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Abstract: Radical transformations are powerful in organic synthesis for the construction of molecular
scaffolds and introduction of functional groups. In radical difunctionalization reactions, the radicals
in the first functionalized intermediates can be relocated through resonance, hydrogen atom or group
transfer, and ring opening. The resulting radical intermediates can undertake the following paths for
the second functionalization: (1) couple with other radical groups, (2) oxidize to cations and then
react with nucleophiles, (3) reduce to anions and then react with electrophiles, (4) couple with metal-
complexes. The rearrangements of radicals provide the opportunity for the synthesis of 1,3-, 1,4-, 1,5-,
1,6-, and 1,7-difunctionalization products. Multiple ways to initiate the radical reaction coupling with
intermediate radical rearrangements make the radical reactions good for difunctionalization at the
remote positions. These reactions offer the advantages of synthetic efficiency, operation simplicity,
and product diversity.

Keywords: radical; difunctionalization; remote; 1,3-difunctionalization; 1,4-difunctionalization;
1,5-difunctionalization; 1,6-difunctionalization; 1,7-difunctionalization

1. Introduction

Radical addition, coupling, rearrangement, and cleavage reactions are powerful in the
synthesis of diverse molecular structures [1,2]. Difunctionalization reactions initiated with
radical addition are attractive for both synthetic efficiency and product diversity considera-
tions [3–12]. We have recently reported radical 1,2-difunctionalization (Scheme 1I) [13] and
addition-/cyclization-based difunctionalization reactions (Scheme 1II) [14]. Compared to
these two kinds of reactions, remote 1,3-, 1,4-, 1,5-, 1,6- and 1,7-difunctionalization reactions
are new and under active investigation. Developments on this topic are highlighted in this
paper. Most works have been published in the last five years.

In addition to traditional homolytic bond cleavage-based radical reactions induced
by radical initiators or photolysis [15–17], other methods such as single electron transfer
reagents [18–22], catalytic photoredox [23–28], and electrochemical reactions [29–35] have
been developed and are gaining increasing popularity. For the remote 1,3-, 1,4-, 1,5-,
1,6- and 1,7-difunctionalization reactions presented in this paper, the initial addition of
the radical X is followed by radical rearrangement through resonance, hydrogen atom
transfer (HAT), group transfer, or opening of strained-rings to relocate the position of the
radical. The resulting radical intermediates can couple with the radical Y to give the desired
products. The radical intermediates can also be oxidized to cations, subsequently react
with Y− or reduced to anions, and then react with Y+ to give the products (Scheme 1III).
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2. 1,3-Difunctionalization Reactions 
Substrates used for the 1,3-difunctionalization commonly have allyl or cyclopropyl 

moieties. Other special substrates, such as alkynyl diazo compounds and piperidines, can 
be used for the reactions (Figure 1). The general reaction pathways for 1,3-difunctionali-
zation of allyl or cyclopropyl compounds are shown in Scheme 2. The initial radical addi-
tion happens at the less hindered position of the substrate to form a stabilized radical 
intermediate after 1,2-group transfer or cyclopropyl ring opening, which then undergoes 
the second functionalization to give the product. 

 
Figure 1. Substrates for 1,3-difunctionalization with the pointed position for the initial radical reaction. 

 
Scheme 2. General pathways for 1,3-difunctionalization of allyl or cyclopropyl compounds. 

Studer and colleagues, in 2020, reported a method for the synthesis of 1,2,3-trisubsti-
tuted alkanes 1 using allylboronic esters as the substrates and acetylenic triflones as the 
reagent for 1,3-trifluoromethylacetylenic difunctionalization (Scheme 3) [36]. In the 

Scheme 1. Common radical difunctionalization reactions: (I) 1,2-difunctionalization; (II) Radical
addition and cyclization for difunctionalization; (III) 1,3-/1,4-/1,5-/1,6-/1,7-difunctionalization.

2. 1,3-Difunctionalization Reactions

Substrates used for the 1,3-difunctionalization commonly have allyl or cyclopropyl
moieties. Other special substrates, such as alkynyl diazo compounds and piperidines, can be
used for the reactions (Figure 1). The general reaction pathways for 1,3-difunctionalization
of allyl or cyclopropyl compounds are shown in Scheme 2. The initial radical addition
happens at the less hindered position of the substrate to form a stabilized radical inter-
mediate after 1,2-group transfer or cyclopropyl ring opening, which then undergoes the
second functionalization to give the product.
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Scheme 2. General pathways for 1,3-difunctionalization of allyl or cyclopropyl compounds.

Studer and colleagues, in 2020, reported a method for the synthesis of 1,2,3-trisubstituted
alkanes 1 using allylboronic esters as the substrates and acetylenic triflones as the reagent
for 1,3-trifluoromethylacetylenic difunctionalization (Scheme 3) [36]. In the reaction process,
AIBN-initiated radical leads to the formation of CF3 radical from an alkynyl triflone which
adds to the double bond of the allylboronic esters to form alkyl radicals M-1 followed by
1,2-boron migration to give more stable radicals M-2 which are trapped by acetylenic triflones
to afford the products 1. This methodology can be also applied to the 1,3-trifluoromethylazido
difunctionalization using trifluoromethanesulfonyl azide to give product 1d. This could also
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be considered as a trifunctionalization reaction since it involves the migration of the boronic
ester group.
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Scheme 3. 1,3-Difunctionalization of allylboronic esters.

β-Alkyl nitroalkenes are good substrates for 1,3-difunctionalization. Shi and Chen
group employed them in the reactions with TEMPO for the synthesis of ketones 2 bearing
the vinylic alkoxyamine group (Scheme 4) [37]. In the reaction process, β-alkyl ni-
troalkenes are isomerized to allylic nitro compounds M-3 in the presence of a Lewis
base, which are oxidized by TBHP to form radical intermediates M-4. The coupling of
M-4 with TEMPO gives M-5 followed by the addition of tBuOO− to form functionalized
ketones 2 after NO2 elimination.
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Opening of the cyclopropane ring is a good strategy for 1,3-difunctionalization. In
2021, Lei et al., reported an electrochemical reaction of arylcyclopropanes for the syn-
thesis of 1,3-difluorinated compounds 3 using Et3N.3HF as a reagent for difluorination
(Scheme 5) [38]. Arylcyclopropane radical cations M-6 generated from the anode oxidation
of arylcyclopropanes react with a nucleophile to form radicals M-7 which are oxidized to
carboniums M-8 and then react with the second nucleophiles to afford 1,3-diflourinated
products 3. If alcohols or ethers are used as the nucleophiles, the reaction can produce
1,3-fluoroalkoxylated products 4a–f and 1,3-dialkoxylated products 4g–h, respectively.
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Scheme 5. Electrochemical 1,3-difunctionalization of arylcyclopropanes.

Other than the allylic and cyclopropyl compounds presented above, alkynyl diazo
compounds can be used for the synthesis of functionalized allenes. Zhu et al., in 2022,
reported a visible-light-promoted radical reaction of alkynyl diazo compounds with
RSO2X for the synthesis of tetrasubstituted allenes 5 in high yields (Scheme 6) [39]. A
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proposed mechanism suggests that the sulfonyl radical adds to the α-position of the
alkynyl diazo compounds to form allenyl radicals M-9 after elimination of N2. Coupling
of allenyl radicals with X radicals from RSO2X gives 1,3-difunctionalized allenes 5 and
release the sulfonyl radicals simultaneously. The resulting tetrasubstituted allenes are
good substrates that can be used for cascade Michael addition/cyclization reactions for
making cyclobutanone derivatives.
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Scheme 6. 1,3-Difunctionalization of alkynyl diazo compounds.

A unique α,γ-difunctionalization reaction of N-aryl piperidines for making bridged
products was reported by Zhou et al., in 2022 (Scheme 7) [40]. In the presence of 3DPAFIPN
and under blue light photocatalysis, radical M-10 generated from nitrobenzene reacts with
M-11 to form iminium intermediate M-12 which is then oxidized to M-13. Base-promoted
formation of N-radical M-14 from M-13 undergoes 1,5-HAT to form radical M-15 which is
then coupled with the N-radical intramolecularly to give final product 6a.

The Xia and Guo group, in 2022, reported 1,3-difunctionalization of a special kind of
substrates, alkyl N-hydroxyphthalimide esters, in the synthesis of γ-cyano alkenes 7 or
γ,δ-unsaturated ketones 8 (Scheme 8) [41]. Under visible-light-induced photochemical
conditions, alkyl radicals M-16 resulting from alkyl N-hydroxyphthalimide esters add
to alkenes to form radicals M-17 which then undergo 1,5-HAT to form radicals M-18. If
TMSCN is used for the reaction, radicals M-18 are converted to complex M-19 followed
by reductive elimination to give γ-cyano alkenes 7. If DMSO instead of TMSCN is used
for the reaction, radicals M-18 are oxidized to cations M-20 and then react with DMSO to
form γ,δ-unsaturated ketones 8. It is worth noting that path A (with TMSCN) requires Cu
catalyst, while path B (with DMSO) does not need Cu catalyst.

In 2020, Chu and colleagues reported a unique cyclic-oxalate-based reaction involv-
ing decarboxylative vinylation/1,5-HAT/aryl cross-coupling for the synthesis of α,γ-
difunctionalized cyclohexanes 9 under photoredox and Ni dual catalysis (Scheme 9) [42].
In the reaction process, the Ir-catalyzed photoredox reaction of cyclic oxalates promotes the
decarboxylation to form radicals which add to alkynes to form vinyl radicals M-21. The
1,5-HAT of M-21 followed by coupling with LNi0 and then with ArBr afford complexes
M-22. Reductive elimination of the Ni-cat produces product 9.
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3. 1,4-Difunctionalization Reactions

1,4-Difunctionalizations are more popular than 1,3-difunctionalizations. The com-
mon substrates for 1,4-difuntionalizations include 1,3-dienes, 1,3-enynes, pent-1-ynes, and
isoquinolines (Figure 2). The general reaction pathways for the reaction of 1,3-dienes,
1,3-enynes, and pent-1-ynes are shown in Scheme 10. After addition of X, the position
of intermediate radicals is relocated through resonance or 1,5-HAT to the 4-position for
second functionalization with Y to give the 1,4-difunctionalization products.
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Song and Li’s group, in 2020, reported the difunctionalization of 1,3-dienes with alkyl
radicals and heterocyclics nucleophiles. The reaction of aromatic 1,3-dienes, α-carbonyl
alkyl bromides and N-heterocycles in the presence of InBr3 and Ag2CO3 afforded sub-
stituted N-heterocycles 10 in moderate to good yields (Scheme 11) [43]. However, the
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aliphatic 1,3-diene was inactive. A proposed mechanism indicated that In-coordinated
alkyl radical M-23, generated from (CH3)2BrCO2Et via SET of Ag2CO3 and the In catalyst,
adds to the terminal carbon of the 1,3-diene to form
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A visible-light-mediated and Pd-catalyzed reaction of 1,3-dienes was reported by
Glorius et al., in 2020. Under the radiation of blue LEDs and in the presence of Pd(PPh3)4,
BINAP and KOAc in DMA, a three-component reaction of 1,3-dienes, alkyl bromides and
nitrogen-, oxygen-, sulfur-, or carbon-based nucleophiles afforded products 11 in good to
excellent yields (Scheme 12) [44]. The reaction mechanism suggests that hybrid alkyl PdI

radical M-26, generated from tert-butyl bromide by photoinduced Pd catalysis, adds to
the C=C bond of butadiene to form allyl PdI-radical complex M-27 and then PdII-complex
M-28 after SET. The reaction of M-28 with a nucleophile followed by reductive elimination
of the Pd-cat gives product 11a.

In 2021, Wang et al., reported a Ni-catalyzed three-component reaction of 1,3-
butadiene with ethyl 2-bromo-2,2-difluoroacetate and arylboronic acids for the syn-
thesis of 1,4-difluoroalkylarylated products 12 in good to excellent yields. However,
ortho-substituted phenylboronic acids and cyclohexylboronic acid were found inert
(Scheme 13) [45]. A proposed reaction pathway indicates that the CF2CO2Et radical
derived from BrCF2CO2Et adds to the C=C bond of 1,3-butadiene to form allyl radical
M-29 which reacts with ArNiIILBr complex to form NiIII intermediate M-30 followed by
reductive elimination to give product 12a.
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In 2022, Yang et al., reported a visible-light-induced and Pd-catalyzed reaction of
1,3-dienes with bromodifluoroacetamides and sulfinates or amines for the synthesis of
difluorofunctionalized alkenes 13 in moderate to good yields (Scheme 14) [46]. The reaction
mechanism suggests that hybrid alkyl PdI radical M-31, generated from BrCF2CONHPh
via a SET process by photo-induced Pd catalysis, adds to the terminal position of 1,3-
butadiene to form hybrid allyl PdI-radical M-32 followed by SET for a PdII- complex which
then undergoes nucleophilic addition and reductive elimination of the Pd catalyst to give
product 13a.
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Other than 1,4-difunction of 1,3-dienes for making substituted but-2-enes presented
above, 1,3-enynes are important substrates for 1,4-difuncntion for the synthesis of sub-
stituted allenes. The key reaction process involves the resonance of propargyl radicals
to allenyl radicals for the second functionalization. There are many examples reported
in the literature including asymmetric synthesis under photoredox catalysts, transition
metal-catalysts, and organocatalysts.

In 2009, Kambe and colleagues developed a transition metal-catalyzed reaction of
1,3-enynes, alkyl halides, and organozinc reagents for regioselective synthesis of 1,4-
difunctionalized allene product 14 in moderate to good yields (Scheme 15) [47]. A proposed
mechanism for 1,4-difunctionalization of 1,3-enynes indicated that the Ni(dppb) species
generated from Ni(acac)2 and organozinc reagents reacts with R2Zn to afford Ni-complex
M-33. The alkyl radical generated from the Ni-complex M-33 adds to the 1,3-enynes at
the terminal position of the olefin followed by resonance to form allenyl radical interme-
diate M-34. The allenyl radical is trapped by (dppb)NiI-R complex to give Ni-complex
intermediate M-35 which then undergoes reductive elimination to afford allene product 14.
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In 2019, Wang et al., reported a method for the synthesis of 1,4-fluoroalkylated allenes
15 via a Ni-catalyzed reaction of 1,3-enynes under mild conditions (Scheme 16) [48]. In the
reaction process, the arylated NiI species M-36 generated through the transmetallation of
the NiI catalyst with aryl boronic acid reduces the fluoroalkyl bromide to afford fluoroalkyl
radical M-37 and NiII complex M-38. The capture of fluoroalkyl radical M-37 by a 1,3-enyne
followed by 1,3-radical shift generates the key intermediate allenyl radical M-39, which
then coordinates with NiII complex M-38 to afford oxidized NiIII complex M-40. At the last
step, reductive elimination of NiIII complex 6 gives the tetrasubstituted allene product 15.
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Scheme 16. Ni-Catalyzed 1,4-carbofluoroalkylation of 1,3-enynes.

In 2019, Ma et al., reported a Cu-catalyzed atom transfer radical addition of aryl
sulfonyl iodides to 1,3-enynes for the synthesis of allenyl iodides 16 under mild conditions
(Scheme 17) [49]. A suggested reaction mechanism indicates that the aryl sulfonyl radicals
(ArSO2·) generated from aryl sulfonyl iodides adds to the alkene moiety of 1,3-enynes to
afford allenyl radical M-41. Trapping of the radicals M-41 with LCuI2 produces allenyl
CuIII diiodide species M-42 which lead to the formation of allenyl iodides 16 after reductive
elimination of the catalyst.

Recently, Lv and colleagues developed a Cu-catalyzed 1,4-sulfonylcyanation reaction
of 1,3-enynes with alkyl or aryl sulfonyl chlorides and TMSCN (Scheme 18) [50]. Under the
catalysis of Cu(CH3CN)4PF6, sulfonyl-containing allenic nitriles 17 were obtained in good
yields and high regioselectivity. A reaction mechanism suggests that the sulfonyl radicals
generated from sulfonyl chlorides and LCuI species adds to the alkene moiety of 1,3-enynes
to afford allenyl radicals M-43 followed by the coordination with LCuIICl and ligand ex-
change with TMSCN to give cyano-CuIII species M-44. Sulfonyl-containing allenyl nitrile
products 17 are obtained after the reductive elimination of the Cu-catalyst. Lv et al., also
developed a 1,4-sulfonyliodination reaction of 1,3-enynes to synthesize a tetrasubstituted
allenyl iodides 18 under metal-free conditions (Scheme 19) [51]. The reaction of 1,3-enynes
with sulfonyl hydrazides and I2 in the presence of tert-butyl hydroperoxide (TBHP) at
room temperature gave the allenyl iodide products in satisfactory yields with excellent
regioselectivity and good functional group tolerance. In 2022, Li and Wang’s group dis-
closed a visible-light-induced and Ni-catalyzed 1,4-arylsulfonation of 2-methyl-1,3-enynes
to synthesize compounds 19 (Scheme 20) [52].
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A number of Cu-catalyzed and Togni’s reagent-based trifluomethylation reactions
have been reported. In 2018, Liu et al., reported a tunable 1,2- and 1,4-addition of 1,3-enynes
for the synthesis of CF3-containing tri- and tetrasubstituted allenyl nitriles (Scheme 21) [53].
The Cu-catalyzed reaction of 1,3-enynes with Togni’s reagent and TMSCN in the presence
of Cu(CH3CN)4PF6 under nitrogen atmosphere gave 1,2-/1,4-addition allenyl nitriles
(20/21) in moderate to excellent yield. The regioselectivity could be controlled by using
different ligands. The reactions using phenanthroline-type ligand L1 primary gave 1,4-
addition allenyl nitriles product 20 through an allenyl-CuIII species Int-I. The reactions
using bisoxazoline ligands L2 in the presence of Et3N produced 1,2-propargylic cyanation
products 21 via the Int-II complex intermediates. It is worth noting that, the reactions
of 1,3-enynes with R2 at C2 position only afforded 1,4-addition product 20c due to the
steric hindrance at C2 position which prevents the interaction of the tertiary propargyl
radical with the reactive CuII cyanide complex. In 2020, the Li group reported a Cu-
catalyzed reaction of 1,3-enynes with Togni II reagent and (bpy)Zn(CF3)2 for the synthesis
of 1,4-bis(trifluoromethylated) allenes 22 (Scheme 22) [54].
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Yang and colleagues, in 2021, extended the reaction scope for the synthesis CF3-
containing tetrasubstituted allenes. They reported a Cu-catalyzed 1,4-difunctionalization
reaction of 1,3-enynes with Togni II reagent and a nucleophilic halide reagent (SOX2)
(Scheme 23) [55]. In the reaction process, a CF3 radical generated from Togni II adds to the
1,3-enynes to afford allenyl radical intermediates M-45 followed by the combination with
CuII and SOCl2 to give a CF3-allenyl-CuIIICl2 species M-46. Reductive elimination of the
Cu-cat gives 1,4-halotrifluormethylation product 23.
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The Yang and Cao group, in 2023, reported a Cu-catalyzed ATRA reaction of 1,3-enynes
with Togni II reagent for making trifluoromethylbenzoxylated allenes 24 (Scheme 24) [56].
The Togni II reagent plays triple roles in the reaction process, including the source of CF3
radical, the nucleophile for the second functionalization, and an oxidant for Cu cataly-
sis. It is worth noting that 1,3-enynes bearing the fully substituted alkene moiety were
employed to disfavor the radical addition to the alkene moiety at the initiate step. Thus,
in this reaction system, CF3 radical attacks the alkyne position of 1,3-enynes to generate
trifluoromethyl-substituted allenyl radical M-47 which are oxidized to cations M-48 fol-
lowed by nucleophilic addition to form product 24. The products can be readily converted
to corresponding allenols 25.
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In 2021, Ma et al., introduced a Cu-catalyzed 1,4-addition of 1,3-enynes with cyclobu-
tanone oxime esters and TMSCN to give allene products 26 in moderate to good yields
(Scheme 25) [57]. A reaction mechanism suggests that the CuI species reacts with cy-
clobutanone oxime ester to give the cyanoalkyl radical M-49 and CuII species M-50 via a
SET process. Radical M-49 adds to the C=C bond of 1,3-enynes to afford allenyl radicals
M-51. In another path, intermediate M-52, which is generated by ligand exchange of
M-50 with TMSCN, couples with allenyl radicals M-51 to produce allenyl CuIII complex
M-53. Subsequential reductive elimination of LCuIIIBr affords 1,4-carbocycanated allene
products 26. If TMSCF3 is used to replace TMSCN as a nucleophile, the reactions give
1,4-carbotrifluoromethylated allene products.
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Wu and colleagues, in 2021, disclosed a Cu-catalyzed reaction of 1,3-enynes to give
cyanoalkylsulfonylated allenyl selenides products 27 (Scheme 26) [58]. The reaction of
1,3-enynes, diselenides, DABCO·(SO2)2 and cycloketone oxime esters under the cataly-
sis of CuOAc without ligand gave products 27 in good yields. A reaction mechanism
suggests that the iminyl radicals generated from cycloketone oxime esters undergoes β-
C–C bond cleavage to give cyanoalkyl radical M-54 which then is captured by SO2 from
DABCO·(SO2)2 to generate cyanoalkylsulfonyl radical M-55. The addition of radical M-55
to 1,3-enynes at the terminal C=C bond carbon affords propargyl radical which is converted
to allenyl radical M-56 through resonance. The coordination of M-56 with CuI specie gives
CuII complex M-57 followed by the interaction with diphenyl diselenide to afford CuIII

complex M-58 and a phenyl seleno radical. Subsequent reductive elimination of CuIII

affords product 27a.
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Scheme 26. Cu-Catalyzed 1,4-selenosulfonylation of 1,3-enynes.

The vinyl enynes are good substrates for 1,4-difunctionalization. In 2021, Wu et al.,
reported a visible-light-induced 1,4-hydroxysulfonylation of vinyl enynes for the synthesis
of sulfonyl allenic alcohols [59]. The reaction of diarylterminated enynes and aryl or alkyl
sulfonyl chlorides in the presence of fac-Ir(ppy)3 and K3PO4 under the radiation of blue
LEDs afforded 1,4-hydroxysulfonyl allenes 28 in good to excellent yields (Scheme 27).
However, the action with trifluoromethanesulfonyl chloride for 28e was ineffective. A
reaction mechanism suggests that the hydroxyl radical generated from water via the HAT
with chloride radical adds to the C=C bond of diarylterminated enyne to form the propargyl
radical followed by tautomerization to the allenic radical M-59 which couples with the
sulfonyl radical to give product 28a.
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action mechanism suggests that the excited state IrIII* generated from photocatalyst 
Ir(ppy)3 reacts with the NHP esters through a SET process to give ester radical anions M-
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addition to C=C double bond of 1,3-enynes affords allenyl radical M-61 which coordinates 
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tion of the Cu-catalyst affords tetrasubstituted allenic nitriles 30. 

Scheme 27. Photoredox reaction of vinyl enynes for making 4-sulfonyl allenic alcohols.

Wu et al., in 2022, reported a metal-free radical difunctionalization reaction of vinyl
enynes with NBS to afford diverse 4-bromo-allenic alcohols 29 in good yields (Scheme 28) [60].
In the reaction process, hydroxyl radical derived from H2O adds to the C=C bond and then
traps bromo radicals generated from NBS to give products 29.
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Scheme 28. Reaction of vinyl enynes for making 4-bromoallenic alcohols.

N-Hydroxyphthalimide (NHP) esters are good precursors for generating alkyl radicals.
In 2021, Lu et al., reported a photoredox and Cu-catalysis reaction for 1,4-carbocyanation
of 1,3-enynes (Scheme 29) [61]. The reaction of 1,3-enynes with N-hydroxyphthalimide
(NHP) esters and TMSCN under Cu/photoredox dual catalysis gave tetrasubstituted
allenes 30 in good yields and excellent functional group tolerance. A reaction mechanism
suggests that the excited state IrIII* generated from photocatalyst Ir(ppy)3 reacts with
the NHP esters through a SET process to give ester radical anions M-60 which undergo
decarboxylation to form alkyl radicals R3·. The subsequent alkyl radical addition to C=C
double bond of 1,3-enynes affords allenyl radical M-61 which coordinates with TMSCN
to create cynanocopperIII species M-62. At the last step, reductive elimination of the
Cu-catalyst affords tetrasubstituted allenic nitriles 30.
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Scheme 29. Cu and photoredox dual catalysis for 1,4-carbocyanation of 1,3-enynes.

There are several reports on dual Ni/photoredox catalyzed reactions for 1,4-difunctionalizations.
Lu et al., reported 1,4-sulfonylarylation of 1,3-enynes for the synthesis of allenes 31 (Scheme 30) [62].
In the presence of NiCl2·glyme, diOMebpy ligand, organic photosensitizer (1,2,3,5-tetrakis(carbazol-
9-yl)-4,6-dicyanobenzene) (4CzIPN), the reaction of 1,3-enynes with sodium sulfinates as radical
precursors and aryl halides as coupling partners afforded sulfone-containing allenes 31 in fair to
good yields. A reaction mechanism suggests that the excitation of photocatalyst (PC) 4CzIPN leads
to the activated M-63 which then reacts with R3SO3Na to form sulfonyl radical R3SO2· along with
the reduced state PC M-64. The addition of sulfonyl radicals to the alkene moiety of 1,3-enynes
affords allenyl radicals M-65 which then convert to allenyl NiI species M-66 after interception with
LNi0. Oxidative addition of aryl halides to M-66 creating the allenyl NiIII intermediates M-67 which
undergo reductive elimination to give sulfone-containing allenes 31. The Li and Wang groups also
reported the 1,4-sulfonylarylation of 1,3-enynes [63,64].

In 2022, the Kong and Wang groups introduced a photoredox reaction for dicarbon-
ation of trifluoromethylated 1,3-enynes (Scheme 31) [65]. In the presence of TBADT and
Ni(dibbpy)Br2 catalysts and under near-ultraviolet light irradiation, the reaction of 1,3-
enynes with alkanes and alkyl halides afforded tetrasubstituted CF3-allenes 32. A reaction
mechanism suggests that the cyclohexyl radical generated by the photoredox catalysis adds
to the alkene moiety of 1,3-enyne to give allenyl radical M-68 which reacts with M-69 to
form Ni-complex M-70 followed by a Ni shift to give more stable allenyl-NiI complex M-71.
The subsequent oxidative addition of ethyl 4-bromobenzoate to M-71 gives allenyl-NiIII

intermediate M-72 which gives product 32a after reductive elimination of LNiIIIBr.
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Scheme 30. Ni/photoredox dual catalysis for 1,4-sulfonylarylation of 1,3-enynes. 

In 2022, the Kong and Wang groups introduced a photoredox reaction for dicarbon-
ation of trifluoromethylated 1,3-enynes (Scheme 31) [65]. In the presence of TBADT and 
Ni(dibbpy)Br2 catalysts and under near-ultraviolet light irradiation, the reaction of 1,3-
enynes with alkanes and alkyl halides afforded tetrasubstituted CF3-allenes 32. A reaction 
mechanism suggests that the cyclohexyl radical generated by the photoredox catalysis 
adds to the alkene moiety of 1,3-enyne to give allenyl radical M-68 which reacts with M-
69 to form Ni-complex M-70 followed by a Ni shift to give more stable allenyl-NiI complex 
M-71. The subsequent oxidative addition of ethyl 4-bromobenzoate to M-71 gives allenyl-
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Scheme 30. Ni/photoredox dual catalysis for 1,4-sulfonylarylation of 1,3-enynes.

In 2021, Du et al., introduced an N-heterocyclic carbene (NHC) organocatalyzed reac-
tion for 1,4-alkylcarbonylation of 1,3-enynes 33 (Scheme 32) [66]. The reaction of 1,3-enynes
with alkyl radical precursors and aldehydes under NHC organocatalysis gave allenyl
ketone products 33 in moderate to excellent yields. A reaction mechanism suggests that the
reaction of an aldehyde and NHC M-73 under a basic condition gives Breslow intermediates
M-74 which interact with CF3I to afford a CF3 radical and NHC-bound ketyl radicals M-75.
The addition of CF3 radical to the C=C double bond of 1,3-enynes gives allenyl radicals
M-76 which are coupled with ketyl radicals M-75 to give NHC-allenyl intermediates M-77.
The final allenyl ketone products 33 are generated from M-77 after elimination of NHC.
Recently, Du et al., applied a similar reaction for making gem-difluorovinylcarbonylated
allenes 34 (Scheme 33) [67]. The Huang and Yang groups also reported this kind of reac-
tions for the synthesis of 1,4-alkylcarbonylated allenes 35 (Scheme 34) [68,69]. In 2022, the
Zhang and Zheng’s group reported a reaction which combined the NHC and photoredox
catalysis for 1,4-sulfonylacylation of 1,3-enynes. The reaction of 1,3-enynes, aroyl fluo-
rides, and sodium sulfinates under blue light irradiation affords sulfone-containing allenyl
ketones 36 in moderate to good yields (Scheme 35) [70].
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Scheme 36. Cu-catalyzed 1,4-alkylarylation of 1,3-enynes. 

Bao et al., in 2019, reported another Cu-catalyzed reaction for 1,4-alkylcyanation, 1,4-
fluoroalkylcyanation and 1,4-sulfimidocyanation of 1,3-enynes (Scheme 37) [72]. The re-
action of 1,3-enynes with TMSCN and various radical precursor reagents (alkyl diacyl 
peroxides, fluoroalkylated iodides and N-fluorobenzenesulfonimide) afforded corre-
sponding allenyl nitriles compounds 38 as racemic compounds in moderate to good yield 

Scheme 35. NHC and photoredox catalysis for 1,4-sulfonylacylation of 1,3-enynes.

In 2019, Bao et al., reported a Cu-catalyzed 1,4-alkylarylation of 1,3-enynes using
diacyl peroxide as radical precursors and aryl boronic acids as nucleophiles to afford
tetrasubstituted allenes 37 in moderate to good yields (Scheme 36) [71]. In the reaction
process, LCuII-Ar complexes M-78 and alkyl radicals are resulting from (RCO2)2. The alkyl
radicals add to 1,3-enynes to form allenyl radicals M-79 which then react with M-78 in



Molecules 2023, 28, 3027 22 of 46

two possible ways. In path a, the radicals M-79 couple with M-78 to form tetrasubstituted
allene products 37 and regenerate the LCuI catalyst. While in path b, the coordination
of M-79 with M-78 afford CuIII species M-80 which then give product 37 after reductive
elimination of LCuI catalyst.
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Bao et al., in 2019, reported another Cu-catalyzed reaction for 1,4-alkylcyanation, 1,4-
fluoroalkylcyanation and 1,4-sulfimidocyanation of 1,3-enynes (Scheme 37) [72]. The re-
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peroxides, fluoroalkylated iodides and N-fluorobenzenesulfonimide) afforded corre-
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Bao et al., in 2019, reported another Cu-catalyzed reaction for 1,4-alkylcyanation,
1,4-fluoroalkylcyanation and 1,4-sulfimidocyanation of 1,3-enynes (Scheme 37) [72]. The
reaction of 1,3-enynes with TMSCN and various radical precursor reagents (alkyl diacyl per-
oxides, fluoroalkylated iodides and N-fluorobenzenesulfonimide) afforded corresponding
allenyl nitriles compounds 38 as racemic compounds in moderate to good yield and high
regioselectivity. The proposed reaction mechanism is different from the CuIII mechanism in
the cyanation reactions reported previously. In this case, the alkyl radical generated from
diacyl peroxide add to 1,3-enynes to form allenyl radicals M-81 which then couple with
isocyanocopper species M-82 to form complexes M-83. Reductive elimination of LCuII

catalyst from M-83 affords substituted allenyl nitriles 38. In 2020, Bao et al., employed the
use of a chiral ligand for asymmetric 1,4-difunctionalization of 1,3-enynes in the synthesis
of 39 (Scheme 38) [73].
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Organocatalysts can be used for asymmetric 1,4-carboalkynylation of 1,3-enyne.
Liu et al., in 2019, reported a Cu and cinchona alkaloid-derived catalytic system for
the reaction of 1,3-enynes with alkyl halides and alkynes to give 1,4-carboalkynylation
products 40 in moderate to good yields with the high ee ratio (Scheme 39) [74]. A reaction
mechanism suggests that complex M-84, generated from the reaction of CuIX, ligand and
alkynes under basic conditions, reacts with alkyl halides to form CuII species M-85 and
R3 alkyl radicals. The alkyl radicals add to the 1,3-enynes to form allenyl radicals
M-86 then couple with M-84 to afford chiral tetrasubstituted allenes 40. In this reaction,
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the chiral cinchona alkaloid-derived N,N,P-complex is the key for the enantiocontrol
during the reaction with highly reactive allenyl radical M-86.
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Scheme 39. Cu-catalyzed asymmetric radical 1,4-carboalkynylation of 1,3-enynes.

Wang et al., in 2022, reported an asymmetric 1,4-difunctionalization of 1,3-enynes
using dual photoredox and Cr catalysts. The reaction of 1,3-enynes with aldehydes and
DHP esters in the presence of CrCl2, 4CzIPN and chiral ligand under the radiation of blue
LEDs afforded chiral allenols 41 in moderate to good yields with high enantioselectivities
(Scheme 40) [75]. The reaction mechanism suggests that isopropyl radical generated from
DHP ester assisted adds to 1,3-enyne to provide propargyl radical M-87 followed by
trapping with CrIIL to form the propargyl chromium M-88 and then chiral intermediate
M-89 after nucleophilic addition to benzaldehyde. A six-member cyclic transition state
controls the enantioselectivity for the Nozaki–Hiyama allenylation [76]. The final product
41a is then obtained after the protonation of M-89.
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Highly strained alkylidenecyclopropanes (ACPs) are useful structure moieties in organic
synthesis. Sequential 6π-electrocyclization and vinylcyclopropane rearrangement of allene-type
ACP intermediates can afford more stable aromatization heterocyclic products. In 2020, Shi
and coworkers reported a Cu-catalyzed 1,4-difunctionalization reaction of 1,3-enyne-ACPs with
Togni I reagent and TMSCN to afford 3-trifluoroethylcyclopenta[b]naphthalene-4-carbonitrile
derivatives 42 in moderate to good yields (Scheme 41) [77]. The proposed mechanism indicated
that the CF3 radical generated from Togni I reagent added to the 1,3-enyne-ACPs to form
allenyl radicals M-91 after tautomerization. Allenyl radicals M-91 are captured by the LCuII-CN
complex followed by the reductive elimination to produce allene-ACP products M-92. The
6π-electrocyclizaton of M-92 gives vinylcyclopropane intermediates M-93 which undergoes
CN-catalyzed cyclopropane ring opening and SN2 cyclization to give cyclopenta[b]naphthalene
products 42. In addition, the interaction of vinylcyclopropane intermediate M-93 with cyano
anions, followed by the further SN2 reaction also can give the final product 42.
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Other than the popular conjugated 1,3-dienes and 1,3-enynes presented above, spe-
cial aromatic substrates can also be developed for 1,4-functionalization reactions. Yan et 
al., in 2018, introduced a Cu-catalyzed reaction to 1,4-difunctionalize the isoquinolinium 
salts with ethers and halogen anions. The reaction of isoquinolinium salts and esters in 
the presence of Cu(acac)2 and TBHP afforded substituted azaarenes 43 in moderate to 
good yields [78]. However, the dioxane and diethyl ether were found to be less reactive 
(Scheme 42). The reaction mechanism suggests that the THF radical, generated from the 
oxidation of THF and tert-butyl hydroperoxide (TBHP) through a Cu-catalyzed process, 
adds to the C-1 position of 2-benzylisoquinolin-2-ium bromide to form the radial cation 
M-94 followed by radical resonance to form M-95 which then undergoes a Cu-catalyzed 
bromine radical coupling and deprotonates to give product 43. 

Scheme 41. Cu-Catalyzed 1,4-difunctionalization of 1,3-enyne-ACPs.

Other than the popular conjugated 1,3-dienes and 1,3-enynes presented above, special
aromatic substrates can also be developed for 1,4-functionalization reactions. Yan et al., in
2018, introduced a Cu-catalyzed reaction to 1,4-difunctionalize the isoquinolinium salts with
ethers and halogen anions. The reaction of isoquinolinium salts and esters in the presence
of Cu(acac)2 and TBHP afforded substituted azaarenes 43 in moderate to good yields [78].
However, the dioxane and diethyl ether were found to be less reactive (Scheme 42). The
reaction mechanism suggests that the THF radical, generated from the oxidation of THF and
tert-butyl hydroperoxide (TBHP) through a Cu-catalyzed process, adds to the C-1 position
of 2-benzylisoquinolin-2-ium bromide to form the radial cation M-94 followed by radical
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resonance to form M-95 which then undergoes a Cu-catalyzed bromine radical coupling
and deprotonates to give product 43.
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Scheme 42. 1,4-Difunctionalization of isoquinolinium salts.

Fullerene is another aromatic substrate which has been used for 1,4-difunctionalization
reaction. Jin et al., in 2015, reported a reaction of C60 with benzyl bromides under the
Ni-catalysis to afford 1,4-dibenzyl fullerene compounds 44 in good yields (Scheme 43) [79].
Using a cosolvent for the NiCl2dppe catalysis is essential for the success of this reaction.
As shown in the proposed mechanism, Ni0L species generated from the reduction of NiIIL
with Mn reacts with benzyl bromide to form benzyl radicals which add to C60 to afford the
fullerene radical M-96 followed by the subsequent coupling with another benzyl radical
species to give 1,4-dibenzyl fullerenes 44.
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As shown in Figure 2, pent-1-yne derivatives are also good substrates for radical 1,4-
difunctionalizations through a critical 1,5-HAT process. Zhu et al., in 2020, introduced a
photoredox reaction of heteroalkynes using oxyfluoroalkylation as radical source and
using DMSO or H2O as nucleophiles to afford oxyfluoroalkylated (Z)-alkenes 45/46 in
moderate to good yields (Scheme 44) [80]. The CF3 radical generated from the Umemoto’s
reagent adds to the β-carbon of heteroalkynes to form the vinyl radical M-97 which then
undergoes 1,5-HAT to give alkyl radicals M-98. Oxidation of M-98 to alkyl cations
M-99 followed by nucleophilic attack with DMSO or H2O leads to the formation of
(Z)-alkenol 45c and 46a, respectively.
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In 2020, Zhu et al., reported an Ag-mediated fluoro-fluoroalkylation reaction of
alkynes [81]. The reaction of alkynes with fluoroalkyltrimethylsilanes (TMSRf) and Se-
lectfluor in the presence of AgNO3, PhI(OCOCF3)2 (PIFA) and CsF afforded γ-fluorinated
fluoroalkyated (Z)-alkenes 47 in good yields. However, the reaction of thioalkyne was
ineffective (Scheme 45). A proposed reaction pathway indicates that the CF2CO2Et
radical derived from TMSCF2CO2Et adds to an internal alkyne to form the vinyl radi-
cal M-100 and then 1,5-HAT to form M-101 followed by Ag-assisted fluorination with
Selectfluor reagent to give the product 47a. This reaction can also be conducted under
photoredox conditions.
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In 2020, Zhu et al., reported an azobisisobutyronitrile (AIBN)-induced trifluoromethyl-
alkynylation reaction of thioalkynes to make trifluoromethylated (Z)-enynes 48 in moderate
to high yields with excellent regio- and stereoselectivity (Scheme 46) [82]. Moreover, the
base treatment of (Z)-enyne 48a provided trifluoromethyl allene 49. The desilylation of
48b with TBAF followed by a Cu-catalyzed click reaction afforded the trifluoromethyl
triazole product 50. A reaction mechanism indicates that the CF3 radical, generated from
the reaction of PhC≡CSO2CF3 and AIBN, adds to the β-carbon of thioalkyne to form a
vinyl radial followed by 1,5-HAT to produce the alkyl radical M-102 which then adds
to the electrophilic carbon triple bonds of PhC≡CSO2CF3 to yield a new vinyl radical
M-103 followed by the β-elimination to give product 48a.
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In 2014, Taniguchi et al., reported a unique 1,4-dihydroxylation of terminal and internal
alkenes for the synthesis of 1,4-diols 51/52 via 1,5-HAT of oxygen radicals (Scheme 47) [83].
A proposed mechanism indicates that the interaction of Fe phthalocyanine complex with
NaBH4 and O2 gives a putative FeIII hydride complex which adds to alkenes to afford
intermediates M-104. The reaction of M-104 with O2 produces tertiary-carbon-centered
radicals which are captured by the Fe-complex to afford the iron peroxide complex M-105.
The formation of alkoxy radical via the cleavage of the O–O bond of M-105 and 1,5-HAT of
the O-radicals give alkyl radicals M-106 which lead to the formation of 1,4-diols 51 after
reduction of the radicals and capture of the second O2.
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Scheme 47. 1,4-Dihydroxylation of alkenes.

4. 1,5-Difunctionalization Reactions

All the radical 1,5-difunctionalization reactions summarized in this paper have been
published within the last four years and the numbers are limited. These reactions require
special substrates that contain vinyl cyclopropane or 5-membered rings with two het-
eroatoms. The ring-opening to relocate the radicals is the key reaction process which allows
the second functionalization at the 5-position (Figure 3). A representative pathway for the
reaction of vinyl cyclopropanes is shown in Scheme 48. In the reaction process, the addition
of initial X radical generates cyclopropylmethyl radicals which readily open to form new
radicals for the second functionalization with Y to give the products.
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An enantioselective 1,5-cyanotrifluoromethylation of vinylcyclopropanes (VCPs)
through a Cu-catalyzed radical reaction was reported by Wang et al., in 2019 [84]. The
reaction of VCPs, Togni’s reagent I and TMSCN in the presence of Cu(acac)2 and chiral
oxazoline ligand afforded CF3-containing alkenylnitriles 53 in good yields and ee ratio
(Scheme 49). The reaction mechanism shows that CF3 radical derived from the Togni
I reagent adds to the C=C bond of vinylcyclopropane to form alkyl radical M-107 and
then benzylic radical M-108 after β-fragmentation of the cyclopropane ring. The enan-
tioselective reaction of M-108 with chiral LCuII(CN)2 affords product 53a after reductive
elimination of the catalyst.
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The Cahard group, in 2021, reported a vinylcyclopropane (VCP)-based 1,5-
chloropentafluorosulfanylation for the synthesis of allylic pentafluorosulfanyl deriva-
tives. The reaction of VCPs and SF5Cl in alkanes in the presence of Et3B and O2 gave
products 54 in high yields (Scheme 50) [85]. The reaction mechanism suggests that
SF5 radical, generated from the reaction of SF5Cl with Et3B and O2 , adds to the C=C
bond of VCPs followed by cyclopropane ring-opening and coupling with chlorine
radical of SF5Cl to provide 1,5-chloropentafluorosulfanylation product 54a.
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The Yan group, in 2019, reported a benzothiazolim-bromide-based difunctionalization
reaction. The Cu-catalyzed reaction of benzothiazolim bromides with benzodioxole af-
forded 2,5-difunctionalized benzothiazolims 55 in moderate to good yields (Scheme 51) [86].
This reaction initiates with the addition of benzodioxole radical to benzothiazolims at the
2-position followed by resonance relocation of the radical from N atom to 6-position and
then oxidative coupling with [Cu]-Br to give products 55.
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The Feng group, in 2022, reported the use of 3-alkyl-4-isoxazolines as substrates for
a photoredox 1,5-difunctionalization reaction to make α-sulfonyl-β-amino ketone and α-
polyfluoroalkyl-β-amino ketone compounds 56 in good to excellent yields (Scheme 52) [87].
The reaction was applied for the preparation of enantiopure α-polyfluoroalkyl-β-amino
ketone 57 as well as Fe-catalyzed trifluoromethylation-azidation reaction for making prod-
uct 58. A reaction mechanism suggests that PhSO2 radical adds to the 4-position of 4-
isoxazoline for radical-addition-induced β-fragmentation (RAIF) to cleave the N–O bond
followed by 1,5-HAT and trifluoromethylthiolation to give product 56a.
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5. 1,6- and 1,7-Difunctionalization Reactions

Radical 1,6- and 1,7-difunctionalization reactions require special alkene substrates
which can undergo 1,5- or 1,6-HAT reactions (Figure 4). Since a couple of recent reviews
covered the progress on this topic [88,89], only selective examples and most recent examples
are presented herein.
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suggests that the CF3 radical derived from the Togni’s reagent I adds to the terminal car-
bon of alkenes. The resulting radical M-109 undergoes 1,5-HAT followed by oxidation to 
give imine compound M-110. The CPA-catalyzed nucleophilic attack of MeOH on imine 
M-110 affords the chiral product 59a. It is worth noting that when indoles were used as 
the nucleophiles instead of alcohols under the Cu-CPA catalytic system, a series of chiral 
trifluoromethylated indole derivatives could be obtained [91]. Similar Cu-catalyzed reac-
tions for racemic products [92] and metal catalyst-free 1,6-difunctionalization of alkenes 
[93] were also developed by the same group. 

Figure 4. Substrates for 1,6- and 1,7-difunctionalization with the pointed position for the initial reaction.

As presented in this paper above (Schemes 44–46), 1,5-HAT is also involved in
the 1,4-difunctionalization reactions. In the case of 1,4-difunctionalization, the initial
radical addition happens at the alkyne carbon to form R1Z-stabilized vinyl radicals
which undergo 1,5-HAT to shift the radical to carbon-4 of the initial addition (Scheme 53).
Meanwhile in the 1,6-difunctionalization, the initial addition happens at the terminal
carbon of alkenes to give alkyl radicals which undergo 1,5-HAT to shift the radical to
carbon-6 of the initial addition.
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In 2014, the Liu group reported an asymmetric 1,6-alkoxytrifluoromethylation reaction
of alkenes under the Cu and chiral phosphoric acid (CPA) co-catalysis [90]. The reaction
of alkenes, Togni’s reagent I and alcohols gave the chiral CF3-containing N,O-aminals
59 in good yields with excellent enantioselectivities (Scheme 54). A reaction mechanism
suggests that the CF3 radical derived from the Togni’s reagent I adds to the terminal car-
bon of alkenes. The resulting radical M-109 undergoes 1,5-HAT followed by oxidation to
give imine compound M-110. The CPA-catalyzed nucleophilic attack of MeOH on imine
M-110 affords the chiral product 59a. It is worth noting that when indoles were used as the
nucleophiles instead of alcohols under the Cu-CPA catalytic system, a series of chiral triflu-
oromethylated indole derivatives could be obtained [91]. Similar Cu-catalyzed reactions for
racemic products [92] and metal catalyst-free 1,6-difunctionalization of alkenes [93] were
also developed by the same group.
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Liu and colleagues, in 2015, reported a Cu-catalyzed 1,6-difunctionalization reaction of
alkenes to introduce azido and CF3 groups [94]. The reaction of alkenyl ketones, TMSN3 and
Togni’s reagent II in the presence of CuI afforded 1,6-azidotrifluoromethylation products
60 in good to excellent yields. The CF3 radical derived from Togni II adds to the terminal
carbon of alkene followed by 1,5-HAT to give radical M-111 which is then oxidized by CuII

to provide cation intermediate M-112. Nucleophilic reaction of M-112 with TMSN3 affords
product 60a (Scheme 55).
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In 2015, the Liu and Tan group reported a 1,2-bis(diphenylphosphino)benzene (dppBz)-
promoted reaction of alkenes with Togni’s reagent II to give 1,7-bistrifluoromethylated enam-
ides 61 in excellent yields with good regio-, chemo-, and stereoselectivities (Scheme 56) [95].
In the reaction process, the CF3 radical derived from the Togni’s reagent II adds to alkenes
followed by 1,5-HAT to afford a more stabilized α-amido radicals M-113. After single-electron
oxidation of M-113 with Togni’s reagent II and deprotonation afford enamides M-114 which
react with second CF3 radical followed by single-electron oxidation to radical cations and
deprotonation to furnish 1,7-bistrifluoromethylated enamides 61.
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tively (Scheme 57) [96]. The reaction of alkenes with alkyl radical precursors and O-/C-
based nucleophiles under mild photoredox catalysis gave 1,6-difunctionalized products 
62/63 in fair to good yields. A proposed mechanism suggests that varieties of C-centered 
radicals generated from 2-bromo-2,2-difluoro(or 2-monofluoro)acetates, amides, and al-
kyl and aryl 2-bromoacetates under redox neutral conditions, reacting with the alkenes to 
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Scheme 56. 1,7-Bistrifluoromethylation of alkenes with Togni II reagent.

In 2018, Nevado and colleagues described a redox neutral remote 1,6-difunctionalization
of alkenes under visible-light irradiation to efficiently create C(sp3)-O and C(sp3)-C(sp2)
bonds at the benzylic position in the presence of O- and C-nucleophiles, respectively
(Scheme 57) [96]. The reaction of alkenes with alkyl radical precursors and O-/C-based
nucleophiles under mild photoredox catalysis gave 1,6-difunctionalized products 62/63 in
fair to good yields. A proposed mechanism suggests that varieties of C-centered radicals
generated from 2-bromo-2,2-difluoro(or 2-monofluoro)acetates, amides, and alkyl and aryl
2-bromoacetates under redox neutral conditions, reacting with the alkenes to afford vicinal
radical intermediates M-115. The 1,5-HAT of M-115 produces a distant benzylic radical
M-116 followed by SET oxidation and nucleophilic trapping with O-/C-based nucleophiles
to furnish the desired products.

In 2020, the Wang group reported a 1,6-azidotrifluoromethylation reaction of alkenes.
The Fe-catalyzed reaction of alkenes, Togni’s reagent II and TMSN3 gave difunctionalized
products 64 in moderate to excellent yields (Scheme 58) [97]. A reaction mechanism
suggests that the CF3 radical derived from the Togni II reagent adds to the terminal carbon
of alkenes. The resulting radicals M-117 undergo 1,5-HAT to form M-118 which then
react with Fe-N3 complex to give products 64a–b. This reaction could be extended for
1,7-bifunctionalized via the 1,6-HAT to afford the corresponding products 64c–e.
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A method for visible-light-induced 1,6-oxyfluoroalkylation of alkenes was intro-
duced by the Ma group in 2019 [98]. It has a unique reaction sequence of addition of
Rf radical to alkene followed by 1,5-HAT and Kornblum oxidation with DMSO to give
products 65 (Scheme 59).



Molecules 2023, 28, 3027 36 of 46

Molecules 2023, 28, x FOR PEER REVIEW 41 of 51 
 

 

A method for visible-light-induced 1,6-oxyfluoroalkylation of alkenes was intro-
duced by the Ma group in 2019 [98]. It has a unique reaction sequence of addition of Rf 
radical to alkene followed by 1,5-HAT and Kornblum oxidation with DMSO to give prod-
ucts 65 (Scheme 59). 

 
Scheme 59. Photocatalytic synthesis of fluoroalkylated ketones. 

In 2021, Chen and colleagues reported a photoredox 1,6-difunctionalization reaction of 
azaaryl-attached alkenes. The reaction of azaaryl alkenes and RfSO2Na in the presence of pho-
tosensitizer dicyanopyrazine (DPZ) afforded 1,6-deuteroalkylation products 66 in good yields 
(Scheme 60) [99]. Some commercially available fluoroalkanesulfinic acid sodium salts can 
smoothly undergo single-electron oxidation to generate fluoroalkyl radicals mediated by vis-
ible light. Then, the radical addition of unactivated terminal olefins with the fluoroalkyl radi-
cal generates the carbon radical M-119, and the 1,n-HAT process is carried out to afford the 
key radical M-120. The relative anion M-121 generated by the reduction of M-120 undergoes 
deuteration with D2O to deliver the final 1,6- or 1,7-bifunctionalized product 66. 

 
Scheme 60. Photoreaction for 1,6- and 1,7-difunctionalization of alkenes. 

Yu and colleagues, in 2020, introduced a photoredox reaction for the difunctionaliza-
tion of alkenes with CO2 and CF3 groups. The CF3 radical generated from CF3SO2Na adds 

Scheme 59. Photocatalytic synthesis of fluoroalkylated ketones.

In 2021, Chen and colleagues reported a photoredox 1,6-difunctionalization reaction
of azaaryl-attached alkenes. The reaction of azaaryl alkenes and RfSO2Na in the presence
of photosensitizer dicyanopyrazine (DPZ) afforded 1,6-deuteroalkylation products 66 in
good yields (Scheme 60) [99]. Some commercially available fluoroalkanesulfinic acid
sodium salts can smoothly undergo single-electron oxidation to generate fluoroalkyl
radicals mediated by visible light. Then, the radical addition of unactivated terminal
olefins with the fluoroalkyl radical generates the carbon radical M-119, and the 1,n-HAT
process is carried out to afford the key radical M-120. The relative anion M-121 generated
by the reduction of M-120 undergoes deuteration with D2O to deliver the final 1,6- or
1,7-bifunctionalized product 66.

Molecules 2023, 28, x FOR PEER REVIEW 41 of 51 
 

 

A method for visible-light-induced 1,6-oxyfluoroalkylation of alkenes was intro-
duced by the Ma group in 2019 [98]. It has a unique reaction sequence of addition of Rf 
radical to alkene followed by 1,5-HAT and Kornblum oxidation with DMSO to give prod-
ucts 65 (Scheme 59). 

 
Scheme 59. Photocatalytic synthesis of fluoroalkylated ketones. 

In 2021, Chen and colleagues reported a photoredox 1,6-difunctionalization reaction of 
azaaryl-attached alkenes. The reaction of azaaryl alkenes and RfSO2Na in the presence of pho-
tosensitizer dicyanopyrazine (DPZ) afforded 1,6-deuteroalkylation products 66 in good yields 
(Scheme 60) [99]. Some commercially available fluoroalkanesulfinic acid sodium salts can 
smoothly undergo single-electron oxidation to generate fluoroalkyl radicals mediated by vis-
ible light. Then, the radical addition of unactivated terminal olefins with the fluoroalkyl radi-
cal generates the carbon radical M-119, and the 1,n-HAT process is carried out to afford the 
key radical M-120. The relative anion M-121 generated by the reduction of M-120 undergoes 
deuteration with D2O to deliver the final 1,6- or 1,7-bifunctionalized product 66. 

 
Scheme 60. Photoreaction for 1,6- and 1,7-difunctionalization of alkenes. 

Yu and colleagues, in 2020, introduced a photoredox reaction for the difunctionaliza-
tion of alkenes with CO2 and CF3 groups. The CF3 radical generated from CF3SO2Na adds 

Scheme 60. Photoreaction for 1,6- and 1,7-difunctionalization of alkenes.

Yu and colleagues, in 2020, introduced a photoredox reaction for the difunctionaliza-
tion of alkenes with CO2 and CF3 groups. The CF3 radical generated from CF3SO2Na adds
to the alkenes followed by 1,5-HAT to afford radicals M-122 which are then reduced by IrII

to anions M-123. Nucleophilic reaction of M-123 with CO2 gives product 67 after proto-
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nation (Scheme 61) [100]. Other than CO2, electrophiles such as aryl aldehydes, aromatic
ketoesters and benzyl bromides can be used for making diverse difunctionalized products.
In 2022, the Yu group reported photoredox 1,6- and 1,7-dicarboxylation reactions of alkenes
with CO2. A variety of unactivated aliphatic alkenes can undergo double carboxylations to
afford dicarboxylic acids 68 in moderate to good yields (Scheme 62) [101].
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In 2016, the Zhu group presented a new method for the synthesis of ε-CF3-substituted
amides involving the 1,5-HAT to form acyl radicals as the key step [102]. The Cu-catalyzed
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reaction of alkenals, Togni’s reagent II and amines in the presence of CuSO4 and K2CO3
afforded products 69 in good yields (Scheme 63). In the reaction process, CF3 radical derived
from Togni II adds to the terminal carbon of alkenes followed by 1,5-HAT, trapping the
acyl radicals M-124 with amines, oxidation via SET afford products 69 after deprotonation.
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The Zhu group, in 2017, reported another 1,6-difunctionalization reaction involv-
ing the remote-HAT process to form acyl radicals. The Pd-catalyzed reaction of alkenyl
aldehydes, arylboronic acids and fluoroalkyl bromides afforded difluoroalkylated ketones
70 in good to excellent yields (Scheme 64) [103]. A reaction mechanism suggests that the
fluoroalkyl radicals generated from fluoroalkyl halides add to the alkene moiety of alkenyl
aldehydes, followed by 1,5-HAT to form the acyl radicals M-125, transmetallation with PdI

species and then with ArB(OH)2 to afford aryldifluoroalkylation products 70 after reduc-
tive elimination of the Pd-cat. The Zhu group also reported a similar reaction of alkenyl
aldehydes, arylboronic acids and tertiary α-carbonyl alkyl bromides under Ni-catalysis to
afford quaternary carbon-containing ketones 71 (Scheme 65) [104].

In 2017, the Gagosz group reported a Cu-catalyzed remote oxidative difunctionaliza-
tion reaction of alkenols. The reaction of alkenols and Togni’s reagent II in the presence of
Cu(OAc)2 and bipyridine afforded various trifluoromethylated ketones 72 in good yields
(Scheme 66) [105]. In the reaction process, the CF3 radical derived from the Togni II reagent
adds to alkenes followed by 1,5- or 1,6-HAT to afford more stable α-hydroxy radicals
M-126 which are then oxidized by CuII to provide 1,6- or 1,7-bifunctionalized product 72.
The Liu and Luo groups also reported these types of reactions [106,107]. In 2018, Liu and
colleagues disclosed a reaction of alkenols to introduce sulfonyl, phosphony-, and malonate
groups to the products 73–75 (Scheme 67) [108].
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The radical-induced 1,2-migration of boronate complexes has been recently devel-
oped for making functionalized organoboronic acid esters [109,110]. In 2021, the Studer
group reported a photo reaction of alkenyl boronate complexes with a cascade sequence
of perfluoroalkyl radical addition, 1,5- or 1,6-HAT, SET oxidation, and 1,2-alkyl/aryl
migration for the construction of remotely 1,5- and 1,6-difunctionalized organoboronic
esters (Scheme 68) [111]. The alkenyl boronate can be produced in situ by the reaction
of the related alkenyl boronic esters with alkyl/aryl lithium reagents. By changing the
alkyl/aryl lithium donors and perfluoroalkyl radical precursors, a wide variety of highly
functionalized organoboronic esters 76 and 77 can be produced.
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Recently, Xia and colleagues reported a 1,6-iminosulfonylation reaction by react-
ing alkenes with oxime esters to afford diverse imine sulfones 78 in moderate yields
(Scheme 69) [112]. In the reaction process, an iminyl radical and a sulfonyl radical are
generated from the benzophenone oxime ester via homolysis of the N−O bond under
photocatalytic conditions. The sulfonyl radical adds to the alkenes followed by 1,5-HAT to
afford key radicals M-127. The coupling of M-127 and the iminyl radical gives products 78.
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6. Conclusions

Remote radical difunctionalization presents a new research field that is currently the
subject of much interest. Most papers summarized in this article have been published
within the last five years. Among the different kinds of remote difunctionalization reactions,
1,4- and 1,6-difunctionalizations have been well established due to the development of
suitable substrates such as 1,3-dienes/1,3-enynes and 6-subsitituted alk-1-enes. For future
work to extend the scope of difunctionalization reactions, design and development of
new substrates that bear the scaffolds suitable for expected radical rearrangements via
resonance, hydrogen atom/group transfer, and strained ring opening are the key factors
for success. The recent developments in photoredox reactions, electrochemical reactions,
and transition metal-catalyzed coupling reactions provide new avenues for conducting
the initial radical reactions as well as the second functionalization reactions. Many newly
developed reagents, such as Togni’s, could be utilized to incorporate CF3 and other groups
into products with medicinal chemistry and drug development applications. We have no
doubt that synthetically efficient, operationally simple, and functional-group-diversified
remote radical difunctionalization reactions will enjoy more fruitful years to come. We
hope that the chemistry highlighted in this paper can be helpful for those who wish to
better understand the current status and want to make contributions to the field.
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