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Abstract: The trifluoromethyl group is widely recognized for its significant role in the fields of
medicinal chemistry and material science due to its unique electronic and steric properties that
can alter various physiochemical properties of the parent molecule, such as lipophilicity, acidity,
and hydrogen bonding capabilities. Compared to the well-established C-trifluoromethylation, N-
trifluoromethylation has received lesser attention. Considering the extensive contribution of nitrogen
to drug molecules, it is predicted that constructing N-trifluoromethyl (N-CF3) motifs will be of great
significance in pharmaceutical and agrochemical industries. This review is mainly concerned with
the synthesis of heterocycles containing this motif. In three-membered heterocycles containing the
N-CF3 motif, the existing literature mostly demonstrated the synthetic strategy, as it does for four-
and larger-membered heterocycles. Certain structures, such as oxaziridines, could serve as an oxidant
or building blocks in organic synthesis. In five-membered heterocycles, it has been reported that
N-CF3 azoles showed a higher lipophilicity and a latent increased metabolic stability and Caco-2-
permeability compared with their N-CH3 counterparts, illustrating the potential of the N-CF3 motif.
Various N-CF3 analogues of drugs or bioactive molecules, such as sildenafil analogue, have been
obtained. In general, the N-CF3 motif is developing and has great potential in bioactive molecules
or materials. Give the recent development in this motif, it is foreseeable that its synthesis methods
and applications will become more and more extensive. In this paper, we present an overview of the
synthesis of N-CF3 heterocycles, categorized on the basis of the number of rings (three-, four-, five-,
six- and larger-membered heterocycles), and focus on the five-membered heterocycles containing the
N-CF3 group.

Keywords: N-trifluoromethyl group; heterocycles

1. Introduction

Organic fluorine chemistry, as a prominent research area, has garnered significant
attention for several decades and has also become essential to the evolution of many
different but interconnected research fields [1]. The introduction of the fluorine group,
especially the trifluoromethyl group, into organic compounds has become known as one of
the most efficient methods for modulating molecular properties, for example, lipophilicity
and metabolic stability [2]. Due to its potential utility, many methods have been studied
extensively [3,4]. However, in contrast to the well-developed C-trifluoromethylations,
the N-trifluoromethyl (N-CF3) motif has rarely been investigated to date. Considering
the widespread dissemination of nitrogen (especially nitrogen-containing heterocycles) in
drug molecules [5–7], constructing the N-CF3 motif in molecules is of great significance
in pharmaceutical and agrochemical industries. Drug analogues and potential agents
containing the N-CF3 motif are partially shown in Figure 1 [8–13].

Molecules 2023, 28, 3012. https://doi.org/10.3390/molecules28073012 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28073012
https://doi.org/10.3390/molecules28073012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-6579-1670
https://doi.org/10.3390/molecules28073012
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28073012?type=check_update&version=1


Molecules 2023, 28, 3012 2 of 26Molecules 2023, 28, x FOR PEER REVIEW 2 of 26 
 

 

 

Figure 1. Drug analogues containing N-trifluoromethyl motif. 

Despite the great potential of the N-CF3 motif, the synthesis of this moiety and its 

relative chemistry have been rarely explored. The limited use of N-CF3 compounds is pri-

marily due to the absence of scalable methods for their preparation [14–16]. Recently, 

thanks to the new reagents and methods, this motif has increasingly been featured in the 

literature. 

In terms of constructing the N-CF3 motif in heterocycles, there are two main ap-

proaches. The first involves utilizing starting materials containing the N-CF3 motif to gen-

erate heterocycles directly, while the second strategy entails introducing the CF3 group 

via trifluoromethylation or fluorination of nitrogen-containing species. In this paper we 

review the construction of N-CF3 heterocycles on the basis of the size of the cycles, involv-
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Figure 1. Drug analogues containing N-trifluoromethyl motif.

Despite the great potential of the N-CF3 motif, the synthesis of this moiety and its
relative chemistry have been rarely explored. The limited use of N-CF3 compounds is
primarily due to the absence of scalable methods for their preparation [14–16]. Recently,
thanks to the new reagents and methods, this motif has increasingly been featured in
the literature.

In terms of constructing the N-CF3 motif in heterocycles, there are two main ap-
proaches. The first involves utilizing starting materials containing the N-CF3 motif to
generate heterocycles directly, while the second strategy entails introducing the CF3 group
via trifluoromethylation or fluorination of nitrogen-containing species. In this paper we
review the construction of N-CF3 heterocycles on the basis of the size of the cycles, involv-
ing three-, four-, five-, six- and larger-membered heterocycles. This article covers as much
literature as possible, from the 1960s to early 2023. The structures mentioned in this paper
are shown in Figure 2.
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2. Three-Membered Heterocycles

In previous reports, the synthesis of three-membered N-CF3 heterocycles mainly re-
lied on starting materials containing the N-CF3 motif. In 1964, Logothetis reported the
aziridination of N-CF3 imines 1a in the presence of diazomethane, which obtained aziri-
dine 2a in the yield of 64% (Scheme 1a) [17]. Subsequently, Coe et al. investigated the
substructure scope of imines [18]. Unfortunately, poor selectivity was exhibited when R
was replaced with iC3F7 (perfluoroisopropyl) or CF=CHCF3. When R = iC3F7, a mixture of
three components in the ratio of 2b:2b′′:2b′ = 6:9:1 was obtained and when R = CF=CHCF3,
a mixture of two products was obtained in the ratio of 2d:2d′ = 71:29 by F shift and further
CH insertion into a C-F bond. Kaupp et al. synthesized some stable triaziridines 4 which
could be purified by fractional distillation by the irradiation of azimines 3 at room tempera-
ture (Scheme 1b) [19]. However, not much attention has been paid to N-CF3 triaziridine.
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Compared to the structures mentioned above, diaziridine attracted more attention, and
its synthesis could be divided into two strategies: Mitsch et al., while studying the reductive
defluorination-cyclization of organic fluoronitrogens, found that diaziridine 6 could be
generated from 1,1-bis(difluoramino)perfluoro-2-azapropan 5 in the presence of ferrocene
(Scheme 1c) [20]. Later DesMarteau et al. obtained another diaziridine 6 by nucleophilic
cyclization when studying perfluoroalkanamine ions (Scheme 1d) [21]. In the presence of
CsF, CF2=NX (when X = F) yielded perfluoroalkanamine ion (CF3NF−), which underwent
further reaction with another CF2=NX to form perfluoro-1-methylformamidine 8. On the
basis of previous work, DesMarteau group achieved synthesis of other diaziridines (when X
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= Br, Cl) through perfIuoroalkanamine ions [22,23]. Meanwhile, other electrophilic species,
such as N-CF3 imine 1a, could also be attacked by CF3NF−, leading to 3,3-difluoro-1,2-
bis(trifluoromethyl)diaziridine [24].

Furthermore, perfluorinated oxaziridine 9 has drawn wide attention and its structure,
synthesis and applications have been studied. Petrov and Resnati have already summarized
the synthesis and reactivity of perfluorinated oxaziridines, in which N-CF3 oxaziridines are
included [25]. In previous reports, the most common methods of synthesis were oxidative
cyclization. In 1976, DesMarteau et al. reported that oxaziridine was obtained by the
oxidation of a N-CF3 imines 1a by CF3OOH [26]. This reaction was performed in two
steps: addition, and further cyclization mediated by NaF. Later, different metal fluorides
were investigated by the authors of [27] and KHF2 was found to be the most suitable
reagent for the yield of oxaziridine 7 (the yield was up to 92%). This method was difficult
and the starting materials were potentially explosive. In order to make the reaction safer
and more convenient, different oxidants, such as hydrogen peroxide [28] and chlorine
gas in the presence of metal carbonate [29], etc., have been developed, but these methods
were still difficult. Finally, using meta-chloroperbenzoic acid (mCPBA) as the oxidant was
determined to be a safer and more attractive choice (Scheme 2) [30,31].
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To date, N-CF3 aziridine, triaziridine and diaziridine have still gained less attention
and their properties and applications are less-developed. On the other hand, there have
been studies into the structure, properties, and applications of oxaziridine [25] (shown in
Scheme 2), such as its reaction with nucleophiles [32,33] and its use as an oxidant [34] or as
building blocks. These studies are included in Section 4.2 of this paper.

3. Four-Membered Heterocycles

Similarly, the synthesis of four-membered N-CF3 heterocycles was based on starting
materials containing the N-CF3 motif.
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The predominant approach to oxazetidine was [2+2] cycloaddition reaction. Tri-
fluoronitrosomethane (CF3NO) was the most common starting material. In the 1950s,
Barr and Haszeldine reported that CF3NO reacted with tetrafluoroethylene 10a to give
two products: an oxazetidine 11a and a copolymer (consisting of two monomers in
a 1:1 ratio) [35,36]. The oxazetidine predominated in this reaction at a high tempera-
ture (ca. 100 ◦C) and the copolymer at room temperature (Scheme 3a). Since then, several
halogenated tetrafluoroethylenes (CF2=CXY) have been investigated (Scheme 3b) [37,38].
It was found that the formation of an oxazetidine and the copolymer from CF3NO oc-
curred most readily with the olefins CF2=CF2, CF2=CHF (adducts were a 99:1 mixture
of 3,3,4-trifluoro-2-trifluoromethyl-1,2-oxazetidine and 3,4,4-trifluoro-2-trifluoromethyl-
1,2-oxazetidine), CF2=CFCl, and CF2=CCl2, and less readily with perfluoro-olefins con-
taining more than two carbon atoms, or with ethylenes containing two or more vinylic
hydrogens [38].
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Meanwhile, it was reported that an attack on the substituted allene by CF3NO led
to another form of oxazetidine. Banks et al. found that tetrafluoroallene 12 reacted with
CF3NO to yield a complex mixture of oxazetidine 13 and 14 [39]. By adjusting the reaction
conditions, the highest yields of oxazetidine 13 and 14 can reach 43% and 42%, respectively.
They also found that compound 14 could be obtained (82% yield) when heating oxazetidine
13 with CF3NO. Later, Haszeldine et al. synthesized a series of oxazedines 16 with limited
regioselectivity and stereoselectivity through the reaction of N, N-bistrifluoromethylamino-
substituted allenes 15 with CF3NO (Scheme 3b) [40,41].

In addition to CF3NO, there were other reagents used in [2+2] cycloaddition. For
example, in 1986, Sundermeyer and co-workers found that CF3N=S=O could react with
ketene to generate thiazetidin 17 (Scheme 4a) [42]. Burger et al. reported that the reaction
of CF3N=C=O and boranamine led to diazaboretidin 18 (Scheme 4b) [43].
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4. Five-Membered Heterocycles

The literature on three- and four-membered N-CF3 heterocycles was more focused
on their synthesis, with limited exploration of their properties and potential applications.
However, in contrast, five- and six-membered heterocycles featuring the N-CF3 motif have
recently been receiving more and more attention [8,44–46]. Their synthesis methods, as
well as biological activities and derivatization, are gradually being studied.

To evaluate the suitability of the N-CF3 motif on amines and azoles in drug design,
Schiesser et al. synthesized a series of N-CF3 amines and azoles (shown in Figure 3), and
determined their stability in aqueous media and other properties [45]. For example, the
stability of N-CF3 analogues of known bioactive compounds (sulfamethoxazole derivative
19a, tetracaine derivative 20a, inhibitors of hedgehog pathway 21a [47,48], inhibitors of
methionine aminopeptidase 22a [49], inhibitors of interleukin-1 receptor associated kinase
4 (IRAK4) 23a [50], and sildenafil analogue 24a) were studied and are shown in Table 1.
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additional key in vitro properties.

Table 1. Half-life of N-CF3 compounds 19a–24a [a].

Structure pH 1.0
[d]

pH 7.4
[d]

pH 10.0
[d]

19a 0.2 0.4 0.3
20a <0.6 <0.6 <0.6
21a >72 >72 >72
22a >72 >72 >72
23a >72 >72 71
24a <1.3 <0.8 <0.5

[a] The experiment was carried out at 25 ◦C in 0.1 M HCl solution (pH 1.0), 20 mM sodium phosphate buffer (pH
7.4), and 20 mM carbonate buffer (pH 10.0).

Two anilines 19a and 20a, as well as piperazine 24a, showed fast hydrolysis at all
three pH values investigated, with half-lives of less than 1.5 days at 25 ◦C (Table 1). It
should to be noted that for 20a, the corresponding carbamoyl fluoride 20b was the main
product at pH 1.0, with a small amount of product where both the carbamoyl fluoride
had been further hydrolyzed to the secondary amine and the ester bond had been cleaved.
The latter compound was also the main product at pH 7.4 and pH 10.0. In contrast to the
N-CF3 anilines and piperazine, for all the N-CF3 azoles they investigated no corresponding
carbamoyl fluoride of free azole was detected in aqueous media at any of the three pH
values studied.

Moreover, they then compared the key in vitro properties in medicinal chemistry (log
D, experimentally determined polar surface area (ePSA) [51,52], permeability in human
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epithelial colorectal adenocarcinoma cells (Caco-2), and metabolic stability for the N-CF3
compounds 19a–24a and their N-CH3 counterparts (Table 2).

Table 2. Overview of the change in key in vitro properties when exchanging N-CH3 and N-CF3
[f].

Structure Number Log D7.4
[a] Chrom-

log D7.4
[a]

ePSA [b]

[Å2]
Caco-2 Papp

[c]

[10−6 cm/s]
HLM [d]

[L/min/mg]
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R = CF3
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24a
R = CF3

>4.0 >5.3 67 (1) nd [e] nd [e]

24b
R = CH3

2.7 (0.1) 3.3 (0.1) 73 (0) nd [e] nd [e]

[a] Due to limitations in the determination of log D7.4 using the shake-flask method, exact values for measured
log D7.4 > 4 are given as >4.0. [b] Experimentally determined polar surface area. [c] Apical to basolateral
passive permeability across the Caco-2 cell monolayer in the presence of inhibitors against the three major efflux
transporters: P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug-associated protein
2 (MRP2). [d] Metabolic stability of the compound measured as the disappearance of the parent compound over
time when incubated with human liver microsomes. [e] Due to the low stability of compounds 19a, 20a, and 24a
in an aqueous environment, which would interfere with the proper determination of their metabolic stability or
Caco-2 permeability, no metabolic stability or Caco-2 permeability was determined for these compounds or for
their N-methyl analogues. [f] Each experimental value is the mean of at least three independent replicates. The
standard deviation is given in brackets.

In the compounds investigated, the exchange of a methyl for trifluoromethyl led to
the expected higher lipophilicity as proven by an increased log D7.4 and chromlog D7.4 and
a decreased ePSA. Log D7.4 increases by on average 1.1 log units and chromlog D7.4 by
1.6 log units. However, the extent of this change can vary significantly and was dependent
on both the individual compound and type of log D7.4 analysis used. Changes in permeabil-
ity and metabolic stability were less consistent.Stability to human liver microsomes (HLMs)



Molecules 2023, 28, 3012 8 of 26

can be significantly increased for the trifluoromethyl analogue as seen for 22a (p = 0.004) or
decreased as for 21a. The decreased metabolic stability of the latter two compounds could
be due to an increased lipophilicity, rendering the potential metabolic soft spots (benzylic
methyl group in 21a) more susceptible to metabolism.

According to Schiesser’s research [45], N-CF3 amines were prone to hydrolysis,
whereas N-CF3 azoles have excellent aqueous stability. Compared to N-CH3 analogues,
N-CF3 azoles showed a higher lipophilicity and a latent increase in metabolic stability
and Caco-2-permeability, which illustrated the value and potentiality of N-CF3 diazole in
medicinal chemistry.

In terms of synthesizing these five-membered N-CF3 structures, both types of con-
structing N-CF3 were included. In this section, the synthesis of five-membered heterocycles
would be divided into the three parts: nucleophilic fluorination, cyclization based on N-CF3
starting materials, and electrophilic trifluoromethylation.

4.1. Nucleophilic Fluorination
4.1.1. Fluorine/Halogen Exchange

Fluorine/halogen exchange was one of the first reactions to obtain the trifluoromethyl
group on the nitrogen atom (Scheme 5) [16]. Yagupolskii et al. achieved fluorine/halogen
exchange with N-trichloromethyl derivatives in the presence of HF or Me4NF [53]. This
strategy was also capable of generating N-CF3 pyrazoles [54,55] and N-CF3 1,2,4-triazoles [55].
However, highly toxic or environmentally unfriendly reagents (such as CF2Br2, a known
ozone-depleting reagent [56]) would be used in this method for fluorine/halogen exchange
or in the preparation of the precursors (such as 26) for fluorine/halogen exchange, which
limited its use.
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4.1.2. Oxidative Desulfurization and Fluorination

Compared to fluorine/halogen exchange, this method has been much more thoroughly
studied. This method allowed people to replace C-S bonds with C-F bods under extremely
mild conditions compared to the fluorination of formamides [57] or fluorination induced
by SF4 [58].

Hiyama et al. reported conversion from methyl dithiocarbamates to trifluoromethy-
lamines in the presence of readily available fluoride ions (Scheme 6a) [59]. The reaction
conditions were applicable to a wide range of disubstituted nitrogen, with substituents
including phenyl, heteroaromatic or alkyl. Recently, Schindler et al. applied chlorodithio-
phenylformiate as an electrophile and successfully obtained phenyl aminodithioate 30 [60].
Then trifluoromethylamines 31 were generated after the desulfurization and fluorination.
Additionally, Hagooly et al. used BrF3 for desulfurization and fluorination and obtained
2-(trifluoromethyl)isoindoline-1,3-dione and 1-(trifluoromethyl)azepan-2-one [61].
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Furthermore, Schoenebeck et al. reported that amines and SCF3
- source (Me4N)SCF3

could generate the highly electrophilic thiocarbomoyl fluoride 32 followed by a reaction
with AgF to yield trifluoromethyl amines 31 [62]. Furthermore, there were other ap-
proaches to the intermediate 32. Lin and Xiao et al. [63] generated this intermediate from
difluorocarbene and sulfur (S8), while Jiang and Yi et al. [64] reported a method using
CF3SO2Na (Scheme 7). These strategies have been used to synthesize interesting analogues
of biologically active compounds (examples are shown in Section 5.1).
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4.1.3. Cyclization Induced by Fluoride Ion

Fluoro-olefins containing terminal double bonds have been shown to isomerize in
the presence of fluoride ion (Scheme 8) [65]. There is a considerable amount of literature
on the transformation of perfluoro-2,5-diazahexa-2,4-diene (CF2=NCF2CF2N=CF2, 36a)
and its precursor CCl2=NCCl2CCl2N=CCl2, 35. In 1967, Ogden and Mitsch reported that
isomerization of perfluoro-, -diazomethines with CsF could form a cyclic five-membered
N-CF3 heterocycle as a minor product (34, 30% yield) [66].

Scholl et al. synthesized 36a from 35 via two steps, and found that 36a could cyclize to
form two isomers (37a and 37b) in the presence of fluoride ion [67]. Both isomers could
form nitrogen anion 37c in the presence of fluoride ion. 37c could also react with 37b to
generate substituted N-CF3 imidazolidine 38. Subsequently, the same group found another
transformation of 35 and obtained 39 in two steps [68]. In the presence of fluoride ion,
another nitrogen anion 40 could be generated, which subsequently reacted with another
39 to obtain imidazolidine 41.
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Later in 1984, Banks et al. [69] investigated in some detail the effect of temperature
and metal fluoride on the systems used by Scholl. The product composition depends on the
reactivity of the fluoride source and the reaction conditions, i.e., the product may be under
kinetic or equilibrium control. In addition to the substances reported earlier by Scholl, they
detected others. Later, Chambers et al. [70,71] reacted the nitrogen anion 37c with different
trapping agents including haloalkane, perfluoro azaarene, perfluoro cyclobutene, etc., and
obtained diverse heterocycles 38.

Meanwhile, Pawelke et al. [72] investigated the transformation of 35 or its derivative
in the presence of fluoride source. Cyclization of compound 35 led to the perfluorinated
1H-imidazole 42, whose chlorine atom could be further substituted by OPh or NEt2.

4.2. Cyclization Based on N-CF3 Starting Materials
4.2.1. [3+2] Cycloaddition

Utilization of starting materials containing the N-CF3 motif is a commonly employed
strategy for achieving the target heterocyclic compounds. As mentioned in Section 2, per-
fluorinated oxaziridine 9a could serve as building blocks in organic chemistry. DesMarteau
et al. reported that some cycloaddition of oxaziridine 9a with electron-rich alkenes and
ketones resulted in oxazolidines or dioxazolidines (Scheme 9) [73,74]. However, perfluori-
nated oxaziridine 9a also had certain limitations as a building block: attempts to achieve the
cycloaddition of 9a with CH2=CH2, CFCl=CFCl, perfluorocyclopentene, acrylonitrile, and
acetylene have failed. Additionally, the reaction could not occur with fluorinated ketones
such as hexafluoroacetone.

In recent decades [3+2] cycloaddition between azide and alkyne has attracted sig-
nificant attention, and copper-catalyzed azide-alkyne cycloaddition is one of the most
widely used forms of this technique [75]. In 2017, Beier et al. reported the synthesis of
azidoperfluoroalkanes 43 which could be synthesized from perfluoroalkyl trimethylsi-
lane (TMSRF) with p-toluenesulfonyl azide (TsN3) in the presence of CsF, or synthesized
from (perfluoroethyl)lithium (RF = C2F5) with TsN3 [76]. These azidoperfluoroalkanes
could undergo [3+2] cycloaddition with alkynes catalyzed by copper to access diverse
N-perfluoroalkyl 1,2,3-triazoles 44 (Scheme 10). Later in 2018, Beier et al. reported a mild
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and efficient and synthesis of highly functionalized 1-perfluoroalkyl-1H-1,2,3-triazoles
45 via in situ generated enamines in azide-ketone [3+2] cycloaddition (Scheme 10) [77].
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alkynes or ketones; (c) mechanism of the cycloaddition of trifluoromethyl azides with ketones.

In the same year, the Beier group developed a highly efficient method for the synthe-
sis of a broad range of previously unreported N-fluoroalkyl-substituted five-membered
heterocycles with microwave heating-assisted rhodium-catalyzed transannulation of N-
fluoroalkyl-substituted 1,2,3-triazoles 44 [78]. Subsequently, the same group expanded
this approach to acetylene substrates and successfully generated N-fluoroalkyl pyrrole
(Scheme 11) [79]. The mechanism proposed by authors is shown in Scheme 12.
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Xu, Guan, and Wang et al. [80] reported an alternative and scalable cyclization strategy
based on N-CF3-containing synthons for constructing diverse N-CF3 azoles, including
N-CF3 tetrazoles, N-CF3 imidazoles, and N-CF3 1,2,3-triazoles (Scheme 13). This method
involved using a hypervalent iodine reagent for trifluoromethylation in combination with
a base to efficiently carry out the reaction. Furthermore, estrone analogue 54 could be gen-
erated in two steps in a total of 74% yield. Subsequently, the authors’ group developed the
reaction of the N-CF3 nitrilium ions 51 with N-, O-, and S-nucleophiles, resulting in various



Molecules 2023, 28, 3012 13 of 26

N-CF3 amidines, imidates, and Thioimidates [81]. Very recently, they utilized hypervalent
iodine reagent for the trifluoromethylation of 4-alkylamino-pyridine to generate N-CF3
pyridinium salt which could be further translated to 2-functionlized nicotinaldehydes [82].
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4.2.2. Other Cyclization

In addition to [3+2] cycloaddition, other cyclization pathways have been explored for
the synthesis of N-CF3-containing five-membered heterocycles. For instance, Sundermeyer
and co-workers reported access to the preparation of imidazolidinedione
55 through the reaction of trifluoromethyl isocyanate with trimethylsilyl cyanide, fol-
lowed by hydrolysis [83]. In 1977, Rudiger Mews synthesized dioxazolidine 56 from
CF3NO and bis(trifluoromethyl)diazomethane [84]. Lentz reported that trifluoromethyl
isocyanide reacted with hexafluoroacetone to yield compound 57 [85]. Later, the same
group reacted trifluoromethyl isocyanide with diphosphene, leading to the formation
of azaphospholidine 58 [86]. In addition, Crousse et al. developed a direct approach to
obtaining N-CF3 hydrazines from CF3SO2Na. Among the family of N-CF3 hydrazines,
hydrazides 59 showed hydrolysis in the presence of HCl and reacted further with diketone,
leading to N-CF3-1H-pyrazoles 60 in 44% yield totally (Scheme 14d) [87].

In 2019, Schoenebeck et al. reported straight access to N-CF3 amides, carbamates,
thiocarbamates or ureas via N-CF3 carbomoyl building blocks 61 [88]. After that, the
same group developed the transformation of the building blocks and generated non-
cyclic or heterocyclic N-CF3 compounds as shown in Scheme 15 [89–92]. Additionally,
antihistamine derivative oxatomide analogue 64a could be generated in 62% in two steps
by N-H functionalization of 64.

Meanwhile, Huang and Xu et al. reported the design and synthesis of novel N-
CF3 hydroxylamine reagents 66 as well as their applications in preparation of N-CF3
compounds [93]. Some oxazolidinones 67 and 67′ could be generated from trifluoromethy-
lamination/cyclization of styrenes or vinyl ether (Scheme 16a). For example, estrone
analogue 67a, could be generated in 71% yield. Furthermore, ynamide 68 could be
generated from reagent 66, which could further form heterocycles 69 via Pd-catalyzed
cyclization (Scheme 16d). Subsequently, the same group employed reagent 66′ and
trimethylsilyl cyanide to convert 1,3-enynes to trifluoromethylaminated allenes under
a photoredox/copper-catalyzed 1,4-difunctionalization, in which allenes 70 could further
yield oxazolidinones 71 in the presence of N-bromosuccinimide (NBS) or N-iodosuccinimide
(NIS) (Scheme 16e) [94].
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Scheme 16. (a) Synthesis of N-trifluoromethyl oxazolidinones through trifluoromethylamina-
tion/cyclization of styrenes or vinyl; (b) Proposed reaction mechanism; (c) estrone analogue 65a;
(d) Synthesis of N-trifluoromethyl oxazolidinones through trifluoromethylamination of vinyl acetate
66 and further cyclization; (e) Synthesis of oxazolidinones through cyclization of allenes.

4.3. Electrophilic Trifluoromethylation

In 2006, Togni et al. developed two new trifluoromethylation reagents (72 and 73)
based on hypervalent iodine [95,96]. Subsequently, in 2011, the same group reported
a Ritter-type direct electrophilic trifluoromethylation at nitrogen atoms using hypervalent
iodine reagent 72 and obtained N-CF3 benzotriazole 74 as a side product (Scheme 17a) [97].
Subsequently, they further refined the method and successfully conducted the trifluo-
romethylation of a variety of heterocycles (Scheme 17b) [98].

Meanwhile, Umemoto developed diverse derivatives of (trifluoromethyl)dibenzofura-
nylium that could generate CF3

+ anion at a low temperature, which facilitated the elec-
trophilic trifluoromethylation of primary, secondary, or aromatic amines (Scheme 17c) [99].
For example, 1-(trifluoromethyl)indoline could be generated in 68% yield.
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Scheme 17. (a) Togni’s reagents and trifluoromethylation of benzotriazole; (b) Synthesis of various
five-membered N-trifluoromethyl heterocycles through Togni’s reagent; (c) Synthesis of trifluo-
romethyl amines through Umemoto’s reagents.

5. Six-Membered Heterocycles

From the existing literature, the synthetic methodologies of six-membered heterocycles
were similar to the five-membered heterocycles containing the N-CF3 motif. Therefore, in
this section, some examples are shown briefly.

5.1. Nucleophilic Trifluoromethylation

Similarly, oxidative desulfurization and subsequent fluorination was also an effi-
cient way to achieve six-membered heterocycles containing the N-CF3 motif, such as
piperazines and piperidines. For example, Tlili et al. [100] used carbon disulfide and
(diethylamino)sulfur trifluoride (DAST) to generate thiocarbomoyl fluoride intermediate
32, and then synthesized a series of N-CF3 piperazines. Borbas et al. employed DAST
and NBS to generate N-CF3 morpholine while studying N-fluoroalkylated nucleoside
analogues [101]. In addition to AgF, pyridinium poly(hydrogen fluoride [8] could also be
employed for oxidative desulfurization and fluorination to give the product 31c which
exhibited antibacterial activity. These methods allowed the introduction of the CF3 group
into the nitrogen of pharmaceuticals or their analogues, demonstrating the potential of
bioactive molecule modification (Scheme 18) [8,62,64].
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5.2. [4+2] Cycloaddition

As described in Section 3, CF3NO could serve as building blocks in cycloaddition. The
application of CF3NO in [4+2] cycloaddition has been investigated [39,102–107], yielding
various adducts 75 (Scheme 19a). Carson et al. have studied the nucleophilic displace-
ments of fluorine atoms in perfluoro-1,2-oxazines, in particular amino-defluorination reac-
tions [107]. It was established that perfluoro-(3,6-dihydro-2-methyl-2H-1,2-oxazine) reacted
with ammonia at room temperature to give a mixture of 4- and 5-amino derivatives, while
when reacted with disubstituted amines in diethyl ester at −78 ◦C it only gave 5-amino
compounds. Furthermore, other starting materials featuring N-CF3 were utilized in [4+2]
cycloaddition, as shown in Scheme 19b,c [108,109].
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Scheme 19. Synthesis of six-membered N-trifluoromethyl heterocycles through [2+2] cycloaddition:
(a) trifluoronitrosomethane with substituted diene; (b) N-trifluoromethyl imines with cyclopentadi-
ene; (c) Trifluoromethyl-substituted N-sulfinylamine with diene and further oxidation.

5.3. Other Approaches

In 1976, Haszeldine et al. reported the formation of triazine via unsymmetrical car-
bodiimide intermediate, which was subsequently dimerized, trimerized or intramolecular
cyclized (Scheme 20a) [110]. Similarly, Mews et al. reported that RFN=S=O reacted with
SO3, leading to the formation of sulfonimide [111]. The degree of oligomer depended on
the size of the substituent, and at what time RF = CF3, dimer and trimer were formed in the
ratio of 3:1 (Scheme 20b).
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Scheme 20. Synthesis of diverse six-membered heterocycles: (a) Dimerization or trimerization of
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Direct fluorination of hydrocarbons by fluorine gas was indeed also a method used to
synthesize the corresponding fluorous compounds. Lagow et al. reported the synthesis
of perfluoro highly-branched heterocyclic fluorine compounds by direct fluorination, and
also reported that 1,4-bis(trifluoromethyl)piperazine 79 was highly generated in 85% yield
(Scheme 20c) [112].

6. Seven- and Larger-Membered Heterocycles

Perfluoro-2,5-diazahexane-2,5-dioxyl 80 could readily attack nitric oxide and hydrogen-
atom donors, giving adducts, such as its monofunctional analogue, bis-trifluoromethyl
nitroxide ((CF3)2NO) [113,114], which could readily react with fluoro-olefins. In some cases,
the reaction of bis-trifluoromethyl nitroxide with a variable valence element compound led
to an increase in the oxidation state of that element.

Banks et al. reported that an attack by dioxyl 80 on tetrafluoroethylene or hexaflu-
oropropene led mainly to the formation of copolymers in, and also to a smaller number
of adducts (81a, 81b) [115]. It should be noted that the yield of 81b could rise to 63% if
the reactants were mixed at room temperature and at ca. 25 mmHg pressure. In addi-
tion, Banks et al. pointed out that the formation of adducts would require a gas-phase
reaction [113]. Subsequently, Tipping et al. investigated the scope of the cycloadduct for-
mation by using fluoroalkenes and a wide variety of hydrogen-containing alkenes [116].
Their report clearly illustrated the limitations of gas-phase reaction. Such reactions must be
restricted to simple ethenes or halogenated propenes due to the possibility of hydrogen
abstraction occurring.

Later, Tipping et al. synthesized mercurial 84 from dioxyl 80 and investigated the
reaction of mercurial 84 with halogenated alkanes, acid chlorides, and dichlorosilanes [117].
The reaction of mercurial 84 with dichlorodimethylsilane resulted in the formation of
silicon-containing heterocycle in 93% yield, while with l,l-dichlorosilacyclobutane, the
spiro compound was isolated in 64% yield. On the other hand, Booth et al. reported
that the dioxyl 80 could react readily by oxidative addition to [Pt(PPh3)4] or [IrCl(CO)L2]
(L = PPh3, AsPh3, PMePh2) to afford the corresponding metal–nitroso complex containing
a seven-membered chelate ring [118]. The resulting complexes were stable in air for several
days or in N2 atmosphere for several months.

Meanwhile, Smith et al. reported the reaction of SO2 and SF4 with dioxyl 80 and
obtained two heterocycles 82a and 82b (Scheme 21) [119]. In neither case was a copolymer
formed, something which differed from the results from the reaction of dioxyl 80 with
tetrafluoroethene and hexafluoropropene in a previous report [113]. Compound 82a slowly
reacted with PPh3 at room temperature giving deoxidation products 83 and 83′.
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Moreover, in 2018, Beier et al. reported another strategy based on N-perfluoroalkyl
1,2,3-triazoles (Scheme 22) [120]. A series of then-unknown N-perfluoroalkyl azepine
derivatives were obtained via the aza-[4+3]-annulation of triazoles 44 with both (E)-1-
subtituted and 2-substituted dienes. When silyloxy-substituted butadiene was employed,
N-CF3 azepinone 86′ could be prepared.
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Scheme 22. Synthesis of N-trifluoromethyl azepine and azepinone via rhodium-catalyzed annulation
of 1,2,3-triazoles.

7. Other Methods

In addition to the methods mentioned above, various other synthetic routes have been
explored for the generation of heterocycles containing the N-CF3 motif. However, consider-
ing the involvement of multiple cyclic structures in these methods, their classification is
challenging. Therefore, these approaches are described in this section.

In 1971, Ogden [121] reported a route to some perfluoroheterocyclic compounds via
fluoride ion. In his work, tetrafluoroformaldazine 87 reacted with oxalyl fluoride and other
carbonyl fluorides and obtained the heterocycles 88, which could be further photolysis to
smaller heterocycles 89 (Scheme 23).
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8. Conclusions 

Scheme 23. Synthesis of perfluoro heterocycles through reaction of tetrafluoroformaldazine with
oxalyl fluoride or carbonyl fluoride.

In early organic chemistry, pyrolysis was an effective tool used to study the compo-
sition and properties of substances. For example, Banks et al. found that pyrolysis of
perfluoropiperidine or perfluoromorpholine led to the generation of N-CF3 pyrrolidine
90a or N-CF3 oxazolidine 90b, respectively [102,122–124]. The pyrolysis of perfluorooxazi-
nane in platinum at 480 ◦C led to the formation of perfluoro-(1-methylazetidine) 91 in 73%
yield and trace perfluoro-(1-methyl-2-pyrrolidone) 92, while at 580 ◦C/19 mm, the yield of
91 and 92 changed to 48% and 24%, respectively (Scheme 24a).
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8. Conclusions 

Scheme 24. Synthesis of diverse N-trifluoromethyl heterocycles: (a) pyrolysis of perfluoropiperidine,
perfluoromorpholine or perfluorooxazinane; (b) fluorination of 4-methylpyridine in the presence of
caesium tetrafluorocobaltate; (c) electrochemical fluorination of various nitrogen-containing materials.

Tatlow et al. investigated the fluorination of 4-methylpyridine in the presence of
caesium tetrafluorocobaltate (CsCoF4) and obtained perfluoro-(1,3dimethylpyrrolidine)
93 and its analogue, together with a range of (per)fluoro-pyridine bearing CF3, CHF2,
and CH2F groups (Scheme 24b) [125]. Similar to CsCoF4, CoF3 was a useful reagent for
the preparation of a wide array of highly fluorinated organic molecules including open
chain/cyclic aliphatics and aromatics. However, the high reactivity of CoF3 meant that
most of these reactions were relatively unselective with poor functional compatibility [126].

In addition, electrochemical fluorination (ECF) was one of the most commonly used
methods for the fluorination of nitrogen-containing materials [127]. In the past few
decades, many different nitrogen-containing materials [128–133] have been used in the ECF
(Scheme 24c), but the yield was generally unsatisfactory (mostly < 20%) and side products
were inevitable, which limited the scope.

8. Conclusions

Over the last decades, the chemistry of the N-CF3 motif has been weakly developed
because of the limited approaches and an incompatibility with functionalized molecules.
Very recently, some new simpler, safer, and powerful methods of obtaining this motif have
been explored. In general, the existing literature mainly focuses on synthesis, with limited
properties or applications. In three-membered heterocycles containing the N-CF3 motif,
cycloaddition, reductive defluorination-cyclization, nucleophilic cyclization, and oxidative
cyclization can reach the motif. Among them, properties and applications of oxaziridine
were reported (oxidant or building blocks [25,34,73,74]), while other three-membered
heterocycles were not reported. In four-membered heterocycles, cycloaddition was the
predominant approach, while trifluoronitrosomethane was the most common starting
material. Similarly, there were limited reports on the applications of four-membered hete-
rocycles containing the N-CF3 motif. In five-membered heterocycles, Scheiesser et al. [45]
studied, for example, the stability in aqueous media, lipophilicity and metabolic stability of
various N-CF3 amines or azoles, illustrating the potential of the N-CF3 motif in medicinal
chemistry. Generally, five-membered heterocycles containing this motif can be synthesized
from nucleophilic fluorination, cyclization, and electrophilic trifluoromethylation. Fur-
thermore, N-fluoroalkyl 1,2,3-triazoles could serve as the building blocks to access some
other N-fluoroalkyl heterocycles [78,79,120]. In six-membered heterocycles, the synthetic
approaches were similar. In larger-membered heterocycles, the perfluoro-2,5-diazahexane-
2,5-dioxyl showed its potential in coordination chemistry. The dioxyl could react readily
with [Pt(PPh3)4] or [IrCl(CO)L2} to form the corresponding metal–nitroso complex con-
taining a seven-membered chelate ring which was stable in air for several days or in N2
atmosphere for several months [118].

Overall, the literature has concentrated on the synthesis of this motif in recent years,
and research investigating its properties or applications is becoming more frequent. We
believe that the chemistry of the motif will become more and more clear, thereby extending
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its fields of application. We expect that this review will help to inspire the development of
new synthetic strategies or the application of certain structures.
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