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Abstract: In recent years, researchers have been exploring the potential of incorporating selenium
into peptides, as this element possesses unique properties that can enhance the reactivity of these
compounds. Selenium is a non-metallic element that has a similar electronic configuration to sulfur.
However, due to its larger atomic size and lower electronegativity, it is more nucleophilic than
sulfur. This property makes selenium more reactive toward electrophiles. One of the most significant
differences between selenium and sulfur is the dissociation of the Se-H bond. The Se-H bond is more
easily dissociated than the S-H bond, leading to higher acidity of selenocysteine (Sec) compared
to cysteine (Cys). This difference in acidity can be exploited to selectively modify the reactivity
of peptides containing Sec. Furthermore, Se-H bonds in selenium-containing peptides are more
susceptible to oxidation than their sulfur analogs. This property can be used to selectively modify the
peptides by introducing new functional groups, such as disulfide bonds, which are important for
protein folding and stability. These unique properties of selenium-containing peptides have found
numerous applications in the field of chemical biology. For instance, selenium-containing peptides
have been used in native chemical ligation (NCL). In addition, the reactivity of Sec can be harnessed
to create cyclic and stapled peptides. Other chemical modifications, such as oxidation, reduction,
and photochemical reactions, have also been applied to selenium-containing peptides to create novel
molecules with unique biological properties.

Keywords: selenium; native chemical ligation; stapled peptides; photochemical reactions

1. Introduction

Se-containing proteins (SePs—selenoproteins) were identified in mammals and higher
plants and play important roles in biological processes [1–5]. In mammals, most of the iden-
tified SePs are enzymes involved in the regulation of lipid membrane oxidation and thyroid
hormones, the NADPH-dependent reduction of thioredoxin, and muscle metabolism [2,3].
The biological study revealed that selenoproteins, mainly containing Sec, are characterized
by higher enzymatic efficiency and redox potentials than similar proteins containing Cys,
resulting in stronger resistance to oxidation in humans [6]. Moreover, studies regarding
the biological significance of selenoprotein P showed the correlation of the presence of
this protein with type 2 diabetes and cardiovascular diseases [7,8]. Generally, SePs are
involved in numerous redox processes due to their unique abilities to react with oxygen
and related ROS in a readily reversible manner [9]. Therefore, selenium-containing proteins
have become an object of interest in the field of chemical biology. Sec is a genetically
encoded amino acid in all domains of life, but not in all organisms. Higher plants, for
example, are a large group that do not have Sec genetically encoded, and Sec is incor-
porated into proteins non-specifically through the metabolic pathway of sulfur analog,
resulting in the replacement of Cys [10]. The translational Sec incorporation is based on the
alternative use of the stop codon UGA and requires the presence of an mRNA structure
called selenocysteine insertion sequence (SECIS) element [11]. This motif directs the cell
to translate UGA codons as selenocysteines. In bacteria, SECIS is located in the coding
region immediately after the Sec-encoding UGA codon, while in eukaryotes, it occurs in
the three prime untranslated region (3′-UTR) of an mRNA. The complicated biosynthesis
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of SePs and low yield natural expression makes access to these molecules limited. This
situation has contributed to the rapid development of various techniques for expressing
proteins containing selenocysteine, including mammalian, bacterial, and cell-free systems.
A recent paper reviews these techniques [12]. The attention attracted by selenoproteins
has also led to the rapid development of methods for the synthesis of selenopeptides,
including solid-phase peptide synthesis (SPPS) and native chemical ligation. Currently,
methods allowing the synthesis of these compounds are well developed and have been the
subject of numerous review papers [13]. The peptides containing selenium were found in
a wide range of applications. Selenopeptides are substrates that can be used for protein
synthesis by NCL. The incorporation of Sec allows selective post-synthetic modification of
the peptide. Sec-containing peptides are used to study folding pathways, induce selective
folding, and as probes in NMR spectroscopy and radio labeling.

Sec-containing peptides have been shown to exhibit antimicrobial, immunomodula-
tory, and anticancer activities and can be used as models for active centers of enzymes. For
example, the selenium-containing pentapeptide Sec-Arg-Gly-Asp-Cys showed glutathione
peroxidase (GPx) activity. Interestingly, the conjugation of this peptide to gold nanoparti-
cles results in a 14-fold increase in GPx activity compared to the free peptide. In addition,
the conjugate obtained exhibits enzyme-like kinetics. Therefore, gold nanoparticles modi-
fied with selenopeptide can be considered as an enzyme mimetic [14]. The conjugates of
selenopeptides with nicotinic acid induce the formation of mesotubes—structures with
potential applications in nanotechnology and medicine [15]. The molecular self-assembly
of these compounds requires the presence of both a nicotinic acid moiety and a selenium
atom. The unique properties of Sec-containing peptides make them an attractive target
for the development of new therapeutic agents with improved efficacy and specificity. A
recent paper gives an overview of the biological applications of selenopeptides [16].

Overall, selenopeptides offer a wide range of opportunities for the development of
new chemical and biological tools and advance our understanding of biological processes
and the development of new therapeutic agents. This review covers the specific chemical
properties of peptides containing selenium and their potential for numerous selective chem-
ical reactions, including selenium-based NCL, selective formation of diselenide bridges
in peptides, application of Sec for peptide stapling and cyclization, and photochemical
reactions of selenopeptides.

2. Selenium and Sulfur Comparison of Properties and Reactivity

Selenium and sulfur are both chalcogen group elements that share similar chemi-
cal properties in terms of their ionic radii and electronegativity [17]. However, signifi-
cant differences also differentiate those elements in their chemical reactivity. Pleasants
et al. [18] demonstrated that the exchange reaction between cysteamine and cystamine at
physiological pH was 1.2 × 107 times slower than that of selenium-containing analogs,
attributing to the better nucleophilicity and leaving group ability of selenolate (RSe−)
compared to thiolate (RS−), which resulted in faster nucleophilic reactions. Similarly, Stein-
mann et al. [19] studied the nucleophilic and electrophilic properties of selenium and sulfur
in a thiol/disulfide-like exchange reaction, where selenium acted as both an electrophile
and a nucleophile much faster than the sulfur analog, with differences of 4 and 2–3 orders
of magnitude, respectively. Furthermore, selenocystine-containing cyclic peptides were
reported to exhibit higher reactivity toward glutathionered (GSH) than the corresponding
disulfides due to several factors, including lower energy of the diselenide bond, better-
leaving group ability, and greater nucleophilicity of the selenolate at pH 7.5 [20]. Thus,
the better nucleophilicity of selenolate in comparison to its sulfur analog accounted for
the readily disassociated form of the selenol group at physiological pH, while the thiol
group is mostly in the protonated form, which indicates the higher acidity of the SeH group
with respect to the SH group. The reported pKa values of selenocysteamine (5.0) [21] and
Sec (5.24) [22] are approximately three units lower than those of cysteamine (8.37) [23] and
Cys (8.22) [24], respectively.
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The redox potential is another significant difference between selenium and sulfur that
was investigated by Besse et al. [25], who conducted a study on a selenium-containing
analog of the Grx-octapeptide [Cys11,Cys14]. Their results revealed the high stability of
the diselenide bond toward reduction with dithiothreitolred (DTT) at pH 7 compared to
the disulfide analog, regarding the relative concentration of reduced and oxidized species
measured by circular dichroism (CD) analysis. The redox potential of the diselenide bond
(Eo =−381 mV) was determined to be lower than that of the disulfide bond (Eo =−180 mV)
based on the calculations obtained from the Kox reference to glutathione, a redox reagent
widely used to facilitate protein folding [26,27]. Beld et al. [28] demonstrated that the
diselenide bond in a selenium-containing analog of glutathione (GSeSeG) is highly stable,
which is associated with its lower redox potential (Eo = −407 mV).

Se-Se bonds possess a bond disassociation energy (172 kJ/mol−1) that is lower than
S-S bonds (240 kJ/mol−1) [29]. In addition, selanyl radicals are much less reactive than
thiyl radicals. While thiyl radicals react with tyrosine and tryptophan moieties, selanyl
radicals are inefficient in carrying out this reaction [30]. Similarly, Cα-H abstraction, a
reaction typical for thiyl radicals formed in Cys-containing peptides, is extremely slow in
their selenium analogs.

Consequently, despite their similarities, selenium and sulfur exhibit distinct chemical
reactivity in certain contexts, particularly with respect to their nucleophilicity, electrophilic-
ity, acidity, and redox potentials. In addition, the lower bond dissociation energy of the
Se-Se compared to the S-S makes diselenides more prone to homolytic cleavage and sub-
sequent generation of radical species [31]. These differences in chemical reactivity may,
therefore, have implications for various biological and chemical processes, where selenium
and sulfur are involved, such as in redox reactions or in the formation of chemical bonds
with other elements.

3. Selenium-Mediated Native Chemical Ligation

There are many different methods of peptide assembly that have been developed
over the years, ranging from traditional SPPS to more novel techniques, such as fragment
condensation and NCL. SPPS is one of the most widely used methods for peptide assembly.
Despite the huge number of described procedures, methods of peptide synthesis, and
new resins developed, one fact remains unchanged: as the length of the peptide chain
increases, the yield of the obtained product decreases. For this reason, the solid-supported
peptide synthesis for sequences longer than 40–50 amino acid residues is considered
inefficient [32]. The iterative amino acid couplings that do not proceed with 100% yield,
particularly for sterically hindered amino acids, result in the accumulation of many difficult-
to-purify by-products. Thus, the overall yield of the target peptide is unsatisfactory. The
development of NCL in the 1990s was a significant milestone in the field of peptide
synthesis [33]. NCL is a powerful synthetic strategy that allows for the efficient and
selective ligation of two unprotected peptide fragments under mild conditions, without the
need for specialized resins or protecting groups, allowing access to long polypeptide chains
and small proteins [34]. This two-step approach involves the synthesis of SPPS of two
short peptide fragments—one containing a C-terminal thioester and the other containing
an N-terminal Cys residue (Scheme 1). The products cleaved from the solid support are
then subjected to NCL between the thioester and the alpha-amino group of a Cys residue.

This conjugation proceeds in an aqueous environment in the presence of a thiol cat-
alyst, e.g., 4-mercaptophenylacetic acid (MPAA) or 2-mercaptoethane sulfonate sodium
(MESNa). Importantly, this reaction proceeds chemoselectively and requires no side-chain
protection. The developed chemical tool enables access to the so-called total protein syn-
thesis [35]. It is obvious that biotechnological methods routinely enable the production
of various proteins with satisfactory yields, while total chemical synthesis enables the
incorporation of additional functionalities that are impossible to obtain by conventional bio-
engineering. Examples include custom post-translational modifications, non-proteinogenic
amino acids, or fluorescent tags. Since the original report, NCL has been extensively
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explored in peptide chemistry and has been employed in the synthesis of hundreds of
proteins [36,37]. Due to the high utility of this methodology, the initially presented NCL
has undergone many modifications including reaction conditions, e.g., thiol catalysts, or
replacement of the C-terminal thioester with a thioester surrogate [38]. With the advances of
NCL, attention has been paid to addressing some inherent limitations of this methodology.
One of the drawbacks concerns the lack of chemoselectivity during the desulfurization
reaction in the presence of native Cys residues. Importantly, the average reaction rates are
relatively long, especially at sterically hindered amino acid junctions [39]. To overcome
these limitations, the application of Sec in NCL-like transformations with peptide thioester
was independently demonstrated by three research groups [40–42]. As a consequence of the
lower oxidation potential of Sec than Cys, it occurs exclusively as a diselenide dimer [43,44].
Therefore, the presence of a reducing agent (e.g., DTT, TCEP) during ligation is inherent, as
only monomeric selenolate takes part in this reaction. Better nucleophilicity of Sec in com-
parison to its sulfur analog significantly affects the ligation rate and leads to a significant
reduction in reaction time. The lower pKa of Sec is another advantage in performing the re-
action at a lower pH, minimizing the risk of selenoester hydrolysis, which frequently occurs
during conventional thioester-based NCL, resulting in a decrease in ligation yield. Recently,
Sayers et al. [45] reported a Sec-based NCL-employed assembly of peptide nucleic acids
(PNA). The authors used the C-terminal selenoester and N-terminal Sec (reduced in situ
during reaction conditions) in NCL. Additionally, the conjunction formation was supported
by the template effect resulting from the recognition of complementary nucleobases. Thus,
according to this study, a combination of selenium-based NCL with templation impres-
sively increased the ligation rate—10 times faster than traditional NCL at Cys. Moreover,
this technology was then employed in a paper-based lateral flow assay for the rapid and
sequence-specific detection of oligonucleotides, including miRNA, in cell lysates. A few
years ago, Chisholm et al. [46] showed that the reductive diselenide-selenoester ligation
(rDSL) method enables efficient ligation of peptide fragments down to low nanomolar
concentrations. This finding was demonstrated with a highly efficient photodeselenization
process, which affords native polypeptides. Interestingly, Mitchell et al. [47] reported
selenoester-selenocystine peptide ligation that proceeds rapidly without any additive, such
as 4-selenophenylacetic acid (selenium analog of MPAA) (Scheme 2). Although the au-
thors proposed a redox associative mechanism, the exact course of the reaction has still
been under investigation. However, recent studies [46] provide a simple and convincing
mechanism for diselenide-selenoester ligation (DSL). The proposed pathway involves
the formation of a small amount of phenylselenoate from the peptide selenoester. This
compound participates in a redox exchange with a peptide diselenide dimer, forming a
reduced selenopeptide. The reaction product then reacts with a peptide selenoester via an
NCL-like mechanism (transselenoesterification followed by a Se-to-N acyl shift), which
generates a native amide bond and propagates the DSL reaction. The proposed mechanism
is supported by the catalytic effect of benzeneselenol on selenoester-diselenide ligation. A
high reaction rate was achieved using phenylselenoesters, even at bulky junctions.

While presenting the above content on peptide selenoesters, it is also necessary to
mention the methods of synthesis of these compounds, which, due to their less common use
in NCL methodology, have been developed to a much lesser extent in comparison to peptide
thioesters [48]. Jakubke et al. [49] showed for the first time an efficient protocol for the
solution-phase synthesis of side-chain protected peptides containing phenylselenoester in
which a mixed anhydride or carbodiimide activation was used. An interesting development,
however, was similarly the usage of side-chain protected peptide followed by treatment
with diphenyldiselenide (DPDS)/triphenylphosphine. This method was then adopted on
solid support by Hanna et al. [50]. Another example of solid-phase peptide selenoester
synthesis with a specially designed linker was demonstrated by Ghassemian et al. [51].
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Scheme 1. The mechanism of native chemical ligation. The reaction involves the reversible formation
of a thioester intermediate between the C-terminal of one peptide and a cysteine residue introduced
into the N-terminal of the second peptide. This intermediate then undergoes a nucleophilic attack by
the N-terminal amine of the second peptide, forming a peptide bond. The second stage of ligation
is irreversible.
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The original NCL methodology has some drawbacks, as it is limited to Cys-containing
peptides. It should be noted that Cys is the least abundant proteinogenic amino acid (1.8%),
thus the number of possible ligations is significantly limited. However, it is possible to per-
form desulfurization to obtain alanine, an amino acid that is very common in polypeptide
sequences (8.9% abundance). Such an approach provides access to the assembly of most
polypeptides or proteins, especially Cys-free ones [52]. Nevertheless, this methodology is
also not without flaws. When a peptide sequence contains several cysteinyl residues, the
aforementioned desulfurization may proceed in a non-selective manner. Therefore, the side
chain protection of Cys residues not involved in ligation is required. Furthermore, standard
desulfurization protocols involve the usage of a large excess of Raney nickel [53], palladium,
or—giving better yields—TCEP with a radical initiator [54]. This issue, however, has been
overcome by Gieselman et al. [40], who demonstrated an efficient deselenization method
for Sec-based peptides. This elimination was driven by the presence of mild reducing
agents, such as TCEP and DTT, as hydrogen donors [55]. Contrary to the conventional
NCL, the deselenization has been characterized as highly chemoselective, which retains
the remaining Cys residues pivotal for the structure of the target protein. Another interest-
ing discovery presented independently by two research groups (Dery et al. [56]; Malins
et al. [57]) concerns the possibility of converting Sec to native serine using TCEP and the
exogenous oxidants (the difference between these studies concerns the oxidizing reagents
used). It is worth noting that these findings broaden the Sec-based NCL, not only to alanine
but also to serine junctions.

The use of selenium-mediated NCL has generated significant interest in the scientific
community involved in protein and peptide synthesis. Due to the large number of appli-
cations, we will present only a few examples of Sec-mediated NCL in a polypeptide or
protein assembly. Hondal et al. [42] demonstrated an early example of using Sec-mediated
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NCL to synthesize ribonuclease A in combination with protein expression. The authors
used rDNA technology to produce a fragment corresponding to residues 1–109 with a
C-terminal thioester. The resulting fragment was ligated to a synthetic peptide containing a
Cys or Sec moiety. More than a decade ago, the first articles describing the Sec-based NCL-
deselenization methodology were published, which focused on relatively simple polypep-
tides, including a 38-residue fragment of the redox enzyme glutaredoxin 3 (Grx3, 1–38) [53].
A particularly interesting example, showing the extraordinary possibilities of this method,
was the assembly of the challenging protein, 125-residue human phosphohistidine phos-
phatase 1 (PHPT1), which has three Cys residues near the C-terminus [58]. The authors of
this study exploited consecutive Sec-based ligation and deselenization. For this purpose,
three unprotected peptide segments were used, which were then combined with two NCL
reactions at alanine and Cys junctions. The middle segment, however, was prepared as a
selenazolidine being a masked precursor of the Sec. Prior to target ligation, selenazolidine
was converted to reactive Sec by treatment with O-methylhydroxylamine. Similarly, the
total chemical synthesis of two natural selenoproteins, selenoprotein M (SELENOM) and
selenoprotein W (SELENOW), was executed [59].

Recent advances in the semi-synthesis of selenoproteins using protein expression,
SPPS, and Sec-based native ligation have been reviewed in a recent paper reported by
Chung et al. [12]. Another possibility offered by selenium chemistry is the use of peptides
with a Sec moiety as surrogates for selenoesters. Melnyk’s group has shown that peptides
containing Sec are susceptible to acyl transfer from the amide nitrogen to the selenium
atom. This rearrangement leads to the formation of selenoesters, which undergo NCL with
N-terminal Cys or Sec, resulting in transamidation or peptide metathesis [60].

4. Redox Properties of Selenopeptides—Selective Formation of Se-Se Bridges in the
Presence of S-H Groups

Disulfide bonds play a significant role in the folding and stabilizing of protein struc-
tures by lowering the entropy of the denatured/unfolded state [61]. Accordingly, folding is
dictated by the oxidation, reduction, and reshuffling of disulfide bonds via thiol/disulfide
exchange reactions to adopt the native conformation of proteins [62]. On the other hand, the
slow kinetics of disulfide bonds can impede the folding process and consequently reduce
the yield of properly folded proteins when multiple rearrangements of the intermediates
are entailed [63]. Since Sec can be readily oxidized to the corresponding diselenide form,
unaffected by the presence of other protein thiols or reducing agents [64,65], in vitro protein
folding has been extensively investigated to gain insight into how the substitution of Sec for
Cys affects the folding and function of sulfur-containing proteins [66]. Walewska et al. [67]
demonstrated that pairwise replacement of Cys with Sec in µ-conotoxin SIIIA enhanced
the accumulation of natively folded proteins and decreased the number of intermediates.
The substitution of the diselenide crosslinker for the interchain disulfide bridge (A6–A11)
in human insulin was reported to ameliorate the challenge of efficiently combining the
A and B chains to yield native insulin in a relatively short time and with a higher yield,
which was accompanied by increased stability of the protein compared to the wild-type
analog [68], as also shown in caenopore-5 (Cp-5) [69], human epidermal growth factor
(EGF) [70], and α-conotoxin [71] studies. Interchain substitution on a single chain is indeed
a more straightforward strategy than the synthetic method developed by Arai et al. [72],
who modified both A and B chains ([C7UA,C7UB]) of bovine pancreatic insulin (BPIns).

Cys-to-Sec substitution in proteins is advantageous, as it maintains the function of the
protein and its 3D structure in most cases [73,74]. However, it is important to consider that
different analogs of the same protein may not interact equally effectively with the target
receptor. Walewska et al. [75] presented a study in which the inhibitory activity of [U2,19]
([U2,19]) indicates the substitution in the parent protein (EETI—Ecballium elaterium trypsin
inhibitor). The amino acids in positions 2 and 19 were replaced by unusual amino acid
“U”—Sec. EETI-II toward bovine β-trypsin was 2-fold less efficient in comparison to [U9,21]
EETI-II and [U15,27] EETI-II, although all seleno analogs retained the biological activity. The
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weak binding interaction of [U2,19] EETI-II was associated with the increased size of the
diselenide bridge that was adjacent to the inhibitory binding loop, thereby anticipating the
causing of conformational changes in the loop.

The size of diselenide crosslinkers is crucial not only for protein function but also
for determining the efficacy of native folding. Gowd et al. [76] explicated the impact
of the size of diselenide and implicitly non-native disulfide crosslinkers on the yield
of native ω-conotoxin GVIA [C1U,C16U] (The “[C1U,C16U]” part indicates that two
specific Cys residues within the peptide were replaced by unusual amino acids called
“U” (which stands for “Sec” in this context)), [C8U,C19U], and [C15U,C26U]. Specifically,
the larger inner size of the diselenide bridge was found to increase the yield of native
folding, which was observed when the inner size of the non-native disulfide bridges in
GVIA [C8U,C19U] was greater and similar, as the accumulation of non-native species was
presumably precluded. On the other hand, the smaller inner size of the non-native disulfide
bridges in GVIA [C1U,C16U] and GVIA [C15U,C26U] resulted in a decrease in the yield of
native folding due to the accumulation of non-native species, which likely disrupted the
native folding pathway.

Steiner et al. [77] studied the in vitro oxidative folding of µ-selenoconotoxin SIIIA in
the absence of an oxidative reagent. Their findings showed an increase in the rate constants
of initial thiol oxidation (kox) and native state formation (knative) compared to the wild-type
analog, which was also supported by the experiments conducted on ω-conotoxin GVIA
[C8U,C19U], indicating that the intramolecular diselenide bridge was able to catalyze the
oxidation of thiols in the presence of only molecular oxygen. Considering the oxidative
role of selenocystine and CuCl2 in thiol oxidation, the folding kinetics of WT-GVIA and its
selenium-containing analog, GVIA [C8U,C19U], were intermolecularly determined. Unfor-
tunately, the oxidation of GVIA [C8U,C19U] in the presence of selenocystine and CuCl2
did not explicitly affect the kox and knative. On the other hand, the folding of WT-GVIA in
the presence of selenocystine was less potent than the folding of GVIA [C8U,C19U] under
air oxidation. Furthermore, the use of an oxidant in promoting the folding of wild-type
Hirudin (WT-Hir) was significant, as only 27% of the protein reached its native state in the
absence of GSSG, whereas the selenium-containing analog, Hir(C16U/C28U), folded with
an 80% yield in the presence of only molecular oxygen, although the oxidant-free folding
of Hir(C16U/C28U) was comparable to that of WT-Hir in the presence of GSSG. This study
indicated that not only native diselenide crosslinkers but also the non-native substitution,
Hir(C6U/C16U), accelerated the folding rate, although the early stage intermediate (1-SS)
was not populated [78]. A similar approach was utilized by Metanis et al. [79], who altered
the folding pathway of bovine pancreatic trypsin inhibitor (BPTI) via non-native diselenide
substitution at position [5–14]. This induced the formation of a non-native intermedi-
ate, [5–14,30–51], which was less stable than the kinetically trapped intermediates, N’ and
N*, of BPTI. Therefore, the selenoprotein reached the native state faster than its BPTI analog,
resulting in undetectable N’ and N* species, presumably due to their rapid conversion
to the native state. The authors also examined the effect of a single Sec substitution at
position [5] on the foldability of BPTI. Their results showed that the folding of C5U BPTI
was completed within 3 h, which was significantly faster than that of the wild-type analog
that reached the native state over 21 h without affecting the folding pathway [80].

In addition to studies concerning Sec-assisted intramolecular protein folding, GSeSeG
was found to be a more potent oxidant than GSSG in promoting RNase A folding under
different redox conditions. Mainly, it required 10-fold less redox buffer to achieve com-
parable yields at pH 8.0. Although GSSG was unable to promote folding at pH 5 due to
the protonated form of the Cys thiols, GSeSeG induced a native state with a 75% yield
in 68 h [81], indicating that small diselenides are an effective means of catalyzing disul-
fide bond formation. Reddy et al. [82] synthesized diselenide-containing small molecules
(Scheme 3) to investigate their efficacy in enhancing the folding of BPTI. Their results
showed the folding kinetics of BPTI were 10-fold better in the presence of diselenide 2 and
3 than GSSG. Among all diselenides, the folding rate of BPTI was slower in the presence
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of diselenide 1, presumably due to the steric hindrance of the molecule. Nonetheless,
diselenide 1 was still able to enhance the overall folding of BPTI, despite having slower
folding kinetics in the initial stages of BPTI folding compared to GSSG.

Molecules 2023, 28, x FOR PEER REVIEW 8 of 20 
 

 

authors also examined the effect of a single Sec substitution at position [5] on the folda-
bility of BPTI. Their results showed that the folding of C5U BPTI was completed within 3 
h, which was significantly faster than that of the wild-type analog that reached the native 
state over 21 h without affecting the folding pathway [80]. 

In addition to studies concerning Sec-assisted intramolecular protein folding, 
GSeSeG was found to be a more potent oxidant than GSSG in promoting RNase A fold-
ing under different redox conditions. Mainly, it required 10-fold less redox buffer to 
achieve comparable yields at pH 8.0. Although GSSG was unable to promote folding at 
pH 5 due to the protonated form of the Cys thiols, GSeSeG induced a native state with a 
75% yield in 68 h [81], indicating that small diselenides are an effective means of cata-
lyzing disulfide bond formation. Reddy et al. [82] synthesized diselenide-containing 
small molecules (Scheme 3) to investigate their efficacy in enhancing the folding of BPTI. 
Their results showed the folding kinetics of BPTI were 10-fold better in the presence of 
diselenide 2 and 3 than GSSG. Among all diselenides, the folding rate of BPTI was slower 
in the presence of diselenide 1, presumably due to the steric hindrance of the molecule. 
Nonetheless, diselenide 1 was still able to enhance the overall folding of BPTI, despite 
having slower folding kinetics in the initial stages of BPTI folding compared to GSSG. 

 
Scheme 3. Structures of low molecular weight diselenides used as additives in in vitro oxidative 
folding of BPTI. 

5. Identification and Detection of Selenopeptides 
The identification of selenoproteins is quite challenging due to the low concentration 

of these proteins and the effect of complex matrix ions [83]. Therefore, preconcentration 
based on ultrasonic-assisted extraction followed by separation by chromatographic 
methods, such as reversed-phase (RP), IEC, and SEC, was used [84]. The selenium con-
tent in proteins was determined by high performance liquid chromatography (HPLC) 
combined with ICP-MS as a detector (HPLC-ICP-MS), while analysis by 
HPLC-ESI-MS/MS as a conventional proteomics method, preceded by enzymatic hy-
drolysis of proteins, provides molecular mass, structural information, and modification 
sites based on the unique isotope distribution for selenopeptides (SePPs) [85–87]. An-
other approach to the detection of Sec-containing peptides is based on the differences in 
nucleophilicity and acidity between SeH and SH groups. At pH 4, Sec moieties react se-
lectively with iodoacetyl-PEG2-biotin, while Cys residues remain unreacted. The bioti-
nylated peptides were separated on avidin and detected by LC-MS [88]. 

Alternatively, another method has been proposed for the detection of selenopro-
teins. After derivatization of Sec moieties in proteins with an iodoacetamide-alkyne 
probe at low pH, proteins with Sec are attached to a diazo-biotin-azide linker by cop-
per-catalyzed azide-alkyne cycloaddition and then enriched on streptavidin beads. Pro-
teins are subjected to on-bead trypsin digestion and selectively eluted from the beads for 
LC/LC-MS/MS identification [89]. Although not fully selective, this procedure provides 
high enrichment for Sec. 

OH

Se

OH

OH
Se

OH OH

OH

Se
OH

OH

Se

H

S

N

Se

N
H

S
Se

TFA

TFA

Diselenide 1 Diselenide 2 Diselenide 3

Scheme 3. Structures of low molecular weight diselenides used as additives in in vitro oxidative
folding of BPTI.

5. Identification and Detection of Selenopeptides

The identification of selenoproteins is quite challenging due to the low concentration of
these proteins and the effect of complex matrix ions [83]. Therefore, preconcentration based
on ultrasonic-assisted extraction followed by separation by chromatographic methods,
such as reversed-phase (RP), IEC, and SEC, was used [84]. The selenium content in
proteins was determined by high performance liquid chromatography (HPLC) combined
with ICP-MS as a detector (HPLC-ICP-MS), while analysis by HPLC-ESI-MS/MS as a
conventional proteomics method, preceded by enzymatic hydrolysis of proteins, provides
molecular mass, structural information, and modification sites based on the unique isotope
distribution for selenopeptides (SePPs) [85–87]. Another approach to the detection of
Sec-containing peptides is based on the differences in nucleophilicity and acidity between
SeH and SH groups. At pH 4, Sec moieties react selectively with iodoacetyl-PEG2-biotin,
while Cys residues remain unreacted. The biotinylated peptides were separated on avidin
and detected by LC-MS [88].

Alternatively, another method has been proposed for the detection of selenoproteins.
After derivatization of Sec moieties in proteins with an iodoacetamide-alkyne probe at
low pH, proteins with Sec are attached to a diazo-biotin-azide linker by copper-catalyzed
azide-alkyne cycloaddition and then enriched on streptavidin beads. Proteins are subjected
to on-bead trypsin digestion and selectively eluted from the beads for LC/LC-MS/MS
identification [89]. Although not fully selective, this procedure provides high enrichment
for Sec.

The identification of peptides from different species using different coupling tech-
niques confirmed that the predominant metabolites of Se in SePs were selenomethionine
(SeMet), Sec, and Se-methylselenocysteine (MeSec) [84].

6. Selenopeptides Cyclization and Stapling

The identification of new modification sites in proteins led to the development of
methods for selenopeptides synthesis, opening new possibilities for studying biological
activity [72]. The development of the synthesis on the solid support according to the
Fmoc strategy and the development of the synthesis methods of appropriate amino acid
surrogates containing selenium instead of sulfur in Cys and appropriate orthogonal pro-
tecting groups enabled the synthesis of any selenopeptide sequences [50,73,90]. Peptides
containing one Sec in the peptide sequence are immediately oxidized after removal from
the solid support, resulting in the linear diselenide form. Utilizing the Sec properties,
several reports regarding the new synthetic methods of cyclic and stapled peptides have
been developed [90–92]. The precisely designed architecture of such peptides has an impact
on the properties causing conformational rigidity correlated with increasing biological
activity and stability against proteolytic degradation [93]. De Araujo and co-workers [91]
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proposed the cyclization of peptides by using selenolanthionine bridges. This method was
based on the Se-alkylation reaction between the Sec substituted for Cys in oxytocin and β-
chloroalanine introduced in one peptide sequence (Scheme 4). Moreover, this strategy was
successfully applied to the synthesis of an overlapping double selenoether cyclized peptide
(α-conotoxin ImI), where both native disulfide bonds were replaced by selenolanthionine
bridges. The lanthionine linkage is characterized by greater stability in redox processes,
which may have a critical impact on bioactivity, and lead to a significant decrease in its
agonist activity [94].
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Scheme 4. Synthesis of oxytocin selenolanthionine. The created selenolanthionine bridge has been
marked with the color green. (condition (a): DTT, PBS pH 9.8, 37 ◦C, 48 h).

The higher side-chain acidity of Sec vs. Cys was used in reactions with electrophilic
alkanes, resulting in crosslinking within unprotected linear peptides under mild aqueous
conditions. De Araujo and co-workers [92] proposed a two-component selenoether stapling
method based on crosslinking of two Sec incorporated at positions (i, i + 4), (i, i + 7), or
(i, i + 11) in an unstructured peptide analog of the tumor suppressor by alkylating agents
with different length, reactivity, hydrophobicity, and rigidity to induce helicity in a bioactive
peptide (Scheme 5). In each case, they noticed a significantly higher helicity for stapled
analogs than for unconstrained peptides. For the (i, i + 4) series, the most helical stabilization
was observed for the o-xylene linkage containing an 8-atom-length staple and then for
aliphatic alkylating agents having the same length. In the case of the (i, i + 7) and (i, i + 11)
series, the strongest helical stabilization occurred for aliphatic crosslinkers containing
an 8–9-carbon-length and a 10-carbon-length, respectively. Moreover, the analogs from
the (i, i + 7) series showed the most active and reduced cell viability of MCF-7 breast cancer
cells compared to control linear peptides.
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7. Modified Peptides Containing Selenium

The Ugi reaction is a versatile approach employed for the derivatization of peptoids
and peptide arrays [95,96], the design of peptide–peptoid fusion [97], and the synthesis of
amino acid-based polypeptoids [98], inducing the formation of Ugi products/peptide-like
molecules by the reaction of an aldehyde or a ketone, a carboxylic acid, and an amine in a
one-pot process [99]. Abbas et al. [100] reported the synthesis of Sec-containing peptoids
via Ugi four-component reaction (Ugi-4CR). To construct a Sec moiety, the seleno group
was appended to one of the four components, which bears a carbonyl functional group.
The synthesis of the component was carried out sequentially by the reaction of KSeCN
with 1,1-diethoxy-2-bromoacetate and reductive alkylation, affording the formation of
selenoacetals, whose acidic treatment yielded selenoaldehydes. The experimental results
revealed that the yield of Ugi reactions substantially depended on the reaction conditions
and the choice of amines used. Reactions performed under microwave heating were
superior in organic solvents to those carried out at room temperature. On the other hand,
an aqueous reaction medium at room temperature prompted the highest yield formation of
products, which also provided an advantage to using selenoacetals in the protected form.

Aziridines are three-membered heterocycles found in the structure of natural com-
pounds [101] and harnessed to design biologically active synthetic molecules [102,103].
Due to their capability of undergoing nucleophilic ring opening, aziridines serve as in-
termediates in the synthesis of amino acid derivatives and peptides using nucleophiles
such as thiols [104,105], amines [106], and selenols [107,108] in the ring-opening pro-
cess. Braga et al. [107] described the utility of aziridine precursors for the preparation
of selenium-containing amino acids. The synthesis was achieved by converting α-amino
alcohols to N-Boc aziridines that underwent nucleophilic ring opening at the less hindered
carbon, yielding chiral β-selenoamine moieties. The nucleophile was generated by the
reaction of diphenyl diselenide with NaBH4 to give a corresponding phenyl selenide an-
ion. The resulting selenoamines were successfully assembled with Boc-protected L-valine,
L-phenylalanine, and L-proline by building small peptide libraries in high yields without
epimerization at the chiral centers.

Arsenyan et al. [109] proposed a facile method to derivatize Sec-containing peptides
via the 5-endo-dig and 6-endo-dig cyclization reactions that were discovered in 1976, and
whose prefixes denote the number of atoms in the forming ring (5 and 6), the relative
position of the bond being broken to the newly formed ring (endo), and the hybridization at
the ring closure site (dig) [110,111]. According to the postulated mechanism, the selenium
electrophile was generated by the coordination of Sec-containing peptides with a Lewis
acid, copper (II) bromide (CuBr2), which was subsequently reacted with 2-propargyl
N-pyridines to form indolizinium derivatives and with 2-ethynylbiaryls to form their
polyaromatic systems via 5-endo-dig and 6-endo-dig cyclization, respectively. The method
was further extended, involving an oxidant, K2S2O8, to generate a selenium electrophile
for the synthesis of benzo[b]furans and indoles derivatives via 5-endo-dig cyclization [112],
as well as coumarin and quinolinone derivatives via 6-endo-dig cyclization [113].

8. Derivatization Based on Oxidation/Elimination: Conversion of Selenocysteine
to Dehydroalanine

Dehydroalanine (Dha) is a non-proteinogenic amino acid that constitutes the structure
of naturally occurring peptides, including nisin [114], siomycin [115], and thiostrepton [116].
An early experimental study described the formation of Dha by oxidative elimination of se-
lenium from Sec derivatives [117]. Later on, Sec-containing peptides were chemoselectively
converted to Dha precursors [118], enabling the synthesis of biologically active compounds
that possess a Dha skeleton, such as alternariolide (AM-toxin I) [119]. Dha formation
induced by Sec has also been demonstrated in in vitro [120] and in vivo studies [121]. The
resulting Dha moiety is a versatile tool that is susceptible to further chemical modifica-
tion [122] and is used to engineer the properties of proteins for various purposes, including
protein–protein crosslinking [123], protein labeling [124], and antibacterial activity [125].
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9. Photochemical Reactions of Selenium-Containing Peptides

Due to the lower bond disassociation energy of Se-Se, homolytic scission and/or
association of the bonds within and/or between the molecules occur under milder con-
ditions than those of S-S analogs [126]. While visible light can promote the formation
of asymmetrical diselenides, interchanging the partners of symmetrical ones, such as
diselenide-containing small molecules [126,127], polymers [128], and peptides [129], this
stimulus is insufficient to rupture S-S bonds, hence requiring bond activation by a strong
trigger, namely UV light [31,130]. Waliczek et al. [129] demonstrated a visible-light-induced
exchange reaction of Sec-containing homodimeric peptides. Experiments conducted using
an equimolar concentration of the sample containing either a pair of linear homodimers
(Scheme 6) or peptide libraries showed the formation of heterodimers with high efficiency
within 30 min. Prolongation of the irradiation time to 24 h resulted in a significant increase
in the yield of heterodimer formation.
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Scheme 6. Exchange reaction between (H-AAUKK-OH)2 and (H-QNUSR-OH)2 (condition (a): MeOH,
LED lamp 400–700 nm).

The authors further reported the UV light-mediated formation of selenolanthionine
linkage from selenocystine-containing cyclic peptides (e.g., nisin analog), which resulted
in the elimination of one selenium atom from the diselenide bridge (Scheme 7). LC-
MS analysis revealed 76% conversion of diselenide to selenoether bond within 1 h of
irradiation. Moreover, the formation of a selenolanthionine bridge from cyclic peptides
involving both intramolecular diselenide and disulfide bonds was achieved in 10 min of
irradiation without affecting the disulfide bond [90]. A similar reaction was later described
by Dowman et al. [131], who demonstrated the photocatalytic diselenide contraction to
yield selenoethers. This transformation was induced by irradiation of Sec-containing
dimers in the presence of the phosphine 1,3,5-triaza-7-phosphaadamantane (PTA) and
the iridium photocatalyst, [Ir(dF(CF3)ppy)2(dtbpy)]PF6, under LED450 irradiation within
5 min.
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The straightforward visible light-initiated reaction leading to Sec-containing indole-
based macrocycles via intramolecular Se-C bond formation was proposed by Lapcin-
ska et al. [132]. In the presented study, Boc-Sec-containing dipeptide or tripeptide dimers
attached to the C4 or C5 position of indole through an ester or amide bond were irradiated
with LED460 light in the presence of transition metal-free photocatalyst RB, Rose Bengal,
leading to macrocyclization (Scheme 8A). A second method did not directly concern the
cyclization through new Se-C bonds between the Sec residue and the indole located in one
peptide chain, but indirectly introduced the appropriately substituted indole by selenyla-
tion in the same conditions as previously and subsequently intramolecular amide bond
formation (Scheme 8B). A detailed mechanistic study showed that the selenium radical
formed under light irradiation was converted to a selenium electrophile, which reacted
with electron-rich N-heterocycles, resulting in Sec-containing indoles.
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The authors later described the synthesis of selenosulfide bond-containing peptides
driven by visible light. The reaction of Sec-containing dimers with glutathione (GSH) in
the presence of Rose Bengal induced the formation of selenosulfide bonds through the
sulfur-centered radical, which was generated under LED460 (Scheme 9). It is worth noting
that visible light was essential for the reaction, as it did not proceed in either daylight or
darkness [133].
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Self-healing materials are the class of smart materials that have the ability to restore
their original state (either partially or completely) when physically damaged. Depending
on the healing mechanism, they can be classified as extrinsic, where a healing agent is
released, or intrinsic, where reversible bonds (e.g., non-covalent [134,135] or covalent bonds,
including disulfide [136,137] and diselenide bonds [138–141]) are disassociated and/or
reformed under pH and temperature changes or light irradiation. Liu et al. [141] reported
visible light-mediated self-healing of protein hydrogels containing diselenide and Schiff
base bonds. Healing was evaluated by splitting the material into two pieces, bringing them
into contact, and allowing the regeneration of the structural integrity under visible light,
excluding any external heat or stress. The hydrogels exhibited healing efficacy of almost
100% after 16 h of irradiation, while the healing in the absence of visible light was only 37%.
The impact of selenium content on healing was determined by partially replacing selenium
with hexamethylenediamine, which resulted in a decreased rate of self-healing.

10. Conclusions

Selenium and sulfur are two elements that share similar electronic configurations
and chemical bonding abilities. Because of this, they can often be used interchangeably
in chemical reactions. This is particularly true for peptides, where Sec can substitute
for Cys and in many cases retain the same biological activity. Despite these similarities,
peptides containing Sec show higher reactivity than their Cys-containing analogs. Reactions
involving selenopeptides are typically highly selective. The significant acidity of the SeH
groups and the nucleophilicity of the selenium atom are responsible for these properties.
The relatively low energy required to dissociate the diselenide bond tends to favor radical
reactions. In addition, SeH groups are more susceptible to oxidation than thiol groups.
These properties have led to many applications of selenopeptides in peptide chemistry.
The susceptibility to oxidation allows the selective formation of Se-Se bridges in peptides
containing Cys residues, allowing the peptide to be oxidized to its native structure. The
use of selenopeptides in NCL is also developing rapidly, as ligations occur more rapidly in
systems containing Sec, and products can be selectively deselenated even in the presence
of thiol groups in the peptide. The high speed and reversibility of reactions involving
selenopeptides make them promising targets in dynamic combinatorial chemistry, where
diselenide metathesis in peptides and transamidation of peptides by reversible formation
of selenoester bonds may find applications. Continuing research in this area may lead to
further discoveries and uses for selenopeptides.
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Aziridine Derivatives of Urea and Thiourea. Molecules 2018, 23, 45. [CrossRef]
103. Fürmeier, S.; Metzger, J.O. Fat-Derived Aziridines and Their N-Substituted Derivatives: Biologically Active Compounds Based

on Renewable Raw Materials. Eur. J. Org. Chem. 2003, 649–659. [CrossRef]
104. Bae, J.H.; Shin, S.H.; Park, C.S.; Lee, W.K. Preparation of Cysteinol Derivatives by Highly Regioselective Ring Opening of

Nonactivated Chiral Aziridines by Thiols. Tetrahedron 1999, 55, 10041–10046. [CrossRef]
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