# Enhancing Heat Transfer Behaviour of Ethylene Glycol by the Introduction of Silicon Carbide Nanoparticles: An Experimental and Molecular Dynamics Simulation Study

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

_{2}/E.G. hybrid N.F.s were fabricated, and the heat transfer of the hybrid N.F.s was studied by Toghraieeret al. [25], who indicated that there was a positive correlation between the thermal conductivity of N.F.s and temperatures as well as volume fraction of nanoparticles. In addition, Li et al. [26] presented an investigation concerning the effect of particle concentrations and temperatures on the thermal conductivity of silica/E.G. N.F.

## 2. Results and Discussion

#### 2.1. Characterization of SiC Nanoparticle

^{−1}[38]. The transmittance stretching band noted at the wavenumbers of approximately 906 cm

^{−1}may be assigned to the C-Si vibration mode of SiC. In addition, the stretching vibration peak at approximately 3414 cm

^{−1}may be attributed to the O-H formation from the water molecule in the air.

#### 2.2. Thermal Stability of N.F.s

#### 2.3. Thermal Conductivity of E.G./SiC N.F.

#### 2.4. MSD Analysis of the N.F. Systems

#### 2.5. RDF Analysis and Atom Motion Trajectory for N.F.

## 3. Computational M.D. Simulation and Experimental Section

#### 3.1. The Description of the M.D. Simulation

#### 3.2. Inter-Atomic Potentials and Simulation Strategy

_{B}denotes the Boltzmann constant, T is the temperature, <J

_{x}(0)J

_{x}(t)> is the heat flow autocorrelation function.

#### 3.3. Verification of the M.D. Simulation Model

^{−4}Å) in Lammps. Ovito software (University of Freiburg, Germany) was used to post process the simulation results.

#### 3.4. Experimental Section

#### 3.4.1. Materials

#### 3.4.2. Equipment Employed

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Xuan, Y.; Roetzel, W. Conceptions for heat transfer correlation of nanofluids. Int. J. Heat Mass Transf.
**2000**, 43, 3701–3707. [Google Scholar] [CrossRef] - Jiang, H.; Hou, X.; Dearn, K.D.; Su, D.; Ali, M.K.A. Thermal stability enhancement mechanism of engine oil using hybrid MoS2/h-BN nano-additives with ionic liquid modification. Adv. Powder Technol.
**2021**, 32, 4658–4669. [Google Scholar] [CrossRef] - Ali, M.K.A.; Hou, X. Improving the heat transfer capability and thermal stability of vehicle engine oils using Al
_{2}O_{3}/TiO_{2}nanomaterials. Powder Technol.**2020**, 363, 48–58. [Google Scholar] [CrossRef] - Leong, K.; Yang, C.; Murshed, S. A model for the thermal conductivity of nanofluids–The effect of interfacial layer. J. Nanoparticle Res.
**2006**, 8, 245–254. [Google Scholar] [CrossRef] - Tawfik, M.M. Experimental studies of nanofluid thermal conductivity enhancement and applications: A review. Renew. Sustain. Energy Rev.
**2017**, 75, 1239–1253. [Google Scholar] [CrossRef][Green Version] - Lenin, R.; Joy, P.A.; Bera, C. A review of the recent progress on thermal conductivity of nanofluid. J. Mol. Liq.
**2021**, 338, 116929. [Google Scholar] [CrossRef] - Said, Z.; Allagui, A.; Abdelkareem, M.A.; Alawadhi, H.; Elsaid, K. Acid-functionalized carbon nanofibers for high stability, thermoelectrical and electrochemical properties of nanofluids. J. Colloid Interface Sci.
**2018**, 520, 50–57. [Google Scholar] [CrossRef] - Lin, X.; Xie, G. Application of Nanofluid Electrochemistry in Heat Dissipation of Permanent Magnet Synchronous Motors. J. Chem.
**2022**, 2022, 3681749. [Google Scholar] [CrossRef] - Hassani, S.; Taylor, R.A.; Mekhilef, S.; Saidur, R. A cascade nanofluid-based PV/T system with optimized optical and thermal properties. Energy
**2016**, 112, 963–975. [Google Scholar] [CrossRef] - Singh, J.P.; Nandi, T.; Ghosh, S.K. Structure-property relationship of silver decorated functionalized reduced graphene oxide based nanofluids: Optical and thermophysical aspects and applications. Appl. Surf. Sci.
**2021**, 542, 148410. [Google Scholar] [CrossRef] - Fatima, N.; Alayyash, K.; Alfwzan, W.F.; Ijaz, N.; Riaz, A.; Saleem, N.; El-Din, E.M.T. Mathematical model for numerical simulations of thermal energy of nano-fluid in a complex peristaltic transport within a curved passage: Pharmacological and engineering biomedical application. Case Stud. Therm. Eng.
**2023**, 45, 102897. [Google Scholar] [CrossRef] - Colangelo, G.; Favale, E.; Miglietta, P.; Milanese, M.; Risi, A. Thermal conductivity, viscosity and stability of Al
_{2}O_{3}-diathermic oil nanofluids for solar energy systems. Energy**2016**, 95, 124–136. [Google Scholar] [CrossRef] - Mahian, O.; Kianifar, A.; Kalogirou, S.A.; Pop, I.; Wongwises, S. A review of the applications of nanofluids in solar energy. Int. J. Heat Mass Transf.
**2013**, 57, 582–594. [Google Scholar] [CrossRef] - Wang, B.; Wang, X.; Lou, W.; Hao, J. Gold-ionic liquid nanofluids with preferably tribological properties and thermal conductivity. Nanoscale Res. Lett.
**2011**, 6, 259. [Google Scholar] [CrossRef][Green Version] - Thrush, S.J.; Comfort, A.S.; Dusenbury, J.S.; Xiong, Y.; Qu, H.; Han, X.; Schall, J.D.; Barber, G.C.; Wang, X. Stability, Thermal Conductivity, Viscosity, and Tribological Characterization of Zirconia Nanofluids as a Function of Nanoparticle Concentration. Tribol. Trans.
**2020**, 63, 68–76. [Google Scholar] [CrossRef] - Jiang, H.; Hou, X.; Ma, Y.; Su, D.; Qian, Y.; Ali, M.K.A.; Dearn, K.D. The tribological performance evaluation of steel-steel contact surface lubricated by polyalphaolefins containing surfactant-modified hybrid MoS
_{2}/h-BN nano-additives. Wear**2022**, 504, 204426. [Google Scholar] [CrossRef] - Xiao, B.; Yang, Y.; Chen, L. Developing a novel form of thermal conductivity of nanofluids with Brownian motion effect by means of fractal geometry. Powder Technol.
**2013**, 239, 409–414. [Google Scholar] [CrossRef] - Vajjha, R.S.; Das, D.K. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int. J. Heat Mass Transf.
**2009**, 52, 4675–4682. [Google Scholar] [CrossRef] - Gao, Y.; Wang, H.; Sasmito, A.P.; Mujumdar, A.S. Measurement and modeling of thermal conductivity of graphene nanoplatelet water and ethylene glycol base nanofluids. Int. J. Heat Mass Transf.
**2018**, 123, 97–109. [Google Scholar] [CrossRef] - Satti, J.R.; Das, D.K.; Ray, D. Investigation of the thermal conductivity of propylene glycol nanofluids and comparison with correlations. Int. J. Heat Mass Transf.
**2017**, 107, 871–881. [Google Scholar] [CrossRef] - Shukla, K.N.; Koller, T.M.; Rausch, M.H.; Fröba, A.P. Effective thermal conductivity of nanofluids—A new model taking into consideration Brownian motion. Int. J. Heat Mass Transf.
**2016**, 99, 532–540. [Google Scholar] [CrossRef] - Esfahani, M.R.; Languri, E.M.; Nunna, M.R. Effect of particle size and viscosity on thermal conductivity enhancement of graphene oxide nanofluid. Int. Commun. Heat Mass Transf.
**2016**, 76, 308–315. [Google Scholar] [CrossRef] - Alawi, O.A.; Sidik, N.A.C.; Xian, H.W.; Kean, T.H.; Kazi, S. Thermal conductivity and viscosity models of metallic oxides nanofluids. Int. J. Heat Mass Transf.
**2018**, 116, 1314–1325. [Google Scholar] [CrossRef] - Jiang, H.; Hou, X.; Su, D.; Liu, H.; Ali, M.K.A. Elucidation of the thermophysical mechanism of hexagonal boron nitride as nanofluids additives. Adv. Powder Technol.
**2021**, 32, 2816–2827. [Google Scholar] [CrossRef] - Toghraie, D.; Chaharsoghi, V.A.; Afrand, M. Measurement of thermal conductivity of ZnO–TiO
_{2}/EG hybrid nanofluid. J. Therm. Anal. Calorim.**2016**, 125, 527–535. [Google Scholar] [CrossRef] - Li, Y.; Kalbasi, R.; Nguyen, Q.; Afrand, M. Effects of sonication duration and nanoparticles concentration on thermal conductivity of silica-ethylene glycol nanofluid under different temperatures: An experimental study. Powder Technol.
**2020**, 367, 464–473. [Google Scholar] [CrossRef] - Zhou, L.; Zhu, J.; Zhao, Y.; Ma, H. A molecular dynamics study on thermal conductivity enhancement mechanism of nanofluids–Effect of nanoparticle aggregation. Int. J. Heat Mass Transf.
**2022**, 183, 122124. [Google Scholar] [CrossRef] - Abu-Hamdeh, N.H.; Bantan, R.A.; Golmohammadzadeh, A.; Toghraie, D. The thermal properties of water-copper nanofluid in the presence of surfactant molecules using molecular dynamics simulation. J. Mol. Liq.
**2021**, 325, 115149. [Google Scholar] [CrossRef] - Mutuku, W.N. Ethylene glycol (EG)-based nanofluids as a coolant for automotive radiator. Asia Pac. J. Comput. Eng.
**2016**, 3, 1. [Google Scholar] [CrossRef][Green Version] - Goudarzi, K.; Jamali, H. Heat transfer enhancement of Al
_{2}O_{3}-EG nanofluid in a car radiator with wire coil inserts. Appl. Therm. Eng.**2017**, 118, 510–517. [Google Scholar] [CrossRef][Green Version] - Wang, X.; Xu, X.; Choi, S.U.S. Thermal Conductivity of Nanoparticle-Fluid Mixture. J. Thermophys. Heat Transf.
**1999**, 13, 474–480. [Google Scholar] [CrossRef] - Pinto, R.V.; Fiorelli, F.A.S. Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Appl. Therm. Eng.
**2016**, 108, 720–739. [Google Scholar] [CrossRef] - Shah, N.A.; Animasaun, I.L.; Chung, J.D.; Wakif, A.; Alao, F.I.; Raju, C.S.K. Significance of nanoparticle’s radius, heat flux due to concentration gradient, and mass flux due to temperature gradient: The case of Water conveying copper nanoparticles. Sci. Rep.
**2021**, 11, 1882. [Google Scholar] [CrossRef] - Moghaieb, H.S.; Padmanaban, D.B.; Kumar, P.; Haq, A.U.; Maddi, C.; McGlynn, R.; Arredondo, M.; Singh, H.; Maguire, P.; Mariotti, D. Efficient solar-thermal energy conversion with surfactant-free Cu-oxide nanofluids. Nano Energy
**2023**, 108, 108112. [Google Scholar] [CrossRef] - Atashafrooz, M.; Sajjadi, H.; Delouei, A.A. Simulation of combined convective-radiative heat transfer of hybrid nanofluid flow inside an open trapezoidal enclosure considering the magnetic force impacts. J. Magn. Magn. Mater.
**2023**, 567, 170354. [Google Scholar] [CrossRef] - Atashafrooz, M.; Sajjadi, H.; Delouei, A.A. Interacting influences of Lorentz force and bleeding on the hydrothermal behaviors of nanofluid flow in a trapezoidal recess with the second law of thermodynamics analysis. Int. Commun. Heat Mass Transf.
**2019**, 110, 104411. [Google Scholar] [CrossRef] - Liu, Y.; Hou, H.; He, X.; Yang, W. Mesporous 3C-SiC hollow fibers. Sci. Rep.
**2017**, 7, 1893. [Google Scholar] [CrossRef] - Fan, J.; Li, H.; Jiang, J.; So, L.K.Y.; Lam, Y.W.; Chu, P.K. 3C-SiC Nanocrystals as Fluorescent Biological Labels. Small
**2008**, 4, 1058–1062. [Google Scholar] [CrossRef] - Harandi, S.S.; Karimipour, A.; Afrand, M.; Akbari, M.; Orazio, A.D. An experimental study on thermal conductivity of F-MWCNTs–Fe
_{3}O4/EG hybrid nanofluid: Effects of temperature and concentration. Int. J. Heat Mass Transf.**2016**, 76, 171–177. [Google Scholar] [CrossRef][Green Version] - Ghanbarpour, M.; Haghigi, E.B.; Khodabandeh, R. Thermal properties and rheological behavior of water based Al
_{2}O_{3}nanofluid as a heat transfer fluid. Exp. Therm. Fluid Sci.**2014**, 53, 227–235. [Google Scholar] [CrossRef] - Essajai, R.; Mzerd, A.; Hassanain, N.; Qjani, M. Thermal conductivity enhancement of nanofluids composed of rod-shaped gold nanoparticles: Insights from molecular dynamics. J. Mol. Liq.
**2019**, 293, 111494. [Google Scholar] [CrossRef] - Mohebbi, A. Prediction of specific heat and thermal conductivity of nanofluids by a combined equilibrium and non-equilibrium molecular dynamics simulation. J. Mol. Liq.
**2012**, 175, 51–58. [Google Scholar] [CrossRef] - Cui, W.; Shen, Z.; Yang, J.; Wu, S. Molecular dynamics simulation on the microstructure of absorption layer at the liquid–solid interface in nanofluids. Int. Commun. Heat Mass Transf.
**2016**, 71, 75–85. [Google Scholar] [CrossRef]

**Figure 1.**A series of original characterizations of SiC nanoparticles, (

**a**,

**b**) TEM and SAED, (

**c**) XRD, (

**d**) FTIR.

**Figure 2.**The sedimentations images of 0.5% SiC N.F.s at different time, (

**a**) 1 day (

**b**) 3 days (

**c**) after 5 days.

**Figure 5.**The experiment and simulation values of thermal conductivity of (

**a**) E.G., (

**b**) 0.1% N.F., (

**c**) 0.5% N.F., (

**d**) 1% N.F, under varying temperatures.

**Figure 8.**The micro atom motion status under different time steps, (

**a**) 1429 ps, (

**b**) 1430 ps, (

**c**) 1431 ps, (

**d**) 1432 ps.

**Figure 10.**The atom thermal motion status of 1% SiC N.F. under varying time steps at different temperatures. (

**a**,

**a1**,

**a2**) at the temperature of 300 K, time steps of 0 ps, 2000 ps, and 5000 ps. (

**b**,

**b1**,

**b2**) at the temperature of 310 K, time steps of 0 ps, 2000 ps, and 5000 ps. (

**c**,

**c1**,

**c2**) at the temperature of 320 K, time steps of 0 ps, 2000 ps, and 5000 ps. (

**d**,

**d1**,

**d2**) at the temperature of 330 K, time steps of 0 ps, 2000 ps, and 5000 ps. (

**e**,

**e1**,

**e2**) at the temperature of 340 K, time steps of 0 ps, 2000 ps, and 5000 ps. (

**f**,

**f1**,

**f2**) at the temperature of 350 K, time steps of 0 ps, 2000 ps, and 5000 ps.

**Figure 11.**The atom thermal motion status under varying time steps at different N.F.s concentrations under 350 K. (

**a**,

**a1**,

**a2**) E.G., time steps of 0 ps, 2000 ps, and 5000 ps. (

**b**,

**b1**,

**b2**) 0.1% N.F., time steps of 0 ps, 2000 ps, and 5000 ps. (

**c**,

**c1**,

**c2**) 0.5% N.F., time steps of 0 ps, 2000 ps, and 5000 ps. (

**d**,

**d1**,

**d2**) 1.0% N.F., time steps of 0 ps, 2000 ps, and 5000 ps.

**Figure 13.**The MD model of E.G. and N.F. with concentration of (

**a**) E.G., (

**b**) 0.1%, (

**c**) 0.5%, and (

**d**) 1%.

Nanoparticles Used | Density (g/cm^{3}) | Average Size (nm) | Specific Surface Area (m^{2}/g) | Crystal Form |
---|---|---|---|---|

SiC | 0.11 | 40–60 | 39.8 | Cubic |

SiC Molar Fraction | E.G. Molecule | Si Atom | C Atom | Total Atoms |
---|---|---|---|---|

0% | 1000 | 0 | 0 | 10,000 |

0.1% | 4470 | 7 | 7 | 44,714 |

0.5% | 899 | 7 | 7 | 9004 |

1% | 447 | 7 | 7 | 4884 |

Atom | $\mathit{\sigma}$ (Å) | Ε (kJ/mol) | Molar Mass | Charge q (|e|) | Notes |
---|---|---|---|---|---|

C1 (SiC) | 3.4745 | 0.159 | 12.0100 | 0.000000 | C atom from SiC |

Si | 4.0534 | 0.2000 | 28.0860 | 0.000000 | \ |

C2 (E.G.) | 3.8754 | 0.1577 | 12.0100 | −0.170000 | C atom from E.G. |

H1 (C) | 2.4499 | 0.3038 | 1.0080 | 0.100000 | H atom from -CH_{2} |

H2 (O) | 2.4499 | 0.1569 | 1.0080 | 0.350000 | H atom from -OH |

O | 2.8597 | 0.5803 | 16.0000 | −0.380000 | \ |

Chemical Bond | K1 | r (Distance) |
---|---|---|

C2-C2 | 322.7158 | 1.5260 |

C2-O | 384.0000 | 1.4200 |

C2-H1 | 340.6175 | 1.1050 |

O-H2 | 540.6336 | 0.9600 |

C1-Si | 238.0000 | 1.8090 |

Angle | K2 | θ (Degrees) |
---|---|---|

C2-C2-O | 70.0000 | 109.5000 |

C2-C2-H1 | 44.4000 | 110.0000 |

O-C2-H1 | 57.0000 | 109.5000 |

H1-C2-H1 | 39.5000 | 106.4000 |

C2-O-H2 Si-C1-Si C1-Si-C1 | 58.5000 42.2000 44.4000 | 106.0000 122.5000 113.5000 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hou, X.; Chu, C.; Jiang, H.; Ali, M.K.A.; Dearn, K.D. Enhancing Heat Transfer Behaviour of Ethylene Glycol by the Introduction of Silicon Carbide Nanoparticles: An Experimental and Molecular Dynamics Simulation Study. *Molecules* **2023**, *28*, 3011.
https://doi.org/10.3390/molecules28073011

**AMA Style**

Hou X, Chu C, Jiang H, Ali MKA, Dearn KD. Enhancing Heat Transfer Behaviour of Ethylene Glycol by the Introduction of Silicon Carbide Nanoparticles: An Experimental and Molecular Dynamics Simulation Study. *Molecules*. 2023; 28(7):3011.
https://doi.org/10.3390/molecules28073011

**Chicago/Turabian Style**

Hou, Xianjun, Chen Chu, Hua Jiang, Mohamed Kamal Ahmed Ali, and Karl D. Dearn. 2023. "Enhancing Heat Transfer Behaviour of Ethylene Glycol by the Introduction of Silicon Carbide Nanoparticles: An Experimental and Molecular Dynamics Simulation Study" *Molecules* 28, no. 7: 3011.
https://doi.org/10.3390/molecules28073011