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Abstract: Doping alkali metals into boron clusters can effectively compensate for the intrinsic elec-
tron deficiency of boron and lead to interesting boron-based binary clusters, owing to the small
electronegativity of the former elements. We report on the computational design of a three-layered
sandwich cluster, Na5B7, on the basis of global-minimum (GM) searches and electronic structure
calculations. It is shown that the Na5B7 cluster can be described as a charge-transfer complex:
[Na4]2+[B7]3−[Na]+. In this sandwich cluster, the [B7]3− core assumes a molecular wheel in shape
and features in-plane hexagonal coordination. The magic 6π/6σ double aromaticity underlies the
stability of the [B7]3− molecular wheel, following the (4n + 2) Hückel rule. The tetrahedral Na4

ligand in the sandwich has a [Na4]2+ charge-state, which is the simplest example of three-dimensional
aromaticity, spherical aromaticity, or superatom. Its 2σ electron counting renders σ aromaticity for
the ligand. Overall, the sandwich cluster has three-fold 6π/6σ/2σ aromaticity. Molecular dynamics
simulation shows that the sandwich cluster is dynamically fluxional even at room temperature, with
a negligible energy barrier for intramolecular twisting between the B7 wheel and the Na4 ligand. The
Na5B7 cluster offers a new example for dynamic structural fluxionality in molecular systems.

Keywords: boron-based alloy clusters; three-layered sandwich cluster; multifold π/σ aromaticity;
dynamic fluxionality; chemical bonding

1. Introduction

Due to the electron deficiency of boron with three valence electrons (2s22p1), boron
and its relevant compounds and clusters have rich and unique structures, as well as
unconventional chemical bonding [1–8]. Recent experimental and theoretical studies have
explored the structures and bonding of a wide range of boron-based clusters. It is now
known that elemental boron clusters assume two-dimensional (2D) planar or quasi-planar
geometries with up to 40 atoms for anions, extended 2D sheet structures (borophenes),
and three-dimensional (3D) structures such as borospherenes [8–13]. Chemical bonding in
these clusters is governed by π/σ aromaticity, antiaromaticity, and conflicting aromaticity,
in which electron delocalization is essential in order to compensate for the intrinsic electron
deficiency of boron.

Boron-based cluster nanomachines represent a new research direction in physical
chemistry, in which small clusters demonstrate dynamic structural fluxionality [14–31].
Such unique dynamic behaviors are also dictated by boron’s electron deficiency. Re-
searchers continuously designed and reported a series of pure boron clusters with dynamic
fluxionality, such as B19

−, B13
+, B18

2−, B20
−, B11

−/0, and B15
+ [14–22]. In subsequent

studies, researchers discovered that doping or mixing low electronegativity metals to
form boron-based clusters is an effective way toward the rational design of metal-doped
boron-based nanosystems with dynamic fluxionality [23–31]. For example, a binary Mg2B8
cluster was computationally designed as a “nanocompass”, in which an Mg2 needle was
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shown to rotate freely on the B8 baseplate [23]. By doping alkali metals to boron clus-
ters, a series of boron-based sandwich clusters (B7Li4+, Na6B7

−, and Na8B7
+) were lately

studied theoretically, which also show dynamic fluxionality [29,30]. In 2017, Zhai and
coworkers discovered two virtually isoenergetic triple-layered and helix-type structures for a
Be6B11

− cluster [31]. The former sandwich structure demonstrated dual dynamic rota-
tion/twisting modes of structural fluxionality, akin to an earth–moon system at the nanoscale.

Alkali metal elements are clearly an ideal choice for doping due to their small elec-
tronegativities, which would allow precise tuning of the number of valence electrons in a
boron-based alloy cluster, one at a time. The purpose of this work is to explore how the
structure of a binary Na-B cluster depends on its ratio of Na versus B components, what
underlies the stability of such a cluster structure, and whether new examples can be offered
for dynamic structural fluxionality. To this end, we have reached a binary Na5B7 cluster.
Computational global-minimum (GM) structure searches reveal a sandwich-type geom-
etry for this cluster, which features a B7 molecular wheel sandwiched in between a Na4
tetrahedron and an isolated Na atom. Chemical bonding analysis suggests double 6π/6σ
aromaticity for the B7 molecular wheel, as well as 2σ aromaticity for the tetrahedral Na4
ligand. In other words, the sandwich Na5B7 cluster has collectively three-fold 6π/6σ/2σ
aromaticity. The sandwich shape allows the precise number of electrons to be transferred
from the Na4 and Na ligands to the B7 core, so that the whole sandwich system can be
stabilized via electrostatics. The cluster is faithfully formulated as [Na4]2+[B7]3−[Na]+; that
is, a charge-transfer complex. The unique sandwich shape of the cluster facilitates dynamic
structural fluxionality, as confirmed in molecular dynamics simulations. This work also
highlights the robustness of [B7]3− as a potential inorganic ligand.

2. Results
2.1. Global-Minimum and Transition-State Structures

The optimized low-lying structures of Na5B7 cluster at the PBE0/6-311 + G* level are
shown in the Supplementary Materials (Figure S1). The GM Na5B7 cluster is identified
herein using the global searches and electronic structure calculations at three levels of
theory. The Cartesian coordinates for GM C3v (1A1) Na5B7 cluster at the PBE0/6-311 + G*
level are presented in Table S1. The PBE0/6-311 + G* method has been widely used for
boron-based clusters [8,31,32]. The comparative B3LYP/6-311 + G* data for top candidate
structures serve to check for the consistency of different functionals in terms of geome-
tries and energetics. The single-point CCSD(T) calculations on the basis of optimized
PBE0/6-311 + G* geometries allow benchmarking of the energetics. All three levels of
theory confirm C3v (1A1) structure (Figure 1a) as the GM of Na5B7 cluster.
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Among the low-lying isomers is a local-minimum (LM) C2v (1A1) structure (Figure S1),
which is about 0.2 eV above the GM cluster. The remaining isomers are substantially
higher in energy. Considering that adequate intramolecular charge transfers can take place
from Na to B, the triplet-state structures are relatively unimportant for the present cluster
system with an even number of 26 valence electrons. Indeed, our calculations show that
the corresponding triplet-state structures for the top 12 singlet-state isomers in Figure S1
are 0.82–2.20 eV higher than the GM cluster at the PBE0/6-311 + G* level. Specifically, as
illustrated in Figure S2, the lowest-lying triplet-state geometry of Na5B7 cluster, C1 (3A),
lies 0.82 eV higher above the GM structure. Other triplet-state geometries are even higher
in energy, by up to 2.20 eV (relative to the singlet GM cluster), for the 12th isomeric triplet
structure. Thus, the C3v (1A1) cluster (Figure 1a) is reasonably well defined on its potential
energy surface as the real GM structure. Alternative structures, either singlets or triplets,
are not energetically competitive, except for an LM C2v (1A1) structure as mentioned above.

The top- and side-views of GM C3v (1A1) Na5B7 cluster are presented in Figure 1a.
Basically, it is a three-layered sandwich cluster. The boron component forms a quasi-
planar B7 molecular wheel as the core layer of the sandwich. It features six-fold in-plane
coordination for the central B site. On the other hand, the Na5 component is divided into a
Na4 tetrahedron and an isolated Na atom. The two Na-based layers serve as ligands for the
B7 molecular wheel. Specifically, three Na atoms in the Na4 tetrahedron are each situated
on a B–B edge. The GM sandwich cluster may be referred to as the staggered conformation.

Twisting the Na4 tetrahedron against the B7 molecular wheel by 30◦, one readily
reaches another C3v (1A1) structure, which turns out to be a transition state (TS), as depicted
in Figure 1b. The TS structure is referred to herein as the eclipsed conformation. The closest
low-lying structure, LM C2v (1A1), is also a sandwich (Figure 2). It differs from the GM
structure in the top Na4 ligand. The Na4 ligand in the LM cluster is distorted into a roof-like
(or rhombic) structure, so that only two Na atoms are coordinated to the B–B edges. The
distortion alters the nature of bonding in the Na4 unit (vide infra).
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2.2. Bond Distances, Wiberg Bond Indices, and Natural Atomic Charges

The calculated bond distances, Wiberg bond indices (WBIs), and natural atomic
charges for GM and TS structures of the Na5B7 cluster are shown in Figures S3, 3 and S4,
respectively. The three sets of data are generally coherent with each other. In particular, the
GM and TS structures are quite similar, either qualitatively or quantitatively. Therefore, we
shall primarily describe the GM cluster only.

In the GM cluster, the B7 wheel has uniform B–B distances for the peripheral links
(1.61 Å) and radial ones (1.64 Å). These distances are shorter than the single bond (upper
limit: 1.70 Å) [33]. It is invaluable to compare these with bare B7 cluster, whose peripheral
and radial distances are 1.56–1.62 and 1.69–1.76 Å, respectively [34]. Thus, the peripheral
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B6 ring in GM Na5B7 cluster seems to be expanded, despite the fact that the radial B–B
distances are clearly shortened. The above structural data are in line with a negatively
charged B7 wheel in GM Na5B7 cluster.
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The Na–Na distances for Na4 tetrahedron in the GM structure are 3.60/3.64 Å, whose
shape also differs distinctly from that of a bare Na4 cluster. The latter assumes a rhombic
D2h structure [35]. The above Na–Na distances are far longer than a Na–Na single bond
(3.10 Å) [33]. The tetrahedral Na4 ligand is not in a neutral state (vide infra). The shortest
B–Na distance is 2.51 Å, which is longer than the recommended value for a B–Na σ single
bond. The calculated WBIs fully support the above assignments (Figure 3a). The peripheral
and radial B–B links have WBI values of 1.35 and 0.63, respectively. The Na–Na edges in
the Na4 ligand have WBIs of 0.14–0.32, which are collectively consistent with a delocalized
four-center two-electron (4c-2e) σ bond.

According to the above analysis, sandwich Na5B7 cluster has quite substantial in-
tramolecular charge-transfers in between the B7 core and the Na4/Na ligands. The calcu-
lated natural atomic charges offer a quantitative picture (Figure S4a). Basically, each B atom
in the B7 wheel has a negative charge from −0.27 to −0.35 |e|. Overall, the B7 wheel carries
a total charge of −2.37 |e|. The tetrahedral Na4 ligand has a collective charge of +1.49 |e|,
whereas the Na ligand carries a charge of +0.87 |e|. Clearly, the sandwich cluster can
be formulated as a charge-transfer [Na4]2+[B7]3−[Na]+ complex. A similar analysis of the
structure, WBIs, and natural atomic charges of the LM structure of Na5B7 cluster may be
performed (see Figure S5).

We have also run structural optimization for a bare B7
3− trianion cluster at the

PBE0/6-311 + G* level. The trianionic nature observed suggests that this should at most
be considered as a model cluster. The interatomic distances may tend to expand to some
extent, due to intramolecular Coulomb repulsion associated with three extra charges. The
calculated bond distances and WBIs of the model B7

3− disk cluster are shown in Figure S6.
The bond distances of the peripheral B–B links and radial ones are only 0.02 and 0.04 Å
longer than those in the GM Na5B7 cluster, respectively. The WBIs of the peripheral B–B
links and the radial ones show very minor variations relative to those in GM Na5B7 cluster,
by 0.03 and 0.02, respectively. The central and peripheral B atoms in the model B7

3− cluster
have negative charges of −0.30 and −0.45 |e|, respectively, which are close to those in
the GM Na5B7 cluster. Overall, the central B atom in model B7

3− cluster is slightly above
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the B6 ring plane by 0.40 Å, as compared to 0.26 Å in GM Na5B7 cluster. The sandwich
GM Na5B7 cluster moderately flattens the B7 wheel, which is intuitively expected and not
surprising. The above comparison between the bare B7

3− model cluster and the B wheel
in Na5B7 cluster further confirms the [B7]3− nature of the B wheel in GM Na5B7 cluster.
It is stressed that the [B7]3− nature in GM Na5B7 cluster represents a solid conclusion on
the basis of the structural data, natural bond orbital (NBO) analysis, and in particular
the canonical molecular orbital (CMO) analysis and adaptive natural density partitioning
(AdNDP) results. This conclusion stands firmly even without any calculations on a bare
B7

3− model cluster. The latter calculations are merely an extra computational effort, which
is a secondary part in the present paper.

3. Methods

The GM structure and low-lying isomers of Na5B7 cluster were explored by computer
global searches using the Coalescence Kick (CK) algorithm [36,37], which were also aided
by manual structure constructions. About 3000 stationary points were probed on the
potential energy surface. The Gaussian 09 program was used subsequently to reoptimize
the structures at the PBE0/6-311 + G* level [38–40]. To verify the reliability in terms of
energetics, the top candidate structures were further assessed at the B3LYP/6-311 + G* and
single-point CCSD(T)/6-311 + G*//PBE0/6-311 + G* levels [41]. Vibrational frequencies
were calculated at the same density-functional theory (DFT) levels, that is, PBE0 and B3LYP,
to ensure that the reported low-lying structures are true minima on the potential energy
surface of the system, unless specifically stated otherwise.

Chemical bonding was elucidated using the CMO analysis, as well as the AdNDP anal-
ysis [42]. The AdNDP results were visualized using the Molekel 5.4.0.8 program [43]. The
WBIs and charge distribution were calculated by NBO analysis [44] at the PBE0/6-311 + G*
level. Born–Oppenheimer molecular dynamics (BOMD) simulations [45] were performed
at PBE0/6-31G to demonstrate the structural fluxionality of the system.

4. Discussion
4.1. Chemical Bonding

An in-depth chemical bonding analysis is essential toward understanding the stability,
unique structure, and dynamic fluxionality of the title Na5B7 cluster. The CMO analysis is
fundamental for this purpose. The Na5B7 cluster has 26 valence electrons. Their occupied
CMOs are depicted in Figure 4. Of these 13 CMOs, six σ CMOs in subset (a) are primarily
composed of B 2s atomic orbitals (AOs) of the peripheral B6 ring. These CMOs show from 0,
1, 2 to 3 nodal planes, including two degenerate pairs in the middle. Following the orbital
construction principles, they can be recombined and localized as six Lewis-type two-center,
two-electron (2c-2e) σ single bonds, one for each B–B edge.

Subset (b) in Figure 4 shows three π CMOs on the B7 wheel. Owing to the six-fold
symmetry of the wheel, this π sextet cannot be localized as Lewis-type π bonds, akin to that
in benzene, thus rendering π aromaticity for the sandwich cluster. The magic 6π electron
counting conforms to the (4n + 2) Hückel rule. Likewise, the three σ CMOs in subset (c)
have similar spatial distribution compared to those in the π sextet, except that the former
CMOs are σ in nature. Again, the σ sextet is intrinsically delocalized and cannot be reduced
to Lewis-type σ single bonds. It is, therefore, imperative to claim σ aromaticity for the
sandwich as well, following the (4n + 2) Hückel rule.

Lastly, subset (d) shows only one σ CMO, which is clouded on the Na4 ligand. It
is 4c-2e in nature and cannot be localized as one Lewis-type Na–Na σ single bond. The
delocalized nature of these 2σ electrons renders three-dimensional σ aromaticity for the
tetrahedral Na4 ligand and, hence, the sandwich cluster. Overall, the sandwich Na5B7 clus-
ter collectively features three-fold π/σ aromaticity with the 6π/6σ/2σ electron counting.

The bonding picture is perfectly borne out from the AdNDP analysis. The AdNDP
scheme of sandwich GM Na5B7 cluster is presented in Figure 5. The above analysis suggests
that there is relatively minor covalent bonding between the three layers of the sandwich,
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and the cluster is indeed a charge-transfer complex. Similar CMO and AdNDP analyses
can be conducted for the TS Na5B7 cluster, which are relatively straightforward and easy to
understand. The relevant data are presented in Figures S7 and S8.
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4.2. Dynamic Structural Fluxionality

The sandwich GM Na5B7 cluster, like numerous boron-based clusters reported in the
recent literature [15,21–24,26,30,31,46,47], exhibits intriguing molecular dynamics proper-
ties. This is apparent on the basis of the close similarity between GM and TS structures
in terms of the structures (Figure 3) and bonding (Figures 4 and 5; Figures S7 and S8).
In particular, the unique three-fold 6π/6σ/2σ aromaticity (see Section 4.1) underlies the
dynamic fluxionality of GM Na5B7 cluster.

As shown in Figure 6, the GM and TS geometries of sandwich Na5B7 cluster are
connected straightforwardly. Starting from GM (labeled as “GM1”) and twisting the B7
wheel clockwise relative to the Na4 tetrahedron by 30◦, one readily reaches the TS structure.
Further rotation in the same direction by 30◦ results in recovery of the GM structure
(labeled as “GM2”). The energy barrier between the GM and TS structures is 0.04 eV at
the PBE0/6-311 + G* level, which is relatively minor considering the anticipated strong
electrostatic interaction between the B7 wheel and the Na4/Na ligands in the sandwich.
The calculated soft vibrational modes of 45.8 and 44.6i cm−1, respectively, for the GM and
TS structures are in line with the intramolecular rotation of the sandwich cluster (Figure 7).
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To further validate the dynamic fluxionality of Na5B7 cluster, a BOMD simulation
was performed at a selected temperature of 300 K. Specifically, the BOMD simulation was
performed using the Hessian-based predictor-corrector method [48] at an initial setup tem-
perature of 300 K, which was run for a time span of 50 ps (10,000 steps) at the PBE0/6-31G
level. We took the GM geometry as the initial structure and simulated the dynamic evo-
lution process. The vibrational sampling temperature was shown to be 298 K, which is
close to the setting temperature. Before being recalculated analytically, the Bofill update
method was used to update the Hessian evaluation for five steps. A trajectory step size of
1.0 amu1/2 bohr was used in the whole simulation process, and the total number of trajec-
tories was 1. The maximum point for each trajectory was 200,000. Despite the variation in
potential and kinetic energies during the BOMD process, the total energy remained con-
stant, which was conserved to 10−6 hartree during the simulation process. A short movie
extracted from the BOMD data is presented in the Supplementary Materials, which vividly
demonstrates the intriguing structural dynamics of the cluster (see Video S1). In short, the
title cluster is dynamically fluxional even at near room temperature. We comment here that
the BOMD simulation represents a relatively minor part in this study. It is not intended to
provide any information with accuracy. It offers molecular dynamics information of the
system qualitatively, rather than quantitatively.

4.3. On the Low-Lying LM Structure: The Importance of Three-Fold π/σ Aromaticity for GM
Na5B7 Cluster

Our exploration of the potential energy surface of Na5B7 cluster shows that only two
structures, GM (C3v, 1A1) and LM (C2v, 1A1), are close in energy, within about 0.2 eV at
all three levels of theory (Figure S1). Other isomeric structures are substantially higher in
energy, by at least 0.9 eV. Therefore, it is invaluable to understand the LM cluster, which is
depicted in Figure 2. Basically, the LM and GM structures differ in the upper Na4 ligand.
While the Na4 ligand in GM cluster is a slightly distorted tetrahedron (3.60 versus 3.64 Å;
Figure S3a), it becomes a roof-like, quasi-planar ligand (or a rhombic ligand) in the LM
cluster (Figure S5a). In the LM cluster, the roof-like Na4 ligand appears to interact with
the B7 wheel primarily via two Na atoms along the longer diagonal, which allows optimal
intramolecular charge transfer (Figure S5c). As a consequence, chemical bonding in the
roof-like Na4 ligand is dominated by σ bonding along the shorter diagonal. The shorter Na2
diagonal in the highest occupied molecular orbital (HOMO) contributes to 66% of the whole
Na4 ligand (Figures S9d and S10b). In other words, chemical bonding in the roof-like Na4
ligand is largely a Lewis-type 2c-2e σ bond in nature, at least in the zeroth-order picture.

In contrast, the 2σ framework in GM cluster is truly delocalized in a three-dimensional
manner, which offers extra stabilization to the sandwich GM cluster. As a model system,
one can evaluate a free-standing Na4

2+ dication cluster in its tetrahedral Td and rhombic
D2h geometries (Figure S11). At the PBE0 level, the Td cluster is 0.21 eV more stable than
its rhombic D2h isomer. This energetic difference is comparable to those between the GM
and LM structures of Na5B7 cluster (Figure S1). Thus, 2σ aromaticity is clearly a decisive
factor that helps distinguish between the GM Na5B7 cluster from its LM isomer.

The tetrahedral Na4 ligand, in its specific [Na4]2+ charge state, is the simplest polyhe-
dral structure. Hence it can be considered the simplest example of “spherical” aromaticity.
The 2σ electron counting also conforms to the 2(n + 1)2 rule for spherical aromaticity.
Alternatively, the tetrahedral Na4 ligand may be viewed as the simplest superatom [49–51].

Interestingly, one can directly connect the GM and LM structures via a TS geometry,
TSLM–GM, as shown in Figure 8. The TSLM–GM is located at only 0.13 eV above LM at
PBE0. The TSLM–GM structure has a soft imaginary mode of 53.0i cm−1. The GM cluster
lies 0.19 eV below LM, as well as 0.32 eV below TSLM–GM. According to this energy
diagram, the GM cluster is relatively robust against isomerization. Our electronic structure
calculations also indicate that the energy gap of GM Na5B7 cluster (2.89 eV; see Figure 9),
between its HOMO and lowest unoccupied molecular orbital (LUMO), is significantly
larger than that in its LM isomer (0.25 eV), thus demonstrating the electronic robustness
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of sandwich GM Na5B7 cluster. Indeed, the sizable energy gap in Figure 9 is a strong
indication that a [B7]3− motif in binary Na5B7 cluster is appropriate, which favors a closed-
shell configuration in the triply charged anionic state. The same reason underlies the nature
of a charge-transfer [Na4]2+[B7]3−[Na]+ complex for GM Na5B7 cluster, as well as its unique
sandwich geometry.
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5. Conclusions

We have computationally designed a boron-based alloy Na5B7 cluster that assumes
unique three-layered sandwich structure. The cluster may be described as a charge-transfer
[Na4]2+[B7]3−[Na]+ complex, which is composed of a quasi-planar B7 wheel as core, as
well as a Na4 tetrahedron and an isolated Na atom as its two ligand layers at the top and
at the bottom. Chemical bonding analysis indicates magic 6π/6σ double aromaticity for
the [B7]3− wheel and three-dimensional 2σ aromaticity for the tetrahedral [Na4]2+ ligand.
The latter is also the simplest example of three-dimensional or spherical aromaticity, as
well as the simplest superatom. Collectively, the Na5B7 cluster has three-fold 6π/6σ/2σ
aromaticity, which underlies its thermodynamic stability. The same mechanism facilitates
the intriguing dynamic structural fluxionality for the sandwich cluster, even at near room
temperature. This work also highlights the structural and electronic robustness of the
[B7]3− molecular wheel as a potential inorganic ligand.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28073276/s1. Table S1: Cartesian coordinates
for global-minimum (GM) and transition-state (TS) structures of Na5B7 cluster at PBE0/6-311 + G*;
Figure S1: Alternative optimized structures of Na5B7 cluster at PBE0; Figure S2: Selected triplet-state
structures of Na5B7 cluster; Figures S3 and S4: Calculated bond distances and natural atomic charges
for GM and TS structures of Na5B7 cluster; Figure S5: Bond distances, Wiberg bond indices (WBIs),
and natural atomic charges for a local minimum (LM) structure; Figure S6: Calculated bond distances
and WBIs of model B7

3− cluster at PBE0/6-311 + G*; Figures S7–S10: CMOs and AdNDP schemes of
TS and LM structures of Na5B7 cluster; Figure S11: Relative energies for tetrahedral versus rhombic
structures of a free-standing Na4

2+ model cluster at PBE0; Video S1: A short movie extracted from
the BOMD simulation for Na5B7 cluster at 300 K.
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