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Abstract: Chalcones continue to occupy a venerated status as scaffolds for the construction of a variety
of heterocyclic molecules with medicinal and industrial properties. Syntheses of hybrid chalcones
featuring heteroaromatic components, especially those methods utilizing green chemistry principles,
are important additions to the preparative methodologies for this valuable class of molecules. This
review outlines the advances made in the last few decades toward the incorporation of heteroaromatic
components in the construction of hybrid chalcones and highlights examples of environmentally
responsible processes employed in their preparation.
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1. Introduction

The chalcone class of enones has been a privileged scaffold in organic synthesis for
more than a century. Kostanecki and Tambor are credited with the first reported preparation
of E-1,3-diphenylprop-2-en-1-one and coined the term “chalcone” in 1899 [1]. Figure 1
shows the structure of E-chalcone, the most energetically favorable stereoisomer, as well as
the sterically encumbered and less common Z-chalcone, both of which contain benzene
rings at C1 and C3 joined by a three-carbon α,β-unsaturated ketone unit. The absolute
configuration of solid chalcone stereochemistry obtained during synthesis can often be
determined with X-ray crystallography [2,3].
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1. Introduction 
The chalcone class of enones has been a privileged scaffold in organic synthesis for 

more than a century. Kostanecki and Tambor are credited with the first reported prepara-
tion of E-1,3-diphenylprop-2-en-1-one and coined the term “chalcone” in 1899 [1]. Figure 
1 shows the structure of E-chalcone, the most energetically favorable stereoisomer, as well 
as the sterically encumbered and less common Z-chalcone, both of which contain benzene 
rings at C1 and C3 joined by a three-carbon α,β-unsaturated ketone unit. The absolute con-
figuration of solid chalcone stereochemistry obtained during synthesis can often be deter-
mined with X-ray crystallography [2,3]. 
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Figure 1. Chalcone structure and stereochemistry. 

By convention, the aromatic ring attached to C1 is designated as ring A while the 
aromatic ring attached to C3 is designated as ring B. For the purposes of this review, we 
will adhere to the conventional ring designations in describing preparations of heteroar-
omatic hybrid chalcones. 

The utility of chalcones both as a pharmacophore and as a scaffold in the synthesis 
of a wide variety of heterocycles ranging from pyrazoles, isoxazoles, triazoles, barbituric 
acid derivatives, etc. has been investigated thoroughly over the years, with numerous re-
search articles as well as several reviews appearing in the last decade describing the cur-
rent chalcone synthetic strategies, the heterocycles derived from them, and the bioactivity 
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Figure 1. Chalcone structure and stereochemistry.

By convention, the aromatic ring attached to C1 is designated as ring A while the
aromatic ring attached to C3 is designated as ring B. For the purposes of this review, we will
adhere to the conventional ring designations in describing preparations of heteroaromatic
hybrid chalcones.

The utility of chalcones both as a pharmacophore and as a scaffold in the synthesis of
a wide variety of heterocycles ranging from pyrazoles, isoxazoles, triazoles, barbituric acid
derivatives, etc. has been investigated thoroughly over the years, with numerous research
articles as well as several reviews appearing in the last decade describing the current
chalcone synthetic strategies, the heterocycles derived from them, and the bioactivity and
pharmaceutical uses of these compounds [4–13]. Within that context, the preparation of
more highly functionalized chalcones that contain heteroaromatic components has been an
area of intense research over the last decade [10,14–30].
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Research has established that heteroaromatic hybrid chalcones themselves possess
broad medicinal value as anticancer [16,19,23], antimicrobial [11,20,23,28], antifungal [16],
anti-tuberculosis [25] and anti-inflammatory agents [22] as well as having other important
pharmacological functions [9,10], agrochemical utility as photosynthesis inhibitors [18] and
industrial use as photoinitiators in 3D printing [17]. Figure 2 shows a representative selection
of heteroaromatic hybrid chalcone pharmacophores and industrially important compounds.
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Figure 2. Medicinally and industrially important heteroaromatic hybrid chalcones.

Synthetic methodologies to prepare hybrid chalcones have developed rapidly over
the last two decades. To the best of our knowledge, no reviews have been found that
focus on heteroaromatic chalcone synthesis and the green synthesis methods employed
to prepare them. This review will focus on the construction of heteroaromatic hybrid
chalcones with the Claisen–Schmidt condensation, 1,3-dipolar additions, ring-opening
reactions, 3+2 annulations and Wittig reactions. The review will discuss four different
heteroaromatic hybrid chalcone types: A-ring and B-ring-substituted mono-heteroaromatic
hybrid chalcones, hybrid chalcones possessing heteroaromatic moieties on both the A and
B rings, and the synthesis strategies used to prepare heteroaromatic bis chalcone hybrids.
Herein, we also detail the green methods that have been employed to prepare these
hybrid chalcones including microwave irradiation, sonication, ball milling, continuous flow
reactions, the use of benign solvents, solvent-free/solid-state processes and nanocatalysis.
See Figure 3.
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Figure 3. Heteroaromatic hybrid chalcone construction.

2. A-Ring Heteroaromatic Hybrid Chalcone Synthesis

This section catalogues several representative conventional and green processes by
which hybrid chalcones bearing a heteroaromatic species at ring A may be prepared.
Heteroaromatic components of the chalcone products include a variety of single-ring (furan,
pyrrole, thiazole, thiophene, pyridine, pyrimidine) and fused-ring (indole, benzimidazole,
benzothiazole, benzofuran, pyrazolopyridine, quinoline) systems.

2.1. Claisen–Schmidt Condensations

The Claisen–Schmidt (C-S) condensation has been widely used to prepare chalcones for
many years. This reaction, which can be catalyzed by acids or bases, offers mild conditions
that tolerate a wide scope of functionality in both the ketone donors and aldehyde acceptors.

2.1.1. Base-Catalyzed C-S Condensations

The hydroxide bases KOH, NaOH and to a lesser extent Ba(OH)2 are the bases used to
promote the condensations depicted below in Schemes 1–12. These bases may be introduced
to the reaction medium as dilute or concentrated aqueous solutions or as solids. Ethanol
or methanol are the solvents of choice in most reactions depicted herein. The reaction
temperatures vary from 0 ◦C to those obtained by refluxing the alcoholic solvents. The
reaction times range from less than a minute in the case of selected microwave-mediated
reactions and can extend to 72 h for the conventional condensations.
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In our first entry, three room-temperature C-S preparations of pyrrolyl chalcone 3 are
presented that have differing reaction times and different base concentrations. Sweeting et al.
(Scheme 1a) used strongly basic conditions (60% aqueous KOH) and centrifugation mixing
to prepare the pyrrolyl chalcone 3 in a modest yield. The low yield is likely attributed
to the short reaction time. Ref. [31] Robinson et al. reported that increasing the reaction
time ([32], Scheme 1b) using NaOH (aq) in ethanol increased the yield of the pyrrolyl
chalcone. Using 20 mol % NaOH (aq) in ethanol, Song et al. obtained a 91% yield in the
preparation of the chalcone (Scheme 1c). Ref. [33] Lokeshwari’s team (Scheme 2a) and
Liu’s group prepared furyl chalone 5 in an 87% yield using 0.1 mol % KOH (aq) in 4 h,
while Liu’s group (Scheme 2b) obtained equally high yields with 20 mol% NaOH (aq) in
6 h [34,35]. Robinson et al. (Scheme 3) condensed 2-acetylfuran and 2-acetyl-5-methylfuran
with assorted benzaldehydes at room temperature en route to the twelve furyl chalcones 8
in modest to medium yields [36].
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Parveen et al. reported a nearly quantitative conversion for the room-temperature C-S
condensation of 2-acetylthiophene and benzaldehyde using aqueous KOH (Scheme 4) in
ethanol to the thienyl chalcone 10 [37].

Sunduru et al. reported the preparation of pyridyl chalcone derivatives 13 by condens-
ing 4-acetylpyridine with the respective aromatic aldehyde (Scheme 5) [38]. In this reaction,
one equivalent of 4-acetylpyridine was added dropwise to a cooled methanolic solution
containing 10% aqueous NaOH. Then, one equivalent of aldehyde was added slowly at
0 ◦C. After workup and recrystallization, the pyridyl chalcones were obtained in yields
ranging from 67 to 76% (Scheme 5).

Sinha and coworkers (Scheme 6) used similar conditions to synthesize eighteen
1,3-thiazolylchalcones 16 in very good overall yields [39].

Zhao et al. (Scheme 7) used reflux conditions to achieve yields in excess of 60% for the
small series of fused-ring indolyl chalcones 18 [40]. In two separate publications, Hsieh
and coworkers used base-catalyzed C-S condensations to prepare indolyl (Scheme 8, [41]),
thiazolyl and benzothiazolyl hybrid chalcones (Scheme 9, [42]).

Saito’s team used 5% KOH in ethanol at room temperature to prepare a series of
functionalized benzofuran hybrid chalcones in yields as high as 97% (Scheme 10) [43].

Grigoropoulou’s team found barium hydroxide octahydrate effective in promot-
ing the condensation of both single- and fused-ring heteroaromatic ketones with dehy-
droabietic acid methyl ester en route to sixteen hybrid chalcones in good overall yields
(Scheme 11) [44].

Base-catalyzed C-S condensations have also been demonstrated using green princi-
ples. These processes include the use of benign solvents including water and microwave
irradiation. Mubofu and Engberts reported a C-S condensation reaction of 2-acetylpyridine
and benzaldehyde using 10% NaOH (Scheme 12) [45]. The reagents were finely dispersed
in water at 4 ◦C and after workup the pyridyl chalcone 31 was obtained in a good yield
(Scheme 12).

Jianga et al. showed that the condensation of 2-acetylfuran or 2-acetylthiophene and
benzaldehyde using 2 mol% NaOH (aq) gave (E)-1-(Furan-2-yl)-3-phenylprop-2-en-1-one or
(E)-1-(thiophen-2-yl)-3-phenylprop-2-en-1-one at room temperature in nearly quantitative
yields (Scheme 13) [46].
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Ritter et al. (Scheme 14) used 2-acetylthiophene 9 and assorted benzaldehydes in
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Khan and Asiri (Scheme 15) showed that 3-acetylthiophene 33 underwent a microwave-
mediated C-S condensation with several benzaldehydes in less than a minute to give thienyl
chalcones 34a–f in yields exceeding 82% [48].
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Sarveswari and Vijayakumar (Scheme 16) conducted a comparative study of conven-
tional and microwave processes in which four examples of highly substituted quinolinyl
hybrid chalcones 36a–d were prepared [49]. Both processes gave the desired chalcones in
yields greater than 75%. Particularly noteworthy is the fact that the microwave reaction
time is 1/144 of the conventional reaction time.
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Scheme 16. Synthesis of quinolinyl chalcones.

Polo et al. demonstrated that sonochemical mediation was very effective in preparing
a series of pyrazolopyridyl hybrid chalcones 38a–e (Scheme 17) in high yields that compare
favorably with conventional base-catalyzed C-S condensations [50].
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2.1.2. Acid-Catalyzed C-S Condensations

In the recent literature, Adnan et al. showed that p-toluenesulfonic acid (PTSA)
effectively catalyzed the condensation of 2-acetylthiophene (9) and p-tolualdehyde (2) in a
green solventless process in which the reactants were ground in a warm mortar and pestle
for 4 min to give the thienyl chalcone 32e in a very good yield [13]. See Scheme 18.
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Shaik et al. reported an acid-catalyzed condensation reaction of 2,4-dimethyl-
5-acetylthiazole with 2,4-difluorobenzaldehyde to prepare (E)-1-(2′,4′-dimethyl)-
(5-acetylthiazole)-(2,4”-difluorophenyl)-prop-2-en-1-one (Scheme 19) [23].
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2.2. Non C-S Condensations

Our final installment of A-ring hybrid chalcone synthesis is an interesting green
coupling reaction between a series of arylacetylene derivatives (42a–j) and various pyridine
and benzopyridine carboxaldehydes (Scheme 20). Yadav’s group showed that a copper-
based silica-coated magnetic nanocatalyst (Cu@DBM@ASMNPs) used in conjunction with a
piperidine base was very effective in preparing ten hybrid chalcones in yields ranging from
49 to 94% [51]. A noteworthy feature of this reaction was the ability to recover the catalyst
via a magnet. The catalyst was reported to be efficient for up to seven reaction cycles.
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3. B-Ring Heteroaromatic Hybrid Chalcone Synthesis

This section catalogues selected conventional and green processes by which hybrid
chalcones containing a heteroaromatic component at ring B may be prepared. In addi-
tion, examples of tandem ring-opening dipolar additions to obtain ring B heteroaromatic
substituted chalcones are presented. The heteroaromatic components of the chalcone prod-
ucts highlighted in this section include a variety of single-ring (furan, pyrrole, pyrazole,
thiazole, thiophene, pyridine) and fused-ring (indole, benzimidazole, benzothiazole, ben-
zofuran, quinoline, imidazo [1,2-a]pyrimidine or imidazo [1,2-a]pyridine, quinoxaline,
carbazole) systems.

3.1. Claisen–Schmidt Condensations

As in the preceding section, Claisen–Schmidt (C-S) condensation has been widely
used to prepare B-ring heteroaromatic chalcones. This reaction, which can be catalyzed by
bases or acids, offers mild conditions that tolerate a wide scope of functionality in both the
ketone donors and aldehyde acceptors.

Base-Catalyzed C-S Condensations

In the preparations shown below, NaOH and KOH are the bases of choice. Shown in
Scheme 21, Li et al. used dilute aqueous KOH to prepare pyrrolyl chalcone (46) in a very
good yield. Using mild conditions, Robinson et al. (Scheme 22) condensed acetophenones
47 and furfural derivatives 48 to prepare five furyl chalcones (49a–e) that show promise as
monoamine oxidase inhibitors in low to medium yields [36].
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Gadhave and Uphade demonstrated the satisfactory condensation of 4-morpho-
linoacetophenone 55 with 4-pyrazolocarbaldehydes 56 conducted at room temperature,
which provided five examples of 4-pyrazolylchalcones 57 [53]. See Scheme 24.
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An interesting study conducted by Mallik and associates involves the preparation of
pyrrole-substituted hybrid chalcones from the C-S condensation of several acetophenones
58 and 2-formylpyrrole 44 under different molar ratios of 58:44 [54]. As Scheme 25 shows,
the desired product 59 predominated when the reactant molar ratios were 1:1, but when
the ratio was lowered to 1:2, a nearly equal proportion of the product mixture was found to
be the heteroaromatic ketone 60. Upon increasing the molar proportion of 58 to four times
that of 44, ketone 60 was the major product. The authors propose an interesting mechanism
by which 60 is formed—a twin aldol addition—intramolecular cyclization-dehydration.
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Fused-ring heteroaromatic aldehydes have also been successfully condensed with
various acetophenones to prepare B-ring hybrid chalcones under typical C-S reaction
conditions. Zhao et al. prepared indole hybrid chalcones 63a–e (Scheme 26) from assorted
acetophenones and N-methylindolycarbaldehydes 62 in yields ranging from 60 to 90% [40].
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Bandgar and coworkers (Scheme 27) synthesized a diverse library of carbazole hybrid
chalcones 66 [30], while Bindu’s team condensed acetophenone derivatives with quinoline
carboxaldehdes 68 under mild C-S conditions (Scheme 28) to prepare eight examples of
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B-ring-substituted quinolinoid hybrid chalcones 68a–h [55]. Abonia et al. prepared the
chromen-4-one—quinoline hybrid chalcone 71 under similar conditions [56]. See Scheme 29.
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Scheme 29. Quinoxalinyl hybrid chalcone synthesis.

Desai and coworkers used mild C-S reaction conditions to prepare a series of thirteen
quinoxalinyl hybrid chalcones 73a–m in yields ranging from 60 to 95%, as shown in
Scheme 29 [24].
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In a study of microtubule polymerization inhibition, Sun et al. synthesized a library
of fused-ring heteroaromatic chalcones featuring indoles, benzofurans, dibenzofurans,
benzothiophenes, dibenzothiophenes, and benzimidazoles [57]. See Figure 4. Of particular
note were the numerous methods used in the preparation of these hybrid chalcones, which
included both base-promoted processes (piperidine, NaOH, KOH, NaOMe, Cs2CO3 and
NaH) in methanolic and ethanolic solvents, Lewis acid catalysis (BF3•etherate) in dioxane
solvent and Brønsted (glacial acetic acid) acid catalysis in toluene. Scheme 30 depicts the
scope of this work.
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Base-catalyzed C-S condensations that employ green chemistry principles to produce
B-ring-substituted hybrid chalcones have also been successfully conducted. See Scheme 31.
These processes include the use of benign solvents, solvent-free reactions, microwave
irradiation, ultrasound and ball milling. For example, Ashok’s group compared a typical
base-catalyzed C-S condensation of 83 and 84 with a solvent-free, microwave-mediated
process to prepare a series of carbazolyl hybrid chalcones 85 [58]. The yields for the short-
duration microwave-mediated reactions exceeded those of the lengthy conventional C-S
reactions in every case. Bhatt et al. prepared the furyl chalcone 87 using both conventional
C-S and ultrasound processes to condense furfural 48 and 2,4-dihydroxyacetophenone
86 [59]. The effectiveness of sonication is evident—a 10% increase in yield in 1/20 the
reaction time. Jadhava’s team used PEG-400 as a benign solvent to mediate the condensation
of 4-fluoroacetophenone 84 and a series of pyrazole carbaldehydes 85 en route to eight
fluorinated pyrazolyl hybrid chalcones 86 [60]. Kudlickova and coworkers employed a
mechanochemical ball-milling process to prepare a series of indoylchalcones 92 in yields
ranging from 28 to 79% in only 30 min [61]. Nimmala’s group used a solventless process
to condense various acetophenones and imidazo [1,2-a]pyrimidine 93 or imidazo [1,2-
a]pyridine 95 en route to hybrid chalcones 94a–f and 96a–f, respectively, in very good
yields [62]. Joshi and Saglani employed ultrasound to assist in the condensation of the
fused-ring ketone 97 and a series of quinoline carbaldehydes 98 to prepare the quinolinyl
hybrid chalcones 99 [63].
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3.2. Non C-S Condensations

The final entries describing ring-B-substituted heteroaromatic hybrid chalcones fea-
ture unique tandem reactions involving pyrylium tetrafluoroborate derivatives. Devi
and colleagues conducted a very interesting examination of a single-pot, base-mediated,
tandem-ring-opening, 1,3-dipolar addition reaction between several electron withdrawing
group (EWG)-substituted diazo compounds 101 with tri-substituted pyrylium salts 100,
producing an extensive array of pyrazole hybrid chalcones 102 in moderate to high yields,
as shown in Scheme 32 [64].

Tan and Wang leveraged a similar pyrilium ring-opening strategy in a single-pot 3+2
reductive annulation with benzil derivatives 103 to prepare a comprehensive library of
tetra-substituted Furano chalcones 105a–ii in yields as high as 70% [65]. See Scheme 33. A
noteworthy observation in both works was the finding that Z-chalcone derivatives were
the major or sole product in all instances.
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4. A–B Ring Dual Heteroaromatic Hybrid Chalcone Synthesis

This section catalogues selected processes by which hybrid chalcones bearing a het-
eroaromatic species at both rings A and B may be prepared. Of particular note is the
incredibly diverse array of chalcones produced that feature 21 different heteroaromatic
A–B ring-substituted groups on the hybrid chalcones shown in Schemes 34–46.
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4.1. Claisen–Schmidt Condensations

As noted in the preceding sections, the Claisen–Schmidt (C-S) condensation is the
most common method used to prepare A–B ring heteroaromatic chalcones. This reaction,
which can be catalyzed by bases or acids, offers mild conditions that tolerate a wide scope
of functionality in both the ketone donors and aldehyde acceptors.

4.1.1. Base-Catalyzed C-S Condensations

In most instances, NaOH and KOH are the most widely used bases. Sweeting’s
group synthesized and obtained an X-ray crystal structure for the pyrrolyl–thienyl hybrid
chalcone 106 as part of a chalcone solubility and stability study [30]. See Scheme 34. While
the use of centrifuging to mix the reagents is of interest, the low yield is likely attributable
to the limited reaction time of 30 min. Sinha and coworkers prepared two thiazolyl–furyl
hybrid chalcones in high yields (Scheme 35) while investigating potential ant-lipoxygenase
agents [37].

Fused-ring A–B hybrid chalcone examples have also been successfully prepared
under very mild, base-catalyzed C-S conditions. Bandgar’s team prepared the pyridyl
and thienyl–carbazolyl heteroaromatic hybrid chalcones 108–109 in very good yields
(Scheme 36) [29]. While investigating ACP reductase inhibition, Desai’s group prepared
the pyridyl/quinoxazolyl chalcone 110 in a good yield as shown in Scheme 37 [23].
Mallik et al. found that when one equivalent of acetone and four equivalents of 2-pyrrole
carbaldehyde were condensed in 20% KOH, the unusual pyrrolizinyl–pyrrolyl chalcone
112 was formed in modest yield (32%), accompanied by the acetylpyrrolizine 113 (17%) [53].
See Scheme 38. This finding is complementary to the work shown in Scheme 25 in which
similar pyrrolizine products were formed. In an examination of chalcones with potential
anticancer properties, Bukhari prepared a diverse set of furyl-, thienyl-, benzofuryl, and
benzothienyl-1,4-pyrazinyl chalcones 116 in yields ranging from 42 to 75%. Extending
that work to include condensations of 4-heteroaromatic acetophenones 117 with pyrazine
carbaldehyde 115 gave rise to an array of hybrid chalcones 118 in moderate yields [18]. See
Scheme 39.
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4.1.2. Green C-S Condensations

The recent literature reports a number of green, base-promoted C-S condensations
used to prepare A–B ring heteroaromatic hybrid chalcones. While studying potential
antimicrobial agents, Kumar et al. synthesized ten furyl-triazolyl chalcones 120a–j via a
continuous-flow reactor [66]. Of note are the exceptional yields (84–90%) obtained in only
15 min. See Scheme 40. Moreover, in pursuit of suitable chalcones that have antimicrobial
properties, Usta’s team prepared two pyrrole–pyridyl chalcones using both conventional
and microwave processes [27]. The yields reported were as high as 90% after only 3 min of
irradiation. See Scheme 41.

Several syntheses of A–B ring heteroaromatic chalcones having fused-ring systems
have also been reported. Khan and Asiri prepared two hybrid chalcones and tested them for
antibacterial activity, a thienyl–pyrazole chalcone as well as a thienyl–carbazolyl chalcone
using a microwave oven [46]. See Scheme 42. The base-catalyzed process, completed in
only 45 s, provided the chalcones in 89–90%. Quinolinyl chalcones, such as those prepared
by Sarveswari and Vijayakumar in Scheme 43, have also shown promise as antibacterial
and antifungal agents [47]. Again, yields for the short-duration, microwave-mediated
process was on par with or exceeded those obtained by the conventional C-S reactions
conducted in their comparative study.

Acetylated pyrazolo pyridines 37 and 128 were condensed with five heteroaryl aldehy-
des by Polo et al. under both ultrasonic and conventional conditions to prepare interesting
A–B ring hybrid chalcones substituted with furyl, pyridyl, imidazolyl and quinolinyl
groups [48]. See Scheme 44. Chalcone series 38 was part of a larger study discussed earlier
in the review (Scheme 17). Yields for the short-duration ultrasound-assisted condensation
met or exceeded those obtained by the conventional, base-promoted C-S condensations
performed by the group.

In Scheme 45, Kumar et al. employed piperidine base to catalyze the microwave-
mediated condensation of indoles 131 and 132 en route to a large array of highly differ-
entially functionalized twin indolyl hybrid chalcones 133 [67]. The yields reported were
excellent, ranging from 72 to 92%, especially given the reaction time of 5 min.

Our final entry in this section is a green, solid-state, acid-catalyzed condensation of
2-acetylthiophene 9 and the thienyl carboxaldehyde 51 conducted by Adnan and associates,
which produced the twin thienyl chalcone 134 in an excellent yield [13]. See Scheme 46.

5. Heteroaromatic Bis Chalcone Hybrid Synthesis

This section catalogues several processes by which heteroaromatic bis chalcone hybrids
bearing two or more heteroaromatic species have been prepared. The reactions feature
both heteroaromatic donors and acceptors as the linker unit in the bis hybrid chalcone
systems. Conventional and green condensations as well as a unique Wittig preparation
are discussed.

5.1. Claisen–Schmidt Condensations

The Claisen–Schmidt (C-S) condensation is the most widely used method to pre-
pare heteroaromatic bis chalcone hybrids. In this section, we present base-promoted
condensations that tolerate a wide scope of functionality in both the bis-ketone donors and
bis-aldehyde acceptors.

5.1.1. Base-Catalyzed C-S Condensations

As seen in the previous sections, NaOH and KOH are the most widely used bases.
Methanol and ethanol are the solvents of choice in these condensations. In the first entry
of bis hybrid chalcone preparation (Scheme 47), Alidmat et al. prepared three examples
of mono- and dichlorinated bis-thienyl chalcones with potential as anticancer agents [68].
Of note is the one-pot preparation of the non-symmetric bis hybrid chalcone 138 from the
condensation of 4-formylbenzaldehyde 135 (1 mole) and equimolar quantities of acetylthio-
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phenes 136 and 137. In contrast, the condensation of 135 (1 mole) with two moles of 136 or
137 resulted in the symmetric bis hybrid chalcones 139 or 141, respectively.
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Scheme 47. Synthesis of bis thienyl hybrid chalcones.

While investigating photoinitiators with applications in 3D/4D printing, Chen’s group
prepared several bis hybrid chalcones that show promise as light-sensitive photoinitiators.
See Scheme 48. 4,4′-diacetylbiphenyl 142 was condensed with 2-formylthiophene under
mild, base-promoted conditions to synthesize the bis thienyl biphenyl chalcone 143 in
a good yield [17]. Under the same reaction conditions, 2,6-diacetylpyridine 144 was
condensed with several substituted benzaldehydes 145 en route to three pyridyl bis aryl
hybrid chalcones 146a–c in yields ranging from 58 to 86%.
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cient to give product yields in excess of 70%. [69] In a study of the anti-inflammatory ac-
tivity of 3,4-bis-chalcone-N-arylpyrazoles, Abdel-Aziz et al. prepared eight examples of 
assorted aryl- and heteroaryl-substituted chalcone pyrazoles 152 using an aqueous 
KOH/EtOH medium at 60 °C and microwave irradiation [70]. The total reaction time re-
ported was only four minutes to achieve yields ranging from 70 to 93%. Analogous con-
ventional C-S condensations were also carried out over a 12 h period; the yields obtained 
were about 75–85% of those obtained with μwave mediation. 
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While investigating lung cancer cell growth inhibitors, Zhao et al. prepared the indole
bis phenyl chalcone 148 by condensing 1,2-diacetyl-3-methylindole 147 with benzaldehyde
in 60% yield [54]. See Scheme 49.
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Presented in Schemes 50 and 51 are green methods used to prepare bis heteroaromatic
chalcones. Asir and coworkers used sonochemical mediation to prepare examples of bis
thienyl and bis furyl hybrid chalcones 150a–b. The reaction time of 5 min was sufficient to
give product yields in excess of 70%. [69] In a study of the anti-inflammatory activity of
3,4-bis-chalcone-N-arylpyrazoles, Abdel-Aziz et al. prepared eight examples of assorted
aryl- and heteroaryl-substituted chalcone pyrazoles 152 using an aqueous KOH/EtOH
medium at 60 ◦C and microwave irradiation [70]. The total reaction time reported was
only four minutes to achieve yields ranging from 70 to 93%. Analogous conventional C-S
condensations were also carried out over a 12 h period; the yields obtained were about
75–85% of those obtained with µwave mediation.

Molecules 2023, 27, x FOR PEER REVIEW 23 of 28 
 

 

 
Scheme 48. Synthesis of biphenyl bis thienyl and pyridyl bis aryl hybrid chalcones. 

While investigating lung cancer cell growth inhibitors, Zhao et al. prepared the in-
dole bis phenyl chalcone 148 by condensing 1,2-diacetyl-3-methylindole 147 with benzal-
dehyde in 60% yield [54]. See Scheme 49. 

N
CHO

+ EtOH, 2–4 h
NaOH

N

O
O

O

O

148 (60%)2147  
Scheme 49. Synthesis of indolyl bis aryl hybrid chalcones. 

Presented in Schemes 50 and 51 are green methods used to prepare bis heteroaro-
matic chalcones. Asir and coworkers used sonochemical mediation to prepare examples 
of bis thienyl and bis furyl hybrid chalcones 150a–b. The reaction time of 5 min was suffi-
cient to give product yields in excess of 70%. [69] In a study of the anti-inflammatory ac-
tivity of 3,4-bis-chalcone-N-arylpyrazoles, Abdel-Aziz et al. prepared eight examples of 
assorted aryl- and heteroaryl-substituted chalcone pyrazoles 152 using an aqueous 
KOH/EtOH medium at 60 °C and microwave irradiation [70]. The total reaction time re-
ported was only four minutes to achieve yields ranging from 70 to 93%. Analogous con-
ventional C-S condensations were also carried out over a 12 h period; the yields obtained 
were about 75–85% of those obtained with μwave mediation. 

 
Scheme 50. Sonochemical synthesis of bis thienyl and bis furyl hybrid chalcones. Scheme 50. Sonochemical synthesis of bis thienyl and bis furyl hybrid chalcones.

Molecules 2023, 27, x FOR PEER REVIEW 24 of 28 
 

 

 
Scheme 51. Microwave-mediated synthesis of bis aryl/heteroaryl chalcone pyrazoles. 

5.1.2. Non C-S Condensations 
Our final installment for the bis hybrid chalcone section is an early example pub-

lished by Saikachi and Muto in 1971 [71]. Their work, shown in Scheme 52, which focused 
on the preparation and utility of bisphosphoranes in oligimerization studies, exemplified 
how the bis-Wittig reagents 153, 155 and 157 could be successfully coupled with furan or 
thienylcarbaldehydes to provide a series of bis heteroaromatic chalcones 154, 156 and 158 
in yields ranging from 45 to 99%. This work was unique in providing the bis hybrid chal-
cone system with benzene, biphenyl, diphenyl ether, diphenylmethylene, and diphe-
nylethylene linker units. 

 
Scheme 52. Wittig synthesis of bis thienyl and bis furyl hybrid chalcones. 

6. Conclusions and Future Directions 
This review of the preparation of heteroaromatic hybrid chalcones gives a robust ac-

counting of more than 50 historic and current synthetic processes leading to more than 
430 different hybrid chalcone examples that include single-ring and multi-ring heteroar-
omatic moieties. We have shown that the venerable Claisen–Schmidt reaction, by far the 
most common condensation method discussed herein, has been successfully used in ei-

Scheme 51. Microwave-mediated synthesis of bis aryl/heteroaryl chalcone pyrazoles.

5.1.2. Non C-S Condensations

Our final installment for the bis hybrid chalcone section is an early example published
by Saikachi and Muto in 1971 [71]. Their work, shown in Scheme 52, which focused on
the preparation and utility of bisphosphoranes in oligimerization studies, exemplified
how the bis-Wittig reagents 153, 155 and 157 could be successfully coupled with furan or
thienylcarbaldehydes to provide a series of bis heteroaromatic chalcones 154, 156 and 158 in
yields ranging from 45 to 99%. This work was unique in providing the bis hybrid chalcone
system with benzene, biphenyl, diphenyl ether, diphenylmethylene, and diphenylethylene
linker units.
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6. Conclusions and Future Directions

This review of the preparation of heteroaromatic hybrid chalcones gives a robust
accounting of more than 50 historic and current synthetic processes leading to more than
430 different hybrid chalcone examples that include single-ring and multi-ring heteroaro-
matic moieties. We have shown that the venerable Claisen–Schmidt reaction, by far the
most common condensation method discussed herein, has been successfully used in either
base-promoted or acid-catalyzed processes en route to heteroaromatic hybrid chalcones.
We note that variations in the base or acid identity, solution concentration and physical state
often make direct comparisons of the yields challenging. Also discussed has been the wide
array of reaction conditions, such as the temperature and reaction time, which likewise
impact the overall yield. Finally, the topology and electronic reactivity of the ketone donors
and aldehyde acceptors likely modulate the product stereochemistry and yields as well.

Additionally, this review has provided the reader with an appreciation of alternative
methods used to prepare these hybrid chalcones. Presented in our review are metal-
catalyzed coupling reactions, cycloadditions, ring-opening processes and Wittig reactions
that enable the formation of more than 75 hybrid chalcone examples.

A key thrust of this review has been to highlight the application of green chemistry
methods in heteroaromatic hybrid chalcone synthesis. From the use of benign/renewable
solvents and solvent-free and solid-state processes, researchers have demonstrated the
ability to minimize waste streams. Through the use of sonochemical, mechanochemical,
microwave irradiation, continuous-flow reactions and nanocatalytic methods, scientists
minimize the reagent costs, reaction times and energy expenditure while optimizing the
yields. Taken together, the important advances in green method uses noted herein portend
well for future investigations of heteroaromatic chalcone synthesis.
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