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Abstract: We present an environment-friendly and highly efficient method for the oxidation of
aromatic alcohols to carboxylic acids or ketones in air via light irradiation under external catalyst-
, additive-, and base-free conditions. The photoreaction system exhibits a wide substrate scope
and the potential for large-scale applications. Most of the desired products are easily obtained via
recrystallization and separation from low-boiling reaction medium acetone in good yields, and the
products can be subsequent directly transformed without further purification.
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1. Introduction

The selective oxygenation of aromatic alcohols to acids, which are significant raw
materials and intermediates for the production of food preservatives, dyes, plasticizers, and
sugars, is a fundamental reaction in organic synthesis [1–6]. For example, 1, 4-terephthalic
acid is an important monomer in the synthesis of polyethylene terephthalate (PET, com-
monly known as polyester resin), whose annual global consumption amounts to about
13 million tons. Currently, various oxidizing agents, such as chromium [7] and man-
ganese [8,9] compounds, hypervalent iodine reagents [10,11], and activated dimethyl
sulfoxide (DMSO) [12], have been extensively used for this transformation. However,
problems, such as toxicity, high cost, and metal waste formed by these oxidants, have
limited their potential in practical applications. In comparison to other agents, O2 has
received substantial attention because of its advantages of low cost, high atom efficiency,
and minimal byproducts [13–22]. The selective oxygenation of alcohols to acids using O2
or air as the oxidant remains a significant challenge, possibly because aerobic oxidation
of alcohols stops at the aldehyde stage and only a small fraction of the aldehydes are
converted to carboxylic acids [23,24]. The oxygenation of alcohols to acids with O2 has been
conducted in thermal reaction systems with external additives, such as strong bases [25],
nonmetallic oxidants [26], or the adoption of transition metal catalysts [14–20,27,28]. In
2018, we developed a bis(methoxypropyl) ether-promoted oxidation system without an
external initiator, catalyst, or base [29]. The protocol is eco-friendly and practical. However,
it requires costly ether and high temperatures.

Compared to the thermal system, the photo-oxidation of aromatic alcohols to acids
with air/O2 as an oxidant has attracted significant attention from those interested in
the sustainable and environmentally friendly syntheses of chemicals [30–35] because O2
can be activated to form reactive oxygen species using photocatalysts [36,37]. To date,
several metal-based [30] and inorganic semiconductor [32–35] photocatalysts and small
molecular- or macromolecular-based organic semiconductor [31,38,39] photocatalysts have
been explored for the oxygenation of alcohols to acids with O2 as the oxidant. For instance,
Sugai et al. [33] reported a CBr4–Ph3P catalyzed system for the oxygenation of alcohols to
the corresponding acids with a fluorescent lamp using O2 as the oxidant (Scheme 1a). In
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2013, Itoh et al. [31] revealed a method for the 2-chloroanthraquinone (2-Cl-AQN)-catalyzed
photo-oxidation of alcohols to obtain carboxylic acids in air under visible light irradiation
(Scheme 1b). Recently, Xiao et al. [34] prepared W18O49/g-C3N4 photocatalysts to promote
the transformation of benzyl alcohol to target acids with O2 (Scheme 1c). Although the
systems described above exhibited several excellent characteristics, all of them require
an external catalytic photosensitizer, which is obtained through either complex synthesis
or expensive commercial purchase. Toxic additives, high costs, and isolation difficulties
render these methods unfeasible for practical application or mass production.
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Scheme 1. Oxidation of alcohols via photo-oxidation of alcohols (a) CBr4–Ph3P catalyzed oxidation
of alcohols to the acids, (b) 2-chloroanthraquinone catalyzed oxidation of alcohols to the acids, (c)
W18O49/g-C3N4 promoted the transformation of benzyl alcohol to target acids, (d) the oxygenation
of aromatic alcohols to the target acids or ketones without external additives.

Recently, several simple and eco-friendly methods for synthesizing aromatic acids
by photoinduced oxidation of aldehydes were developed at room temperature [40,41].
However, there is no literature on preparation methods of aromatic acid from aromatic
alcohols using O2 as the sole oxidant under external catalyst-, additive-, and base-free
conditions. As the continuation of our interest in selective oxidation utilizing O2 as the
oxidant and environmentally friendly synthesis protocol [29,42–48], we report an efficient
and practical photocatalytic system for the oxygenation of aromatic alcohols to the target
acids or ketones without external additives (Scheme 1d). Compared with previously
reported systems, the protocol was performed successfully with excellent yields at mild
reaction conditions, which exhibit a simple post-treatment and could also be applied on
one-pot sequential transformation.

2. Results and Discussion

First, benzyl alcohol (1a) was used as a test substrate with O2 as the oxidant, and a
63% yield of the desired benzoic acid (3a) was placed under LED irradiation (390–395 nm,
10 W) for 24 h in MeCN (Table 1, entry 1). Based on the GC–MS results, the reaction
medium had a significant impact on oxidation efficiency (entries 1–7), and the oxidation
reaction produced a 74% yield of benzoic acid (3a) with acetone. As the light source has a
significant influence on the oxygenation of aromatic alcohols to the corresponding acids,
we investigated the effect of varying the irradiation wavelength of the light source (entries
8–15). The oxidation reaction afforded a 98% yield of (3a) at an irradiation wavelength of
367–370 nm over 24 h. Notably, there was no difference in yield when O2 was replaced
with air (entry 16). However, the target product was not obtained when O2 was substituted
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with N2 (entry 17). In addition, the reaction was ineffective in the absence of illumination
(entry 18).

Table 1. Reaction conditions a.

Molecules 2023, 28, 3031 3 of 16 
 

 

a significant influence on the oxygenation of aromatic alcohols to the corresponding ac-
ids, we investigated the effect of varying the irradiation wavelength of the light source 
(entries 8–15). The oxidation reaction afforded a 98% yield of (3a) at an irradiation 
wavelength of 367–370 nm over 24 h. Notably, there was no difference in yield when O2 
was replaced with air (entry 16). However, the target product was not obtained when O2 
was substituted with N2 (entry 17). In addition, the reaction was ineffective in the ab-
sence of illumination (entry 18). 

Table 1. Reaction conditions. a 

 

 
 

Entry Light Source (nm) Solvent b Atmosphere Yield c (%) 
1 390–395 MeCN Oxygen 63 
2 390–395 EtOH Oxygen 54 
3 390–395 1,4-dioxane Oxygen 21 
4 390–395 DCE Oxygen 56 
5 390–395 DMF Oxygen 62 
6 390–395 DMSO Oxygen 63 
7 390–395 Acetone Oxygen 74 
8 385–390 Acetone Oxygen 75 
9 380–385 Acetone Oxygen 76 

10 375–380 Acetone Oxygen 80 
11 370–375 Acetone Oxygen 78 
12 367–370 Acetone Oxygen 98 
13 365–367 Acetone Oxygen 71 
14 395–400 Acetone Oxygen 64 
15 400–405 Acetone Oxygen 57 
16 367–370 Acetone Air 98 
17 367–370 Acetone N2 0 
18  Acetone air 0 

a Reaction conditions: 1a (0.5 mmol), solvent (1 mL), 24 h; b DCE: 1,2-dichloroethane; DMF: 
N,N-dimethylacetamide; DMSO dimethyl sulfoxide; c Yields were estimated by GC–MS. 

The photocatalytic system is also highly efficient for the selective oxidation of a 
range of aromatic alcohols to produce the desired acids or ketones under the 
above-mentioned conditions (Table 2). In particular, benzyl alcohols substituted with 
electron-withdrawing or electron-donating groups (3a–3p) could be oxidized to acids in 
high yields, except for the strong electron-withdrawing cyano group (3j), which was ob-
tained in a moderate yield. (This may be due to the strong electron-withdrawing effect 
of the cyano group, which reduces the electron cloud density of the benzene ring and 
benzyl radical activity, resulting in a decreased yield.) The oxidation reaction was also 
unaffected with the ortho-Cl (or -Me) group, and synthetically useful orthosubstituted 
compounds (3l and 3m) were tolerated. Notably, neither the metasubstituted com-
pounds (3n and 3o), nor the polysubstituted compounds (3p) had a significant influence 
on the conversion, and all generated the target products in good yields. In addition, the 
oxidation of the bireactive functional substrate 1,4-phenylenedimethanol proceeded 
smoothly with O2 and provided the target acid in a 71% yield (3q). Significantly, various 
heteroaromatic and fused-aromatic alcohols also reacted smoothly to produce the ex-
pected products (3r–3u) in moderate to excellent yields. In particular, 
1,2-phenylenedimethanol was also suitable for the system and offered the target product 
isobenzofuran-1(3H)-one (3v) in a moderate yield. Regrettably, the oxidation of fatty al-

Entry Light Source
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The photocatalytic system is also highly efficient for the selective oxidation of a range
of aromatic alcohols to produce the desired acids or ketones under the above-mentioned
conditions (Table 2). In particular, benzyl alcohols substituted with electron-withdrawing
or electron-donating groups (3a–3p) could be oxidized to acids in high yields, except for
the strong electron-withdrawing cyano group (3j), which was obtained in a moderate yield.
(This may be due to the strong electron-withdrawing effect of the cyano group, which
reduces the electron cloud density of the benzene ring and benzyl radical activity, resulting
in a decreased yield.) The oxidation reaction was also unaffected with the ortho-Cl (or -Me)
group, and synthetically useful orthosubstituted compounds (3l and 3m) were tolerated.
Notably, neither the metasubstituted compounds (3n and 3o), nor the polysubstituted
compounds (3p) had a significant influence on the conversion, and all generated the target
products in good yields. In addition, the oxidation of the bireactive functional substrate
1,4-phenylenedimethanol proceeded smoothly with O2 and provided the target acid in
a 71% yield (3q). Significantly, various heteroaromatic and fused-aromatic alcohols also
reacted smoothly to produce the expected products (3r–3u) in moderate to excellent yields.
In particular, 1,2-phenylenedimethanol was also suitable for the system and offered the
target product isobenzofuran-1(3H)-one (3v) in a moderate yield. Regrettably, the oxidation
of fatty alcohol produced only a trace amount of the target products (3w and 3x), which
may be due to the fact that the stability of primary carbon radicals produced with aliphatic
alcohols is less than that of benzyl radicals from aromatic alcohols. In addition, the scope of
the aromatic secondary alcohol oxidation reaction was studied under the aforementioned
standard conditions. A wide range of 1-phenethylalcohols (4a–4e) and benzhydrols (4f–4j)
with electron-rich or electron-poor group-substituted aromatic rings performed adequately
with O2 and smoothly formed the target ketones in excellent yields. β-Substituted 1-
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phenethylalcohols (4k–4m) with Cl, Br, or CH2Cl groups also reacted efficiently to provide
the corresponding acid in 83–90% yields. Furthermore, mandelonitrile can also be efficiently
converted to benzoyl cyanide (4n), an intermediate of the herbicide metamitron. More
importantly, the oxidation of cyclic secondary alcohols was effective, and the target products
(4o–4q) were formed in good to excellent yields. The results presented above demonstrate
the generality of the photocatalytic reaction with O2 as a reagent for the oxidation of various
alcohols to the target acid.

Table 2. Reaction scope a.
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4-H 4f 96%
4-Me 4g 90%
4-F 4h 93%
4-Cl 4i 95%
4-Br 4j 94%

a Reaction conditions: 1 or 2 (0.5 mmol), acetone (1 mL), 367–370 nm 10 W LED, air balloon, 24 h.

Pharmaceutical companies show a significant interest in the late-stage structural mod-
ification of bioactive natural products. Thus, three bioactive alcohol compounds were
synthesized using the proposed photocatalytic oxidation method (Scheme 2). The introduc-
tion of a carboxylic acid group to niflumic acid (3y), a nonsteroidal anti-inflammatory drug,
was easily achieved through this reaction. The oxidation of bioactive secondary alcohol
also proceeded smoothly with O2 under light irradiation and afforded the target natural
product derivatives in good yields, including the antiphlogistic drug indometacin 4r and
antilipemic agent fenofibrate 4s.
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Scheme 2. Gram-stage modification of bioactive alcohol.

After successfully exploring the oxygenation of different aromatic alcohols, we de-
cided to conduct large-scale oxidation experiments with 10 mmol of aromatic alcohols
under the optimal standard conditions (Scheme 3a) to understand the potential synthetic
value and practicability of the facile synthesis protocol. Remarkably, the target acid was
obtained with the desired GC yield, which was comparable to that of the small-scale re-
action. Notably, 84% and 86% yields of benzoic acid (3a) (1.03 g) and 4-bromobenzoic
acid (3i) (1.73 g) were achieved, respectively, via simple recrystallization and separation.
Catalyst-free photocatalytic systems are generally more popular from a green energy and
industrial point of view and can satisfy demand without purification to remove byproducts
and catalyst residues and achieve subsequent direct synthesis under light-driven condi-
tions. To further demonstrate the practicality of the photocatalytic oxidation, four one-pot
sequential organic syntheses starting from benzyl alcohol or 1-phenethylalcohols were per-
formed (Scheme 3b). The crude alcohol underwent smooth hydrazidation (1a → 5a) [49],
esterification (1a → 5b) [50], oximation (1a → 5c) [51], and Claisen–Schmidt condensation
(1a → 5d) [52] in the desired yields.
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The conversion of phenylmethanol under light irradiation over time was investigated
under standard conditions (Figure 1). Phenylmethanol was converted gradually over 24 h,
and only a 3% GC yield of benzoic acid was generated within the initial 6 h oxidation stage,
after which phenylmethanol was added rapidly until consumed. A yield of 44% (by GC)
benzaldehyde was obtained in the first 8 h, before being exhausted at a later stage of the
oxidation reaction. The variation can possibly be ascribed to the fact that the alcohol was
first transformed to aldehyde, and the obtained aldehyde was then oxidized to acid. In
addition, the conversion rate of benzyl alcohol (1a) is slow in the early stages and then
gradually increases with the formation of benzaldehyde (Figure 1). This phenomenon may
be ascribed to the fact that the intermediate benzaldehyde, a carbonyl compound, can act
as a triplet state photosensitizer abstracting H from the substrate to form free radicals and
promote the conversion of benzyl alcohol [53].
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Figure 1. Time course of the oxidation of 1a to 3a.

To demonstrate the effect of light irradiation on the present method, on–off control
experiments were conducted for the oxidation from benzyl alcohols to benzaldehyde
and benzaldehyde to benzoic acid. As shown in Figure 2, the oxidation reaction was
seriously hindered by the lack of light irradiation, indicating the light dependency of the
transformations.
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performed with benzyl alcohols as starting materials, and the radical scavengers TEMPO
or BHT were added. Only a trace amount of target product was produced ((1), (2) in
Scheme 4a), which indicated that free radicals may have been generated during oxida-
tion. Subsequently, we conducted an oxygenation with a singlet oxygen scavenger, 1,4-
diazabicyclo [2.2.2]octane (DABCO), under the standard reaction conditions as oxygen
molecules can be activated to singlet oxygen by photocatalysts ((3) in Scheme 4a). Ox-
idation only afforded benzoic acid (3a) in a 6% yield. When the reaction was trapped
by the peroxy radical scavenger benzoquinone, the reaction process was also severely
hampered and only a trace amount of desired product was observed ((4) in Scheme 4a).
Subsequently, 9,10-dimethylanthracene (4a) underwent [4+2] cycloaddition under standard
reaction conditions to achieve the target product (Scheme 4b), which further demonstrated
that the oxidation of alcohols to carboxylic acid results from singlet oxygen. To further
demonstrate this, electron paramagnetic resonance (EPR) experiments (see Supplementary
Materials) were performed with benzyl alcohols in acetone under the standard reaction
conditions, and both singlet oxygen and peroxy radical signals were trapped, confirm-
ing that singlet oxygen and peroxy radical mechanisms were involved in the oxidation
system. We executed the oxidation reaction with 18O2 as the sole oxidant and found that
a mixture of 16O-labeled and 18O-labeled ketone (4a) was produced (Scheme 4c), which
demonstrated that both atmospheric oxygen and oxygen atoms of the C(sp3)–O bond of
the alcohol were involved in the formation of the carbonyl group. To further investigate
the rate determining step of the reaction system, the kinetic isotope effect of alcoholic
O–H/D bonds and benzylic C(sp3)–H/D bonds were studied. The oxidation reaction
was conducted with phenylmethanol (1a) and phenylmethanol-d1 (1a-d1) as the starting
materials, and the k1a/k1a–d1 value was 1.02 (Scheme 4d). A mixture of phenylmethanol
(1a) and phenylmethanol-d2 (1a-d2) was also oxidized, and the intermolecular kH/kD
value was 3.2 (Scheme 4e). Based on the above data, we can infer that the cleavage of the
benzylic C(sp3)–H bond determines the rate of the reaction system. Considering that the
oxidation rate may involve the intermediate benzaldehyde (7a) formed from the oxidation
of benzyl alcohols, we attempted to add a small quantity of benzaldehyde to the initial
reactive reactants (Scheme 4f). The target products were obtained in a 99% GC yield within
16 h, a shorter reaction time than for previous experiments, indicating that benzaldehyde
acts as a catalyst for the reaction system.

Based on the aforementioned results and reports in the literatures [53–56], a plausi-
ble mechanism for the photocatalytic oxygenation of alcohols to corresponding acids or
ketones is proposed in Scheme 5. First, the ground-state triplet O2 tends to form singlet
oxygen under light irradiation (see EPR experiments in the Supplementary Materials),
subsequently extracting an electron from benzyl alcohol (1a), which initiates the formation
of hydroperoxyl radical A and carbon-centered radical B. Then, the carbon-centered radical
B transforms into peroxy radical C (see EPR experiments in the Supplementary Materials)
under O2 conditions, and C reacts with benzyl alcohol (1a) to afford the peroxy compound
D. The peroxy compound D was also obtained by the reaction of hydroperoxyl radical
A and carbon-centered radical B. Subsequently, the peroxy compound D removes H2O2
and produces benzaldehyde. Benzaldehyde functions as a photocatalyst and transforms
into a photoexcited intermediate E, which promotes the generation of carbon-centered
radical B by extracting an electron from benzyl alcohol, thereby accelerating the rate of
oxidation. Finally, the target product, benzoic acid (3a), was obtained via the oxidation
of benzaldehyde.
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3. Experimental Section
3.1. General Information

Commercially available starting materials were purchased and used without further
purification. GC–MS was performed on a Shimadzu GC-MS 2010 (Kyoto, Japan). 1H NMR
spectra were recorded on 400 MHz and referenced to the internal solvent signals (1H NMR:
CDCl3 7.26 ppm, 1H NMR: DMSO 2.50 ppm). 13C NMR spectra were recorded on 101 MHz
spectrometers referenced to the internal solvent signals (13C NMR: CDCl3 77.0 ppm, 13C
NMR: 40.0 ppm). The peak information was described as brs = broad singlet, m = multiplet,
q = quartet, t = triplet, d = doublet, and s = singlet. A Biotage Isolera four instrument
(Tokyo, Japan) was used to purify (4a–4e, 4h–4j, 4n, and 5b).

3.2. Typical Procedure for the Synthesis of Benzoic Acid (3a)

A mixture of phenylmethanol 1a (0.5 mmol) and acetone (1.0 mL) was added to
a 10 mL quartz tube with an air balloon at room temperature under the irradiation of
10 W LED lamps (367–370 nm) for 24 h. The progress was monitored by TLC or GC–MS.
Upon completion, the mixture was cooled down to room temperature and transferred into
a 10 mL heart-shaped bottle and concentrated in vacuum to obtain the crude products.
Subsequently, a mixture of ethyl acetate and petroleum ether (1:60) was carefully drip-
added to the crude product for recrystallization. After the crude product was completely
dissolved, the solution was cooled to room temperature and an appropriate amount of cold
petroleum ether was added under an ice bath to precipitate the product. Afterwards, the
mixture was centrifuged and dried to obtain the benzoic acid 3a.

3.3. Characterization Data of Products 3a–3y, 4a–4s, and 5a–5d

Benzoic acid (3a) [57]: White solid (58 mg, 95%); 1H NMR (400 MHz, DMSO-d6) δ 12.96
(s, 1H), 7.95 (d, J = 7.2 Hz, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H); 13C NMR
(101 MHz, DMSO-d6) δ 167.8, 133.4, 131.3, 129.8, 129.1.

[1,1′-biphenyl]-4-carboxylic acid (3b) [58]: White solid (94 mg, 95%); 1H NMR (400 MHz,
DMSO-d6) δ 13.00 (s, 1H), 8.03 (d, J = 8.4 Hz, 2H), 7.80 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.4 Hz,
2H), 7.50 (t, J = 7.6 Hz, 2H), 7.42 (t, J = 7.6 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 167.7,
144.8, 139.5, 130.5, 130.1, 129.6, 128.8, 127.5, 127.3.

4-methylbenzoic acid (3c) [57]: White solid (59 mg, 87%); 1H NMR (400 MHz, DMSO-d6)
δ 12.80 (s, 1H), 7.83 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 2.35 (s, 3H); 13C NMR
(101 MHz, DMSO-d6) δ 167.9, 143.6, 129.9, 129.7, 128.6, 21.7.

4-isopropylbenzoic acid (3d) [57]: White solid (75 mg, 90%); 1H NMR (400 MHz, DMSO-d6)
δ 12.81 (s, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 3.00–2.89 (m, 1H), 1.21 (d,
J = 7.2 Hz, 6H); 13C NMR (101 MHz, DMSO-d6) δ 154.1, 130.0, 127.0, 34.0, 24.1.

4-(tert-butyl)benzoic acid (3e) [59]: White solid (82 mg, 92%); 1H NMR (400 MHz, DMSO-d6)
δ 12.79 (s, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 1.28 (s, 9H); 13C NMR
(101 MHz, DMSO-d6) δ 167.8, 156.3, 129.7, 128.5, 125.9, 35.3, 31.4.

4-(trifluoromethoxy)benzoic acid (3f) [60]: Slight yellow solid (94 mg, 91%); 1H NMR (400 MHz,
DMSO-d6) δ 13.19 (s, 1H), 8.06 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H); 13C NMR (101 MHz,
DMSO-d6) δ 166.7, 152.0, 132.2, 130.4, 121.2, 120.5 (q, J = 255.9 Hz). 19F NMR (376 MHz,
CDCl3) δ −56.7.

4-fluorobenzoic acid (3g) [57]: White solid (66 mg, 94%); 1H NMR (400 MHz, DMSO-d6) δ
13.06 (s, 1H), 8.02–7.98 (m, 2H), 7.34–7.29 (m, 2H); 13C NMR (101 MHz, DMSO-d6) δ 166.9,
165.4 (d, J = 249.0 Hz), 132.7 (d, J = 9.4 Hz), 127.9 (d, J = 2.8 Hz), 116.2 (d, J = 21.9 Hz); 19F
NMR (376 MHz, DMSO-d6) δ −106.9.

4-chlorobenzoic acid (3h) [57]: White solid (73 mg, 93%); 1H NMR (400 MHz, DMSO-d6) δ
13.20 (s, 1H), 7.94 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 8.8 Hz, 2H); 13C NMR (101 MHz, DMSO-d6)
δ 167.0, 138.3, 131.7, 130.1, 129.3.
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4-bromobenzoic acid (3i) [61]: White solid (95 mg, 95%); 1H NMR (400 MHz, DMSO-d6) δ
13.19 (s, 1H), 7.86 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H); 13C NMR (101 MHz, DMSO-d6)
δ 167.1, 132.2, 131.8, 130.5, 127.4.

4-cyanobenzoic acid (3j) [58]: Gray white solid (55 mg, 75%); 1H NMR (400 MHz, DMSO-d6)
δ 13.28 (s, 1H), 8.06 (s, 2H), 8.00 (s, 2H), 13C NMR (101 MHz, DMSO-d6) δ 195.9, 133.6,
118.7, 115.5.

4-(methoxycarbonyl)benzoic acid (3k) [60]: White solid (84 mg, 93%); 1H NMR (400 MHz,
DMSO-d6) δ 13.36 (s, 1H), 8.05 (s, 4H), 3.87 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 167.1,
166.1, 135.3, 133.7, 130.1, 129.9, 53.0.

2-chlorobenzoic acid (3l) [62]: White solid (73 mg, 94%); 1H NMR (400 MHz, DMSO-d6)
δ 13.37 (s, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.55–7.50 (m, 2H), 7.45–7.39(m, 1H); 13C NMR
(101 MHz, DMSO-d6) δ 167.3, 133.1, 132.1, 132.0, 131.3, 131.1, 127.7.

2-methylbenzoic acid (3m) [60]: White solid (58 mg, 86%); 1H NMR (400 MHz, DMSO-d6) δ
12.79 (s, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.43–7.39 (m, 1H), 7.26(t, J = 7.6 Hz, 2H); 13C NMR
(101 MHz, DMSO-d6) δ 169.2, 139.5, 132.2, 132.0, 131.0, 130.7, 126.3, 21.8.

3-chlorobenzoic acid (3n) [60]: White solid (72 mg, 92%); 1H NMR (400 MHz, DMSO-d6)
δ 13.34 (s, 1H), 7.90–7.88 (m, 2H), 7.70–7.67 (m, 1H), 7.53 (t, J = 8.0 Hz, 1H); 13C NMR
(101 MHz, DMSO-d6) δ 166.6, 133.9, 133.4, 133.2, 131.2, 129.4, 128.4.

3-methylbenzoic acid (3o) [60]: Slight yellow solid (55 mg, 81%); 1H NMR (400 MHz, DMSO-
d6) δ 12.89 (s, 1H), 7.76–7.73 (m, 2H), 7.44–7.36 (m, 2H), 2.36 (s, 3H); 13C NMR (101 MHz,
DMSO-d6) δ 167.9, 138.4, 134.0, 131.2, 130.2, 129.0, 127.0, 21.3.

3,4-dichlorobenzoic acid (3p) [62]: White solid (92 mg, 96%); 1H NMR (400 MHz, DMSO-d6) δ
13.50 (s, 1H), 8.04 (d, J = 2.0 Hz, 1H), 7.87 (dd, J = 8.4, 2.0 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H);
13C NMR (101 MHz, DMSO-d6) δ 165.9, 136.3, 132.0, 131.9, 131.5, 131.5, 129.8.

terephthalic acid (3q) [57]: White solid (59 mg, 71%); 1H NMR (400 MHz, DMSO-d6) δ 13.29
(s, 2H), 8.03 (s, 4H); 13C NMR (101 MHz, DMSO-d6) δ 167.3, 135.1, 130.1.

1-naphthoic acid (3r) [57]: White solid (65 mg, 78%); 1H NMR (400 MHz, DMSO-d6) δ 13.17
(s, 1H), 8.86 (d, J = 8.4 Hz, 1H), 8.17–8.14 (m, 2H), 8.02 (d, J = 7.6 Hz, 1H), 7.66–7.57 (m, 3H);
13C NMR (101 MHz, DMSO-d6) δ 169.2, 134.0, 133.5, 131.2, 130.4, 129.1, 128.2, 128.1, 126.7,
126.0, 125.4.

anthracene-9-carboxylic acid (3s) [63]: Yellow solid (97 mg, 87%); 1H NMR (400 MHz, DMSO-
d6) δ 13.94 (s, 1H), 8.73 (s, 1H), 8.16 (d, J = 8.4 Hz, 2H), 8.05 (d, J = 8.4 Hz, 2H), 7.64–7.57
(m, 4H); 13C NMR (101 MHz, DMSO-d6) δ 170.7, 131.0, 130.2, 129.1, 128.8, 127.6, 127.4,
126.2, 125.4.

isonicotinic acid (3t) [62]: White solid (45 mg, 74%); 1H NMR (400 MHz, DMSO-d6) δ 13.64
(s, 1H), 8.78 (dd, J = 4.4, 1.6 Hz, 2H), 7.81 (dd, J = 4.4 1.6 Hz, 2H); 13C NMR (101 MHz,
DMSO-d6) δ 166.7, 151.1, 138.6, 123.3.

thiophene-2-carboxylic acid (3u) [57]: Gray white solid (54 mg, 85%); 1H NMR (400 MHz,
DMSO-d6) δ 13.06 (s, 1H), 7.88 (dd, J = 4.8, 1.2 Hz, 1H), 7.73 (dd, J = 3.6, 1.2 Hz, 1H), 7.18
(dd, J = 4.8, 3.6 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 163.4, 135.2, 133.8, 133.7, 128.7.

isobenzofuran-1(3H)-one (3v) [57]: White solid (48 mg, 71%); 1H NMR (400 MHz, CDCl3)
δ 7.92 (d, J = 8.0 Hz, 1H), 7.70–7.67 (m, 1H), 7.55–7.49 (m, 2H), 5.32 (s, 2H); 13C NMR
(101 MHz, CDCl3) δ 171.1, 146.5, 134.0, 129.0, 125.7, 125.7, 122.1, 69.6.

2-((3-(trifluoromethyl)phenyl)amino)nicotinic acid (3y) [64]: Gray white solid (96 mg, 68%); 1H
NMR (400 MHz, DMSO-d6) δ 10.64 (s, 1H), 8.42 (dd, J = 4.8, 2.0 Hz, 1H), 8.28–8.26 (m, 2H),
7.84 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 6.92 (dd, J = 7.6,
4.8 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 169.5, 155.7, 153.0, 141.2 (d, JC-F = 7.5 Hz),
130.2, 130.1 (d, JC-F = 93.5 Hz), 129.9, 124.8 (q, JC-F = 270.7 Hz), 123.9, 118.7 (JC-F = 3.9 Hz),
116.2 (JC-F = 4.0 Hz), 115.3, 108.9; 19F NMR (376 MHz, CDCl3) δ −61.2.
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acetophenone (4a) [65]: Colorless liquid (55 mg, 91%); 1H NMR (400 MHz, DMSO-d6) δ 7.93
(d, J = 8.0 Hz, 2H), 7.53 (t, J = 7.8 Hz, 1H), 7.43 (t, J = 8.0 Hz, 2H), 2.57 (s, 3H); 13C NMR
(101 MHz, DMSO-d6) δ 198.0, 136.9, 133.0, 128.4, 128.1, 26.4.

1-(p-tolyl)ethanone (4b) [65]: Colorless liquid (55 mg, 82%); 1H NMR (400 MHz, DMSO-d6) δ
7.84 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 2.56 (s, 3H), 2.39 (s, 3H); 13C NMR (101 MHz,
DMSO-d6) δ 197.8, 143.8, 134.6, 129.1, 128.3, 26.4, 21.5.

1-(4-fluorophenyl)ethanone (4c) [65]: Colorless liquid (63 mg, 91%); 1H NMR (400 MHz,
DMSO-d6) δ 7.99–7.93 (m, 2H), 7.13–7.07 (m, 2H), 2.57 (s, 3H); 13C NMR (101 MHz, DMSO-
d6) δ 196.4, 165.7 (d, JC-F = 253.1), 133.5, 130.9 (d, JC-F = 9.3 Hz), 115.6 (d, JC-F = 21.7), 26.4.
19F NMR (376 MHz, CDCl3) δ −105.3.

1-(4-chlorophenyl)ethanone (4d) [65]: Colorless liquid (74 mg, 96%);1H NMR (400 MHz,
DMSO-d6) δ 7.87 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 2.56 (s, 3H); 13C NMR
(101 MHz, DMSO-d6) δ 196.7, 139.5, 135.3, 129.6, 128.8, 26.5.

1-(4-bromophenyl)ethanone (4e) [65]: Colorless liquid (97 mg, 97%); 1H NMR (400 MHz,
DMSO-d6) δ 7.82 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 2.58 (s, 3H); 13C NMR
(101 MHz, DMSO-d6) δ 197.0, 135.8, 131.9, 129.8, 128.3, 26.5.

benzophenone (4f) [66]: White solid (87 mg, 96%); 1H NMR (400 MHz, DMSO-d6) δ 7.80
(d, J = 7.2 Hz, 4H), 7.57 (t, J = 7.2 Hz, 2H), 7.47 (t, J = 7.6 Hz, 4H); 13C NMR (101 MHz,
DMSO-d6) δ 196.6, 137.4, 132.3, 129.9, 128.1.

phenyl(p-tolyl)methanone (4g) [67]: White solid (88 mg, 90%); 1H NMR (400 MHz, DMSO-d6)
δ 7.80–7.77 (m, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.60–7.56 (m, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.28
(d, J = 8.0 Hz, 2H), 2.44 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 196.5, 143.2, 137.9, 134.8,
132.1, 130.3, 129.9, 128.9, 128.2, 21.6.

(4-fluorophenyl)(phenyl)methanone (4h) [67]: Colorless liquid (93 mg, 93%); 1H NMR (400 MHz,
DMSO-d6) δ 7.87–7.82 (m, 2H), 7.78–7.76 (m, 2H), 7.62–7.58 (m, 1H), 7.19–7.13 (m, 2H); 13C
NMR (101 MHz, DMSO-d6) δ 195.3, 165.4 (d, JC-F = 252.6 Hz), 137.5, 133.8, 133.7, 132.7,
132.6, 132.5, 129.9, 128.3, 115.5, 115.3. 19F NMR (376 MHz, CDCl3) δ −105.9.

(4-chlorophenyl)(phenyl)methanone (4i) [68]: Colorless liquid (103 mg, 95%); 1H NMR (400 MHz,
DMSO-d6) δ 7.78–7.74 (m, 4H), 7.62–7.58 (m, 1H), 7.51–7.44 (m, 4H); 13C NMR (101 MHz,
DMSO-d6) δ 195.5, 138.9, 137.2, 135.8, 132.6, 131.4, 129.9, 128.6, 128.4.

(4-bromophenyl)(phenyl)methanone (4j) [68]: Colorless liquid (123 mg, 94%); 1H NMR (400 MHz,
DMSO-d6) δ 7.78–7.76 (m, 2H), 7.69–7.67 (m, 2H), 7.64–7.61 (m, 3H), 7.49 (t, J = 7.6 Hz, 2H);
13C NMR (101 MHz, DMSO-d6) δ 195.7, 137.1, 136.3, 132.7, 131.6, 131.6, 129.9, 128.4, 127.5.

2-chloro-1-phenylethanone (4k) [69]: White solid (70 mg, 90%); 1H NMR (400 MHz, DMSO-d6)
δ 7.96 (d, J = 7.6 Hz, 2H), 7.62 (t, J = 7.6 Hz, 2H), 7.50 (t, J = 7.6 Hz, 2H), 4.72 (s, 2H); 13C
NMR (101 MHz, DMSO-d6) δ 191.0, 134.2, 134.0, 128.9, 128.5, 46.0.

2-bromo-1-phenylethanone (4l) [69]: Grayish white solid (88 mg, 88%); 1H NMR (400 MHz,
DMSO-d6) δ 7.98 (d, J = 8.4 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 4.46 (s,
2H); 13C NMR (101 MHz, DMSO-d6) δ 191.3, 133.9, 133.9, 128.9, 128.8, 30.9.

3-chloro-1-phenylpropan-1-one (4m) [70]: Grayish white solid (70 mg, 83%); 1H NMR (400 MHz,
DMSO-d6) δ 7.95 (d, J = 7.6 Hz, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 3.92 (t,
J = 6.8 Hz, 2H), 3.45 (t, J = 6.8 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 196.6, 136.3, 133.5,
128.7, 128.0, 41.2, 38.6.

benzoyl cyanide (4n) [71]: Colorless liquid (60 mg, 92%); 1H NMR (400 MHz, DMSO-d6) δ
8.14 (d, J = 7.6 Hz, 2H), 7.79 (t, J = 7.6 Hz, 1H), 7.61 (t, J = 7.6 Hz, 2H); 13C NMR (101 MHz,
DMSO-d6) δ 167.8, 136.8, 133.3, 130.4, 129.5, 112.7.

9H-fluoren-9-one (4o) [66]: White solid (82 mg, 91%); 1H NMR (400 MHz, DMSO-d6) δ 7.65
(d, J = 7.6 Hz, 2H), 7.52–7.46 (m, 4H), 7.31–7.27 (m, 2H); 13C NMR (101 MHz, DMSO-d6) δ
193.9, 144.4, 134.7, 134.1, 129.0, 124.3, 120.3.
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9H-xanthen-9-one (4p) [72]: Grayish white solid (88 mg, 90%); 1H NMR (400 MHz, DMSO-d6)
δ 8.35 (dd, J = 8.0, 1.6 Hz, 2H), 7.73 (td, J = 7.6, 1.6 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 7.40–7.36
(m, 2H); 13C NMR (101 MHz, DMSO-d6) δ 177.2, 156.1, 134.8, 126.7, 123.9, 121.8, 118.0.

9H-thioxanthen-9-one (4q) [73]: Light yellow solid (93 mg, 88%); 1H NMR (400 MHz, DMSO-
d6) δ 8.62 (dd, J = 8.0, 1.2 Hz, 2H), 7.65–7.57 (m, 4H), 7.51–7.47 (m, 2H); 13C NMR (101 MHz,
DMSO-d6) δ 180.0, 137.3, 132.3, 129.9, 129.2, 126.3, 126.0.

methyl 2-(1-(4-acetylbenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (4r) [44]: Grayish white
solid (148 mg, 78%); 1H NMR (400 MHz, DMSO-d6) δ 8.06 (d, J = 8.4 Hz, 2H), 7.79 (d,
J = 8.4 Hz, 2H), 6.96 (d, J = 2.4 Hz, 1H), 6.85 (d, J = 9.2 Hz, 1H), 6.65 (dd, J = 9.2, 2.4 Hz,
1H), 3.83 (s, 3H), 3.71 (s, 3H), 3.67 (s, 2H), 2.68 (s, 3H), 2.36 (s, 3H); 13C NMR (101 MHz,
DMSO-d6) δ 197.3, 171.3, 168.5, 156.2, 139.8, 139.6, 135.9, 130.8, 130.7, 129.7, 128.6, 115.1,
112.9, 111.7, 101.4, 55.7, 52.2, 30.1, 26.9, 13.5.

isopropyl 2-(4-(4-acetylbenzoyl)phenoxy)-2-methylpropanoate (4s) [44]: White solid (153 mg,
83%); 1H NMR (400 MHz, DMSO-d6) δ 8.04 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 8.0 Hz, 2H), 7.75
(d, J = 8.0 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 5.11–5.05 (m, 1H), 2.66 (s, 3H), 1.66 (s, 6H), 1.20
(d, J = 6.0 Hz, 6H); 13C NMR (101 MHz, DMSO-d6) δ 197.6, 194.7, 173.0, 160.0, 142.0, 139.2,
132.1, 129.9, 129.7, 128.1, 117.2, 79.4, 69.4, 26.8, 25.3, 21.5, 1.0.

benzohydrazide (5a) [49]: Grayish white solid (55 mg, 81%); 1H NMR (400 MHz, DMSO-d6)
δ 9.79 (s, 1H), 7.83 (d, J = 7.2 Hz, 2H), 7.52–7.42 (m, 3H), 4.51 (s, 2H); 13C NMR (101 MHz,
DMSO-d6) δ 166.5, 133.8, 131.6, 128.8, 127.5.

phenyl benzoate (5b) [50]: Colorless liquid (77 mg, 78%); 1H NMR (400 MHz, DMSO-d6) δ
8.23 (d, J = 7.2 Hz, 2H), 7.65 (t, J = 7.2 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.45 (t, J = 8.0 Hz,
2H), 7.31–7.23 (m, 3H); 13C NMR (101 MHz, DMSO-d6) δ 165.2, 150.9, 133.5, 130.1, 129.5,
129.5, 128.5, 125.9, 121.7.

acetophenone oxime (5c) [51]: White solid (51 mg, 75%); 1H NMR (400 MHz, DMSO-d6)
δ 10.30 (s, 1H), 6.74–6.72 (m, 2H), 6.48–6.43 (m, 3H), 1.24 (s, 3H); 13C NMR (101 MHz,
DMSO-d6) δ 153.4, 137.5, 129.1, 128.9, 126.1, 12.1.

(E)-chalcone (5d) [52]: Light yellow solid (80 mg, 77%); 1H NMR (400 MHz, DMSO-d6) δ
8.03 (d, J = 7.2 Hz, 2H), 7.82 (d, J = 16.0 Hz, 1H), 7.66–7.49 (m, 6H), 7.46–7.41 (m, 3H); 13C
NMR (101 MHz, DMSO-d6) δ 190.5, 144.8, 138.2, 134.8, 132.8, 130.5, 128.9, 128.6, 128.5,
128.4, 122.1.

4. Conclusions

The results of this study present a highly efficient and practical system for the trans-
formtion of aromatic alcohols to desired acids or ketones via light irradiation under external
catalyst-, additive-, and base-free conditions. The following are notable characteristics of
the developed system: (1) the photoreaction system is economical and environmentally
friendly, owing to the use of air as a terminal oxidant and the reaction intermediate aldehy-
des as a photocatalyst. (2) A one-pot sequential transformation from aromatic alcohols to
carboxylic acids or ketones was performed successfully in excellent yield, which exhibited
a wide substrate scope and could also be applied on a large scale. (3) The most desired
products are easily obtained via recrystallization and separation from low-boiling reaction
medium acetone. More importantly, the crude products were available for subsequent di-
rect synthesis without further purification. We believe that the developed method provides
a practical light-initiated oxidation approach and could attract interest from those working
in pharmaceutical chemistry and synthetic natural products chemistry.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28073031/s1, Section S1: Experimental procedure;
Section S2: Mechanism research; Figure S1: MS spectra of 16O-4a and 18O-4a; Figure S2. UV-
Vis Spectroscopic; Figure S3: The X-band electron paramagnetic resonance (EPR) spectra of the
singlet oxygen captured by TMPD; Figure S4: The X-band electron paramagnetic resonance (EPR)
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spectra of the peroxy radical captured by DMPO; Section S3: Comparison of methodology; Table S1:
Comparison of reaction conditions and yields between this methodology and other schemes reported
in the literature; Section S4: Copies of the 1H NMR and 13C NMR for compounds 3a–3y and 4a–4s.
Section S5: References.
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