m, 1H),
7.62 (dd, J = 8.3, 6.7 Hz, 2H), 7.29 (d, J = 8.4 Hz, 1H), 7.10 (d, J = 8.4 Hz, 1H), 3.96 (s, 3H),
3.23 (s, 3H), 2.81 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 139.3, 138.3, 134.2, 134.0, 129.6,
128.5, 126.8, 124.8, 120.7, 119.4, 116.9, 81.6, 44.3, 34.0, 19.0. HR-MS(ESI), m/z (%): Calcd for
C17H17Br2N2OS+ ([M+H]+): 454.9423, Found:454.9426.

3,6-Dibromo-2-(methyl phenylsulfoximidoyl)-7-chloro-1-methyl-1H-indole (3am) According to
the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
phenylsulfoximidoyl)-7-chloro-1-methyl-1H-indole was prepared as yellow oil in 63% yield.
1H NMR (400 MHz, CDCl3) δ 8.24–8.18 (m, 2H), 7.73–7.67 (m, 1H), 7.63 (ddt, J = 8.3, 6.8,
1.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 4.08 (s, 3H), 3.26 (s, 3H). 13C
NMR (100 MHz, CDCl3) δ 139.2, 139.1, 134.2, 131.0, 129.7, 128.4, 128.3, 124.9, 117.5, 116.7,
116.2, 81.3, 44.7, 33.4.
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3,6,7-Tribromo-2-(methyl phenylsulfoximidoyl)-1-methyl-1H-indole (3an) According to the
general procedure (GP) for the preparation of product 3, the 3,6,7-tribromo-2-(methyl
phenylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 46% yield. 1H NMR
(400 MHz, DMSO-d6) δ 8.13–8.08 (m, 2H), 7.78–7.72 (m, 1H), 7.71–7.65 (m, 2H), 7.36 (d,
J = 8.4 Hz, 1H), 7.12 (d, J = 8.3 Hz, 1H), 4.02 (s, 3H), 3.56 (s, 3H). 13C NMR (100 MHz, DMSO-
d6) δ 140.3, 139.2, 133.9, 131.5, 129.5, 127.9, 127.7, 124.7, 117.8, 117.6, 105.3, 79.0, 44.4, 33.0.

3,6-Dibromo-2-(methyl p-tolylsulfoximidoyl)-1-methyl-1H-indole (3ba) According to the
general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
p-tolylsulfoximidoyl)-1-methyl-1H-indole was prepared as purple oil in 84% yield. 1H
NMR (400 MHz, CDCl3) δ 8.13–8.05 (m, 2H), 7.42 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 1.7 Hz, 1H),
7.28 (s, 1H), 7.22 (dd, J = 8.4, 1.6 Hz, 1H), 3.71 (s, 3H), 3.24 (s, 3H), 2.48 (s, 3H). 13C NMR
(101 MHz, CDCl3) δ 145.2, 137.9, 136.1, 135.0, 130.3, 128.5, 125.6, 123.1, 119.2, 114.5, 112.1,
80.8, 44.7, 30.2, 21.8. HR-MS(ESI), m/z (%): Calcd for C17H17Br2N2OS+ ([M+H]+): 454.9423,
Found: 454.9438.

3,6-Dibromo-2-(methyl 4-chlorophenylsulfoximidoyl)-1-methyl-1H-indole (3bb) According to
the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
4-chlorophenylsulfoximidoyl)-1-methyl-1H-indole was prepared as purple oil in 91% yield.
1H NMR (400 MHz, CDCl3) δ 8.18–8.12 (m, 2H), 7.62–7.56 (m, 2H), 7.36 (d, J = 1.6 Hz, 1H),
7.29–7.19 (m, 2H), 3.69 (s, 3H), 3.25 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 141.0, 137.7, 137.3,
135.0, 130.0, 129.9, 125.5, 123.3, 119.2, 114.7, 112.2, 80.7, 44.7, 30.2. HR-MS(ESI), m/z (%):
Calcd for C16H14Br2ClN2OS+ ([M+H]+): 474.8877, Found: 474.8897.

3,6-Dibromo-2-(methyl 4-bromophenylsulfoximidoyl)-1-methyl-1H-indole (3bc) According to
the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
4-bromophenylsulfoximidoyl)-1-methyl-1H-indole was prepared as purple oil in 88% yield.
1H NMR (400 MHz, DMSO-d6) δ 8.05–8.00 (m, 2H), 7.91–7.86 (m, 2H), 7.60 (d, J = 1.6 Hz,
1H), 7.16 (dd, J = 8.3, 1.6 Hz, 1H), 7.12 (d, J = 8.4 Hz, 1H), 3.68 (s, 3H), 3.57 (s, 3H). 13C NMR
(100 MHz, DMSO-d6) δ 138.8, 138.4, 134.2, 132.5, 129.9, 127.9, 125.1, 122.5, 118.4, 113.2, 112.2,
78.0, 44.3, 29.7.

3,6-Dibromo-2-(methyl 4-fluorophenylsulfoximidoyl)-1-methyl-1H-indole (mixture 3bd) Accord-
ing to the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-
(methyl 4-fluorophenylsulfoximidoyl)-1-methyl-1H-indole and 3,6-dibromo-2-(methyl 4-
fluorophenylsulfoximidoyl)-1-methyl-1H-indole were prepared as orange solid in about
85% yield (the ratio of trisubstituted product to disubstituted product was about 3.5: 1).
1H NMR (400 MHz, CDCl3, main tri-substituted product) δ 8.24 (dd, J = 9.0, 5.0 Hz, 2H),
7.37 (d, J = 1.6 Hz, 1H),7.32–7.26 (m, 4H), 7.24–7.21 (m, 1H), 3.71 (3H), 3.26 (3H); 13C NMR
(100 MHz, CDCl3) (main tri-substituted product) δ 166.2 (d, J = 255.4), 137.5, 135.0, 131.5 (d,
J = 9.7 Hz), 125.5, 123.2, 119.2, 117.9, 117.0 (d, J = 22.6 Hz), 114.6, 112.1, 80.8, 44.7, 30.2.

3,6-Dibromo-2-(methyl 4-nitrophenylsulfoximidoyl)-1-methyl-1H-indole (3be) According to the
general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl 4-
nitrophenylsulfoximidoyl)-1-methyl-1H-indole was prepared as orange solid in 66% yield.
M.p.: 157.3–158.1 ◦C. 1H NMR (400 MHz, DMSO-d6) δ 8.46 (d, J = 8.8 Hz, 2H), 8.36 (d,
J = 8.7 Hz, 2H), 7.60 (d, J = 1.7 Hz, 1H), 7.19–7.07 (m, 2H), 3.69 (d, J = 7.3 Hz, 6H). 13C NMR
(100 MHz, DMSO-d6) δ 150.4, 145.5, 137.9, 134.2, 129.5, 125.1, 124.6, 122.6, 118.5, 113.3, 112.3,
78.1, 44.0, 29.7.

3,6-Dibromo-2-(methyl 3-bromophenylsulfoximidoyl)-1-methyl-1H-indole (3bf) According to the
general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl 3-
bromophenylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 77% yield.
1H NMR (400 MHz, CDCl3) δ 8.37 (t, J = 1.8 Hz, 1H), 8.14 (ddd, J = 8.0, 1.9, 1.0 Hz, 1H), 7.81
(ddd, J = 8.0, 1.9, 1.0 Hz, 1H), 7.49 (t, J = 7.9 Hz, 1H), 7.36 (dd, J = 1.6, 0.5 Hz, 1H), 7.28 (d,
J = 0.5 Hz, 1H), 7.22 (dd, J = 8.4, 1.6 Hz, 1H), 3.70 (s, 3H), 3.28 (s, 3H). 13C NMR (100 MHz,
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CDCl3) δ 141.1, 137.2, 137.1, 135.0, 131.4, 131.1, 127.1, 125.5, 123.5, 123.3, 119.3, 114.7, 112.2,
80.8, 44.8, 30.2.

3,6-Dibromo-2-(methyl 3-chlorophenylsulfoximidoyl)-1-methyl-1H-indole (3bg) According to
the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
3-chlorophenylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 86% yield.
1H NMR (400 MHz, CDCl3) δ 8.21 (t, J = 1.9 Hz, 1H), 8.09 (ddd, J = 7.9, 1.8, 1.1 Hz, 1H), 7.65
(ddd, J = 8.1, 2.0, 1.1 Hz, 1H), 7.55 (t, J = 8.0 Hz, 1H), 7.36 (dd, J = 1.6, 0.5 Hz, 1H), 7.27 (d,
J = 0.5 Hz, 1H), 7.21 (dd, J = 8.4, 1.6 Hz, 1H), 3.69 (s, 3H), 3.28 (s, 3H). 13C NMR (100 MHz,
CDCl3) δ 141.1, 137.1, 135.8, 135.0, 134.3, 130.9, 128.6, 126.6, 125.5, 123.2, 119.3, 114.7, 112.1,
80.7, 44.7, 30.2.

3,6-Dibromo-2-(methyl 2-bromophenylsulfoximidoyl)-1-methyl-1H-indole (3bh) According to
the general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl
2-bromophenylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 85% yield.
1H NMR (400 MHz, CDCl3) δ 8.47 (dd, J = 8.0, 1.7 Hz, 1H), 7.75 (dd, J = 7.9, 1.4 Hz, 1H),
7.55 (td, J = 7.7, 1.3 Hz, 1H), 7.48 (td, J = 7.6, 1.8 Hz, 1H), 7.33–7.31 (m, 1H), 7.22–7.16 (m,
2H), 3.66 (s, 3H), 3.57 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 139.3, 137.4, 135.9, 134.9, 134.7,
132.8, 128.4, 125.9, 123.0, 120.6, 119.2, 114.3, 111.8, 78.3, 43.7, 29.9.

3,6-Dibromo-2-(methyl 2-chlorophenylsulfoximidoyl)-1-methyl-1H-indole (3bi) According to the
general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(methyl 2-
chlorophenylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 89% yield. 1H
NMR (400 MHz, DMSO-d6) δ 8.28 (dd, J = 7.9, 1.6 Hz, 1H), 7.75–7.60 (m, 3H), 7.58 (d, J = 1.7
Hz, 1H), 7.14 (dd, J = 8.3, 1.7 Hz, 1H), 7.06 (d, J = 8.3 Hz, 1H), 3.74 (s, 3H), 3.66 (s, 3H). 13C
NMR (100 MHz, DMSO-d6) δ 138.2, 137.3, 135.4, 134.0, 132.1, 132.0, 131.0, 128.2, 125.2, 122.5,
118.4, 113.1, 112.1, 76.5, 43.9, 29.5. HR-MS(ESI), m/z (%): Calcd for C16H14Br2ClN2OS+:
474.8877, Found: 474.8863.

3,6-Dibromo-2-(isopropyl phenylsulfoximidoyl)-1-methyl-1H-indole (3bj) According to the
general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(isopropyl
phenylsulfoximidoyl)-1-methyl-1H-indole was prepared as green oil in 74% yield 1H NMR
(400 MHz, CDCl3) δ 8.01–7.95 (m, 2H), 7.64–7.59 (m, 1H), 7.56–7.50 (m, 2H), 7.29–7.27 (m,
1H), 7.15 (dd, J = 1.8, 1.1 Hz, 2H), 3.69 (s, 3H), 3.58 (p, J = 6.8 Hz, 1H), 1.45 (d, J = 6.7 Hz,
3H), 1.31 (d, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 138.5, 136.1, 134.7, 133.8, 129.8,
129.4, 126.0, 122.9, 118.8, 113.8, 111.7, 78.7, 58.2, 30.2, 16.8, 16.0. HR-MS(ESI), m/z (%): Calcd
for C18H19Br2N2OS+ ([M+H]+): 468.9579, Found: 468.9588.

3,6-Dibromo-2-(butyl phenylsulfoximidoyl)-1-methyl-1H-indole (3bk) According to the
general procedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(butyl
phenylsulfoximidoyl)-1-methyl-1H-indole was prepared as black oil in 81% yield. 1H NMR
(400 MHz, CDCl3) δ 8.15–8.08 (m, 2H), 7.69–7.63 (m, 1H), 7.58 (dd, J = 8.4, 6.8 Hz, 2H),
7.33 (d, J = 1.6 Hz, 1H), 7.24 (d, J = 3.4 Hz, 1H), 7.18 (dd, J = 8.4, 1.6 Hz, 1H), 3.70 (s, 3H),
3.39 (dddd, J = 54.7, 14.0, 11.2, 5.1 Hz, 2H), 1.76–1.53 (m, 2H), 1.38–1.27 (m, 2H), 0.84 (t,
J = 7.3 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 138.0, 137.7, 134.8, 133.9, 129.5, 129.0, 125.7,
123.0, 119.0, 114.2, 111.9, 80.2, 56.7, 30.2, 25.3, 21.5, 13.6.

3,6-Dibromo-2-(diphenylsulfoximidoyl)-1-methyl-1H-indole (3bl) According to the general pro-
cedure (GP) for the preparation of product 3, the 3,6-dibromo-2-(diphenylsulfoximidoyl)-1-
methyl-1H-indole was prepared as black oil in 93% yield. 1H NMR (400 MHz, CDCl3) δ
8.13–8.09 (m, 4H), 7.58–7.46 (m, 6H), 7.30–7.27 (m, 1H), 7.19–7.12 (m, 2H), 3.75 (s, 3H). 13C
NMR (100 MHz, CDCl3) δ 140.3, 137.8, 134.9, 133.4, 129.5, 128.5, 125.9, 123.0, 119.1, 114.2,
111.9, 80.5, 30.6. HR-MS(ESI), m/z (%): Calcd for C21H17Br2N2OS+ ([M+H]+): 502.9423,
Found: 502.9429.

3,6-Dibromo-2-(dibutylsulfoximidoyl)-1-methyl-1H-indole (3bm) According to the general procedure
(GP) for the preparation of product 3, the mixture of 3,6-dibromo-2-(dibutylsulfoximidoyl)-
1-methyl-1H-indole and 2,6-dibromo-3-(dibutylsulfoximidoyl)-1-methyl-1H-indole was
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prepared as black oil in 77% yield. 1H NMR (400 MHz, CDCl3) δ 7.34 (d, J = 1.6 Hz, 1H),
7.27 (s, 1H), 7.20 (dd, J = 8.4, 1.6 Hz, 1H), 3.66 (d, J = 18.4 Hz, 3H), 3.33–3.14 (m, 4H),
1.99–1.75 (m, 4H), 1.47 (h, J = 7.4 Hz, 4H), 0.95 (t, J = 7.4 Hz, 6H). 13C NMR (for main
product) (100 MHz, CDCl3) δ 138.1, 134.8, 125.5, 123.0, 119.0, 114.3, 112.0, 80.8, 52.8, 30.07,
25.1, 21.9, 13.7.

4. Conclusions

In conclusion, a green 3,6-dibromo-2-sulfoximination of N-R (R = alkyl, benzyl and
aryl) indoles using N-Br sulfoximines as both brominating and sulfoximinating reagents
was developed, and a total of 27 products were prepared in 38–94% yields. This protocol
introduces two bromo and one sulfoximidoyl group on indole moiety with absolute atom
and step economy by stirring the reaction mixture for 5 min in CH3CN at room temperature.
This method is compatible with a wide range of substrates and affords most of the products
in >60% yields. It also adheres to the principles of green chemistry. A range of potential
bioactive sulfoximidoyl indoles with two good-leaving-group Br was prepared via this
novel trifunctionalization of indoles in good to excellent yields. According to the control
reactions, this is a radical bromosulfoximidoyl process involving Br radical and sulfoximi-
doyl radical generated by N-Br sulfoximine in the presence of N-R (R = alkyl, benzyl or
aryl) indoles. This new green synthesis of N-methyl-3,6-dibromo-2-sulfoximidoyl indoles
will facilitate the understanding of transition-metal-free trifunctionalization of indoles and
the development of research based on sulfoximidoyl indoles. Additionally, the successful
application of N-X sulfoximines as both sulfoximinating and halogenating reagents would
further promote the development of sulfoximination and halogenation. Organic syntheses
or biochemistry based on indoles or sulfoximines will be greatly developed. In the near
future, we will test the bioactivity of this new sulfoximidoyl indoles as pesticide, silkworm
medicine, and medicine. We will also continue to expand the library of sulfoximidoyl
indoles through the functionalization of the 3- or 6-position C-Br bond.

5. Patents

One Chinese invention patent (CN113121403B) resulting from this work is reported in
this manuscript [48].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28083380/s1, including general procedure (GP) for the
preparation of N-bromosulfoximines, general procedure (GP) for the preparation of N-aryl
indole, general procedure (GP) for the preparation of N-alkyl indole, general procedure (GP) for
the preparation of various N-methyl indole and additional optimization (Table S1. Characteriza-
tion data of substrates, X-ray crystallography of product 3be, and 1H and 13C NMR spectra of
substrates and products 3); Table S1: The additional optimization of bromosulfoximidation of
N-Me indole; Table S2: Crystal data and structure refinement; References [49–51] are cited in the
supplementary materials.
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